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Abstract. We face with the question of a suitable measure theory in Eu-
clidean point-free geometry and we sketch out some possible solutions. The
proposed measures, which are positive and invariant with respect to move-
ments, are based on the notion of infinitesimal masses, i.e. masses whose
associated supports form a sequence of finer and finer partitions.
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1. Introduction

In [3] we explored the possibility of defining measures in a mereological
space (this question is also addressed in [1, 2, 11]). Namely, we pro-
posed “rough” approximate measures in Dempster-Shafer style based on
a mass whose support is a partition of the universe. Unfortunately, these
measures are inadequate since they do not ensure the measurability of a
sufficient number of regions. Mostly, they do not allow endless approx-
imation processes, a fundamental tool in measure theory. Furthermore,
the invariance of a measure with respect to movements (a crucial aspect
of geometric measurements) was not taken into account.

In this paper we propose a more powerful tool based on the notion
of infinitesimal masses, i.e. masses whose associated supports form a
sequence of finer and finer partitions. We test this tool on point-free
foundation of Euclidean geometry as formulated in [6, 7]. Moreover, since
in [7] the notion of a movement is given, we can define a class of measures
invariant with respect to movements. To simplify our presentation, we
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always refer to the Euclidean plane but what is said easily extends to
every dimension.

The paper is organized as follows: In Section 2 we recall the main
definitions and results given in [3] where approximate measures in a
mereological space are discussed. In Section 3 a new notion of approxi-
mate measure based on infinitesimal masses is proposed. Some remarks
on these measures are drawn in Section 4. In order to test these measures
in the framework of point-free geometry, in Section 5 we define a proto-
typical point-free geometrical structure extending the one proposed in [6]
according to [7] (see [3, 8], too). In Section 6 we give a long list of notions
for point-based geometry. Via these notions it is not difficult to define
the usual point-based Euclidean geometry in Hilbert style. In Section
7 we introduce approximate measures in the prototypical structure via
square-tessellation. In Section 8 we discuss a possible axiomatization
of point-free geometry inspired by the prototypical structure. Namely,
thanks to Axiom 1, we can define a class of point-free structures in
which it is possible introduce all the definitions early proposed for the
prototypical structure. In Section 9 we define measures which are based
on square-tessellations. Section 10 is dedicated to some open questions.

2. Approximate measures in a mereological space in
Dempster-Shafer style

Given an ordered set, we denote by O the overlapping relation and by |
its negation. We write xOy if there is z 6= 0 such that z ≤ x and z ≤ y,
and we denote by O(x) the set of regions overlapping x.

We call an extended mereological space a bounded separative ordered
set R = (Re, ≤, 0, 1) where ≤ is an order relation such that

1. 0 is the minimum,
2. 1 is the maximum,
3. ∀z (zOx ⇒ zOy) ⇒ x ≤ y.

We can rewrite this last condition as follows,

x � y ⇒ ∃z(z 6= 0 ∧ z ≤ x ∧ z | y).

We call regions the elements of Re, empty region the minimum 0,
universe the maximum 1. In what follows we use the set-theoretical
language in denoting the notions of this structure. So, we call inclusion
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the relation ≤ and if x ≤ y we say that x is contained in y. We say
that two regions x, y are disjoint if x|y and sometimes we use the words
union and intersection instead of join and meet. We say that a set Π of
nonempty regions is a partition of a region x provided the regions of Π
are pairwise disjoint, their join exists and it is equal to x.

The definition of an approximate measure proposed in [3] is based on
the notion of a mass.

Definition 2.1. Let R be a distributive extended mereological space.
A map m : Re → [0, +∞) with m(0) = 0 is called mass. We call focal a
region z ∈ Re such that m(z) 6= 0 and we denote by Foc(m) the class
of all focal regions of m. Let τ : Re → Re be a one-to-one map, we
say that m is invariant with respect to τ whenever m(x) = m(τ(x)), for
every x ∈ Re. We say that m is invariant with respect to a group of
transformation if it is invariant with respect to all the maps of the group.

Definition 2.2. The lower and upper approximation measures associ-
ated with a mass m are the functions int : Re → [0, ∞] and ext : Re →
[0, ∞] such that, for every region x,

int(x) =
∑

z≤x

m(z) ; ext(x) =
∑

zOx

m(z).

Notice that by adding the condition
∑

z∈Re m(z) = 1 to these def-
initions we obtain the definitions of belief and plausibility functions in
Dempster-Shafer theory.

Definition 2.3. Denote by I([0, ∞]) the class of all closed intervals con-
tained in [0, ∞]. Then the interval approximate measure is the function
µ : Re → I([0, ∞]) defined by setting µ(x) = [int(x), ext(x)] for every
region x. We say that x is measurable whenever int(x) = ext(x) and in
this case we put µ(x) = int(x) = ext(x).

If a mass m is invariant with respect to a group, then the associated
measure is invariant, too. In [3] we proved the following proposition
whenever R is a Boolean algebra.

Proposition 2.1. The functions int and ext are superadditive and sub-
additive, respectively.

Namely, for every pair of disjoint regions x, y,

int(x) + int(y) ≤ int(x ∨ y) ; ext(x) + ext(y) ≥ ext(x ∨ y).
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Equivalently,
µ(x ∨ y) ⊆ µ(x) ⊕ µ(y).1

Moreover, there are also extended mereological spaces admitting a mass
such that ext is not subadditive.

Proof. To prove that int is superadditive we observe that, taking into
account that there is a focal element z such that z ≤ x and z ≤ y,

int(x) + int(y) =
∑

z≤x m(z) +
∑

z≤y m(z) ≤
∑

z≤x∨y m(z) = int(x ∨ y).

To prove that ext is subadditive, we claim that

O(x ∨ y) = O(x) ∪ (O(y) \ O(x)).

Indeed, trivially O(x) ∪ (O(y) \ O(x)) ⊆ O(x ∨ y). Assume that
z ∈ O(x ∨ y), hence there exists a z 6= 0 such that z ≤ z and z ≤ x ∨ y.
The inequality z ≤ x ∨ y entails z = z ∧ (x ∨ y) = (z ∧ x) ∨ (z ∧ y) and
therefore, since z 6= 0, either (z ∧ x) 6= 0 or (z ∧ y) 6= 0. Then either
z ∈ O(x) or z ∈ O(y).

Thanks to the just-proved equality, we have

ext(x ∨ y) =
∑

z∈O(x)

m(z) +
∑

z∈(O(y)\O(x))

m(z),

≤ ext(x) +
∑

z∈O(y)

m(z) = ext(x) + ext(y).

To prove the last part of the proposition, consider the “diamond
lattice”, a non-distributive lattice with five elements which we denote by
S, A, B, C, V where S is the maximum, V is the minimum and A ∧ B =
V, A ∧ C = V, C ∧ B = V, A ∨ B = S, A ∨ C = S, C ∨ B = S. Since
C ∧ (A ∨ B) = C ∧ S = C while (C ∧ A) ∨ (C ∧ B) = ∅ ∨ ∅ = ∅, the
lattice is not distributive. It is immediately verifiable that that it is an
extended mereological space.

Define a mass m by m(A) = m(B) = m(C) = 1, m(S) = λ and
m(V ) = 0. Then

ext(A ∨ B) = ext(S) = λ + 1 + 1 + 1 = λ + 3,

ext(A) = ext(B) = 1 + λ

1 Given two sets X and Y of real numbers we put X⊕Y = {x+y : x ∈ X, y ∈ Y },
in the case of two intervals [a, b] and [a′, b′], we have [a, b] + [a′, b′] = [a + a′, b + b′].



Measures in Euclidean point-free geometry 623

and therefore ext(A ∨ B) ≤ ext(A) + ext(B) ↔ λ + 3 ≤ 2λ + 2 ↔
λ ≥ 1. That holds true for any disjoint pairs of elements, and it shows
that, depending on the choice of the mass in the diamond we obtain
subadditivity by putting λ ≤ 1, superadditivity by putting λ ≥ 1 and
additivity by putting λ = 1. 2

Proposition 2.2. The function µ is additive on the set of measurable
regions, i.e. if x and y are two disjoint measurable regions, then x ∨ y is
measurable and

µ(x ∨ y) = µ(x) + µ(y).

Proof. The proof is an immediate consequence of Proposition 2.1.

Definition 2.4. We call normal a mass m such that Foc(m) is a parti-
tion of the universe.

The following proposition suggests the importance of normal masses.

Proposition 2.3. Let m be a mass in a complete mereological space
(Re, ≤). Then m is normal if and only if every focal region x is measur-
able and µ(x) = m(x).

Proof. Let f ∈ Foc(m) be measurable, then all the focal elements
overlapping f are contained in f . On the other hand, if µ(f) = m(f),
then there is no focal region f ′ strictly contained in f . This means
that f is the unique focal element overlapping f . Hence the elements of
Foc(m) are pairwise disjoint. Consider now the join fo of the elements
of Foc(m), and assume that fo 6= 1, i.e. 1 � fo. By the definition of
a mereological space there exists z 6= 0 such that z|fo. By the density
hypothesis, there exists a focal element z′ contained in z and therefore
disjoint from fo, a contradiction.

Vice versa, if Foc(m) is a partition of the universe, then obviously
every x ∈ Foc(m) is measurable and its measure is m(x).

Unfortunately, even in the case of normal masses the situation re-
mains unsatisfactory. That occurs, for example, whenever the focal
regions are too big with respect to the regions we have to measure.
In this paper we will explore an alternative path where a fundamental
role is played by a succession of normal masses with increasingly finer
corresponding partitions.

2 Notice that while C ∈ O(A ∨ B), C /∈ O(A) and C /∈ O(B).
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3. Measures based on infinitesimal masses

Recall that the refinement relation ≺ in the class of partitions of a
nonempty set is defined by putting Π′≺Π whenever every element of
Π is the join of elements of Π′. Trivially, ≺ is an order relation.

Definition 3.1. Given two normal masses m, m′ we say that m′ is a
refinement of m, and we write m′≺ m, if Foc(m′) ≺ Foc(m) and, for every
region z ∈ Foc(m),

∑

x≤z, x∈Foc(m′)

m′(x) = m(z).

Informally, m′≺ m means that m′ is obtained by a fragmentation of
m preserving the additive property.

Definition 3.2. Let m = (mn)n∈N be a sequence of normal masses and
put Foc(m) = ∪n∈NFoc(mn). We say that m is an infinitesimal mass

provided that

(i) mn≺ mn−1, for every n ∈ N;
(ii) there is no partition Π such that Π≺ Foc(mn), for every n ∈ N;

(iii) Foc(m) is dense in Re, i.e. every region contains an element of
Foc(m).

Given an infinitesimal mass m and n ∈ N, we denote by intn, extn, µn

the functions associated with mn as in Definitions 2.2 and 2.3. Obviously,
given a region x, (intn(x))n∈N is order-preserving, (extn(x))n∈N is order-
reversing and, for every n ∈ N, intn(x) ≤ extn(x). As a consequence,
(µn(x))n∈N is a nested sequence of intervals.

Definition 3.3. The lower approximation and upper approximation

measures associated with the infinitesimal mass m are the functions int

and ext defined by setting

int(x) = lim
n→∞

intn(x) and ext(x) = lim
n→∞

extn(x),

respectively. The approximate measure µ is defined by

µ(x) = [int(x), ext(x)] = ∩n∈Nµn(x).

We say that x is measurable whenever int(x) = ext(x) and in this case
we put µ(x) = int(x) = ext(x).

It is evident that if x is a finite join of elements of Foc(m), then x is
measurable and there exists k ∈ N such that µ(x) = µk(x).
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Proposition 3.1. Assume that Re is distributive and let int and ext

be the functions associated with an infinitesimal mass, then int(x) ≤
ext(x). Moreover, int is superadditive and ext is subadditive, i.e., for
every disjoint regions x and y, we have

int(x ∨ y) ≥ int(x) + int(y) and ext(x ∨ y) ≤ ext(x) + ext(y).

Equivalently,

µ(x ∨ y) ⊆ µ(x) ⊕ µ(y).

Proof. Given two disjoint regions x, y, since, intn(x ∨ y) ≥ intn(x) +
intn(y), for every n ∈ N, we have

int(x ∨ y) = limn→∞ intn(x + y) ≥ limn→∞(intn(x) + intn(y))
= int(x) + int(y).

Hence int is superadditive. Since, for every n ∈ N, we have extn(x∨y) ≤
extn(x) + extn(y), we get

ext(x ∨ y) = limn→∞ extn(x ∨ y) ≤ limn→∞(extn(x) + extn(y))
= limn→∞ extn(x) + limn→∞ extn(y) = ext(x) + ext(y).

Hence ext is subadditive.

Proposition 3.2. The function µ is additive over the set of measurable
regions, i.e. if x and y are two disjoint measurable regions and x ∨ y
exists, then x ∨ y is a measurable region and

µ(x ∨ y) = µ(x) + µ(y).

Proof. The proof is an immediate consequence of Proposition 3.1.

4. A few remarks on measuring by infinitesimal masses

The notion of a positive measure is the subject of a large and inter-
esting literature.3 The following proposition shows that the measures
associated with an infinitesimal mass are positive.

Proposition 4.1. Let m be an infinitesimal mass. Then int(x) > 0
for every region x and therefore, the measure µ associated with m is

3 A measure µ is positive if µ(x) 6= 0 for every measurable region x 6= 0.
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positive. Moreover, int(x) < int(y) whenever x < y, whence µ(x) < µ(y)
whenever x < y.4

Proof. Since Foc(m) is dense in Re, for every nonempty region x there
is n ∈ N and f ∈ Foc(mn) such that f ≤ x. Therefore µ(x) = int(x) ≥
mn(f) > 0.

Assume now that x < y. Since (Re, ≤, 0, 1) is a mereological space
and y � x, there exists a nonempty region z, disjoint from x, such that
z ≤ y. Given f ∈ Foc(m) such that f ≤ z, we have int(x) + mn(f) ≤
int(y), therefore int(x) < int(y).

We conclude the section by saying that, in mereology much remains
to be done concerning measures based on infinitesimal masses. However,
we do not want to continue to work on these options, but in the remaining
part of the paper we prefer to explore this approach in the framework of
point-free geometry.

5. Testing the proposed measures in a prototypical
point-free geometrical structure

To test the idea of an approximate measure via an infinitesimal mass,
we refer to the approach to point-free geometry proposed in [6] and
[7] which, in turn, is related to Hilbert’s point-based axiomatization of
geometry. In this approach a basic role is played by a prototypical point-
free structure in which the regions are represented by the regular closed
subsets of R2 (as usual in the literature on point-free geometry).

Definition 5.1. Given a topological space, denote by c and i the closure
and the interior operators, respectively. Then the regularization operator

r is defined by setting r(X) = c(i(X)) for every subset X . A regular

closed subset is a fixed point of r.

One proves that r(r(X)) = r(X), hence r(X) is a regular closed
subset, for every subset X of the topological space.

Theorem 5.1. Let RC be the class of the regular closed subsets of R2.
Then the structure (RC, ⊆) is an atomless complete Boolean algebra

4 This means that, in accordance with Euclid’s statement (Euclid, Elements,
Book I, Common Notion), “The whole is greater than the part.”
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(equivalently a complete mereological space). The Boolean operations
are defined by putting, for every C ⊆ RC and X ∈ RC,

∧C = r(∩C), ∨C = r(∪C), ¬X = r(−X).

We call regions the elements of RC, empty region the empty set,
universe the maximum R2 of RC. In what follows we prefer the ring
style notation, writing X + Y, X · Y , X−1 instead of X ∨ Y , X ∧ Y , ¬X .
It is evident that all the figures usually considered in Euclidean geometry
(triangles, rectangles, circles . . . ) can be represented as elements of RC,
while points and lines do not.

Since we consider two different Boolean algebras of sets, namely
(RC, ⊆) and (P(R2), ⊆), we will use the prefix RC to name the opera-
tions in (RC, ⊆). We call RC-intersection, RC-union and RC-comple-

ment the meet, the join and the complement in (RC, ⊆), respectively. In
accordance, we say that two regions X and Y are RC-disjoint whenever
X · Y = ∅, i.e. the interior of X ∩ Y is empty. It is evident the meaning
of expressions like RC-partition, RC-overlap and so on.

A further step is to enrich the Boolean structure (RC, ⊆) with the
class Conv of the convex elements of RC according to [6, 7, 8].5 The
regions of this class are also called ovals according to Whitehead’s ter-
minology.

Finally, to define the basic notion of congruence, we introduce a group
acting on the set RC of regions corresponding to the group (Is, ◦, −1, i) of
the plane isometries [see 7]. Indeed, for every map f in Is, we define the
map f∗ : P(R2) → P(R2) by setting f∗(X) = {f(P ) : P ∈ X}, for every
X ∈ RC.6 Consider now (Is∗, ◦,−1 , i), where Is∗ = {f∗ : f ∈ Is}, ◦ is
the composition and i the identity map. One proves that this structure
is a group which is isomorphic to the group of isometries.

Definition 5.2. We say that Is
∗ = (Is∗, ◦,−1 , i) is the group of the

movements of a region.

We are now ready to give our main definition.

Definition 5.3. We call a prototypical point-free plane, in brief PPF ,
the structure (RC, ⊆, Conv, Is∗).

5 A different choice has been made by A. Śniatycki in [14] where a half-plane is
a primitive notion.

6 We prefer the notation f∗(X) instead of the common notation f(X) which is
misleading since f is different from f∗.
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This point-free structure is relevant since through it we can define a
point-based model of the Euclidean plane. We will show this by referring
to the primitive notions of Hilbert’s system of axioms for the Euclidean
plane.7

6. The definitional power of the prototypical point-free
plane: lines, points, incidence

In [6, 7] it is shown that in the prototypical point-free plane it is possible
to define a model of Hilbert’s system of axioms for plane geometry. To
do this we have to give a list of definitions corresponding to the ones
assumed as primitives in Hilbert’s book. We start with “straight lines”,
“points” and the “incidence” relation.

Definition 6.1. An RC-half-plane is an element H in Conv such that
H−1 is in Conv. Given a region X , the RC-boundary of X is the set
{X, X−1}. We call an RC-straight line, in short RC-line, the boundary
l = {H, H−1} of an RC-half-plane H and we say that H and H−1 are
the RC-sides of l.

We denote by Hp the class of RC-half-planes and by RCL the class
of RC-lines.

Definition 6.2. Two RC-lines l1, l2 are called parallel whenever they
have two disjoint RC-sides, otherwise they are called incident or inter-

secting.

The following items are obviously equivalent:

– l1 is parallel with l2;
– l1 and l2 have two sides whose RC-union is the universe;
– l1 and l2 have two comparable sides.

We can consider the RC-partition of the universe generated by the sides
of n lines. In the following proposition we consider the cases n = 1 and
n = 2.

Proposition 6.1. Let lH = {H, ¬H} and lK = {K, ¬K} be RC-
lines. Then the associated partition of the universe is the class Π of

7 However, one can proceed in a similar way for all the main proposals of the
Euclidean geometry axiomatization.
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the nonempty regions in {H ·K, H · (¬K), (¬H ·K), (¬H) · (¬K)}. More
precisely,

– If lH = lK, then Π has two elements.
– If lH 6= lK and they are parallel, then Π has three elements.
– If lH 6= lK and they are incident, then Π has four elements.

Proof. The first part of the proposition is straightforward.
If lH = lK = l, then Π consists of the sides of l. If lH 6= lK and lH , lK

are parallel (for example, if H and K are RC-disjoint), then Π consists of
the half-planes H and K and the region (−H) ·(−K). Finally, if lH 6= lK
and lH , lK are incident, then the partition has four elements.

Defining a point is our next step and for this we give the definition
of a representative of a point.

Definition 6.3. Let us call a representative of a point, briefly an r-point,
a pair P = {r, t} of intersecting RC-lines. We denote by RP the set of
representatives of a point.

Then an r-point is defined as the intersection of two lines, in a sense.
The notion of a point is obtained by introducing a suitable equivalence
relation in RP .

Definition 6.4. Given an r-point P , we say that P is an interior point
of a convex region X whenever X overlaps all four angles determined by
P ; P is an interior point of a region Y whenever it is an interior point
of an oval contained in Y .

Definition 6.5. We say that two r-points P and Q are separable if there
are two disjoint ovals X1 and X2 such that P is interior to X1 and Q is
interior to X2. We say that P and Q are r − equivalent and we write
P ≡r Q it they are not separable. An RC-point is an equivalence class
[P ] modulo ≡r.8 We denote by Po the set of RC-points.

Definition 6.6. An RC-point is an interior point of a region X provided
that all its representative elements are internal to X .9

8 As already mentioned, Whitehead and most point-free geometry scholars pro-
posed a different definition of a point based on the notion of an abstraction class. In
this paper we prefer the definition of a point as proposed by A. Śniatycki in [14] and
adopted in [6, 7].

9 As a trivial consequence of the definition of ≡r , if an r-point P = {l1, l2} is an
interior point of a region X, then all the r-points equivalent to P are interior in X.
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Definition 6.7. A point [P ] lies on the boundary of a region X if it
is not an interior point of X and it is not an interior point of X−1. In
particular, [P ] lies on a line l = {H, H−1} if it is neither an interior
point of H nor an interior point of H−1.

Let’s continue with the definition of the remaining primitive notions
of Hilbert geometry.

Definition 6.8. The betweeness relation is the ternary relation bet de-
fined in Po by setting bet([A], [B], [C]) under the condition that when
[A] and [C] are interior points of a convex subset X , they imply that [B]
is an interior point of X .

Finally, we must define congruence between angles and segments.

Definition 6.9. Given two intersecting RC-lines, we call an angle every
region of the associated partition.

Definition 6.10. Let [P ], [Q] be two points, then the set {[P ], [Q]} is
called an RC-segment with endpoints [P ] and [Q]. We denote by PQ
this segment and we say that it is internally contained in an oval X if
both [P ] and [Q] are interior points of X . We say that PQ is internally

contained in a region X if it is internally contained in an oval contained
in X .

Definition 6.11. The congruence relation ≡c between regions (in par-
ticular between angles) is defined by setting X ≡c X ′ whenever there is
τ∗ ∈ Is∗ such that τ∗(X) = X ′.

It then only remains to define congruence between segments.

Definition 6.12. The congruence relation ≡c between segments is de-
fined by setting PQ ≡c P ′Q′ if there is τ∗ ∈ Is∗ such that, for every
oval X , PQ is internally contained in X if and only if P ′Q′ is internally
contained in τ∗(X).10

Definition 6.13. We call prototypical point-based Euclidean plane as-

sociated with PPF the structure PPB = (Po, RCL, ǫ, ≡c, bet).

10 Apparently, we could define congruence between segments by putting PQ ≡c

P ′Q′ whenever there is τ ∈ Is such that P ′Q′ = τ(P )τ(Q). However, we are interested
in definitions using only primitive notions of the prototypical structure. Hence we may
use Is∗ but not Is.
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PPF can be viewed as an interpretation of the language LH used by
Hilbert in his theory. In [7] the authors prove the following theorem.

Theorem 6.1. The prototypical point-based structure PPB associated
with PPF is isomorphic to the analytic model of Euclidean plane.11

Consequently, this structure is a model of Hilbert’s system of axioms.

Proof. Consider the analytic model of the Euclidean plane. Denote
by L the set of lines and define the map i : R2 ∪ L → Po ∪ RCL that
associates

(i) every straight line l with the RC-line {H, H−1}, where H is a closed
half-plane;

(ii) every point P = (x, y) in R2 with the RC-point [{l1, l2}] defined by
the lines l1 := {(x, y) ∈ R2 : x = x} and l2 := {(x, y) ∈ R2 : y = y}.

Obviously, i is an isomorphism. Since isomorphic models satisfy the
same propositions, PPB is a model of Hilbert’s system of axioms for
plane geometry.

This theorem shows that there exists a point-free geometrical struc-
ture able to define the usual point-based Euclidean geometry.

7. Measures in the prototypical point-free plane via masses
associated with a square-tessellation

In this section we test on the prototypical structure our definition of
a measure based on the notion of an infinitesimal mass. We will con-
sider infinitesimal masses associated with partitions whose elements are
squares defined as follow.

Definition 7.1. We say that two incident lines are perpendicular if the
associated four angles are pairwise congruent. In this case we say that
these angles are right angles.

Definition 7.2. Given two parallel RC-lines, let H and K be the related
disjoint sides. Then we say that (−H)(̇ − K) is a stripe. Two stripes
are called perpendicular provided that the lines defining a stripe are
perpendicular to the lines defining the other stripe.

11 We refer to the model of Euclidean geometry in which a point is an element
of R2, a straight line is the set of points satisfying a linear equation in two variables
and so on.
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Definition 7.3. A square is a region obtained by intersecting two per-
pendicular congruent stripes. A square-tessellation is a partition of the
plane whose elements are pairwise congruent squares.

Definition 7.4. Given a square-tessellation Π, a sequence (Πn)n∈N of
square-tessellations is defined by induction as follows

– Π1 = Π;
– Πn is the square-tessellation obtained by dividing each square of Πn−1

into four congruent squares.

In turn, (Πn)n∈N is associated with the sequence m = (mn)n∈N defined
by putting

– m1(X) = 1 if X is a square in Π1 and m1(X) = 0 otherwise;
– mn(X) = mn−1(X ′)/4 if X ′ is a square in Πn−1 containing X and

mn(X) = 0 otherwise.

The proof of the following theorem is straightforward.

Theorem 7.1. The just defined sequence m = (mn)n∈N is an infinitesi-
mal mass invariant with respect to the group Is∗ of transformation. As
a consequence, the associated measure µ is invariant with respect to this
group.

Remark 7.1. It is evident that µ coincides with the restriction of Jordan’s
measure µ∗ to the class RC of regular closed subsets. Nevertheless, this
does not imply that the behaviour of µ coincides with µ∗. This happens
since these measures are defined in different Boolean algebras in spite
of the fact that the domain of these algebras is the same. Indeed, two
disjoint regular closed subsets may be not disjoint in the power set of R2.

8. The axiomatic point of view

We will utilize the prototypical point-free plane to individuate a system
of axioms for point-free geometry. The purpose is to capture structures in
which it is possible to repeat what has been done starting from PPF , in
particular the definition of a measure based on the infinitesimal masses.

To do this, we denote by LP F a language containing names for the
primitive notions of PPF . Then an interpretation of this language is a
structure of type (Re, ≤, Ov, Is∗) in which Re is a nonempty set, ≤ is a
binary relation on Re, Ov a subset of Re and Is∗ a set of functions from
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Re into Re. Obviously, according to [6, 7], we fix our axioms among the
properties of PPF and we start from the following basic axiom.

Axiom 1. (Re, ≤) is an atomless complete Boolean algebra, Ov is an
algebraic closure system in this algebra and Is is a subgroup of the
group of automorphisms of (Re, ≤, Ov).12

Definition 8.1. We call basic point-free structure any model of Axiom 1.
We call regions the elements of Re, ovals the elements in Ov, movements

the functions in Is∗ and inclusion the relation ≤.

In a basic point-free structure we can define a very large list of no-
tions, geometrical in nature. In particular, we can define all the primitive
notions of Hilbert theory. Here is a list of definitions coinciding with the
early proposed list given in the prototypical point-free structure. Unlike
the case of prototypical structure, we use lowercase letters x, y, z, . . . to
denote variables for regions.
• A half-plane is an oval h whose complement h−1 is still an oval.
• The pair {x, x−1} is the boundary of a region x.
• A straight line, in short a line, is the boundary l = {h, h−1} of a

half-plane h. Moreover, h and h−1 are named the sides of l.
• Two lines l1, l2 are called parallel if a side of l1 is disjoint from a side

of l2, otherwise they are called incident.
• Let l1 6= l2 be two lines. If they are incident, we call angle a region

obtained intersecting a side of l1 with a side of l2. If they are parallel,
we call strip the complement of the join of their disjoint sides.

• An r-point is a set P = {l1, l2} of two incident lines.
• An r-point P = {l1, l2} is an interior point of an oval x if x overlaps

all the four angles defined by the sides of l1 and l2. P is an interior

point of a region x if it is an interior point of an oval contained in x.
We denote by ∈in the so defined relation between points and regions.

• In the class of r-points denote by ≡p the equivalence relation defined
by setting P ≡p Q provided that, for every region x, P ∈in x if and
only if Q ∈in x.

• We call point an equivalence class [P ] of an r-point P modulo ≡p.

12 A subset C of a Boolean algebra B is a closure system whenever it is closed
under finite and infinite joins and 1 ∈ C. A closure system is algebraic whenever it
is closed under infinite joins of totally ordered subsets. Finally, a bijective function
τ : Re → Re is an automorphism of (Re, ≤, Ov) whenever it is an automorphism of
the Boolean algebra (Re, ≤) such that x ∈ Ov if and only if τ(x) ∈ Ov.
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• Let [P ] be a point. We call [P ] an interior point of a region x, in
brief [P ] ∈in x, if there is P ′ ∈ [P ] such that P ′ ∈in x;

• Given two points [P ], [Q], [P ] 6= [Q], we say that {[P ], [Q]} is a
segment and we denote by PQ this segment. We say that PQ is
internally contained in a region x, in short PQ ∈in, if both [P ] and
[Q] are interior points of x.

• An r-point P = {l1, l2} lies on the boundary of a region x if it is nei-
ther an interior point of x nor an interior point of x−1. In particular
P lies on a line l = {h, h−1} if it is not an interior point of h and
it is not an interior point of h−1. We denote by ∈on the relation so
defined.

• A point [P ] lies on the boundary of a region x, in brief [P ] ∈on x, if
there is P ′ ∈ [P ] such that P ′ ∈on x.13

• The betweeness relation is the ternary relation bet defined in Po by
setting bet([A], [B], [C]) under the condition that when [A] and [C]
are interior points of a convex subset X , they imply that [B] is an
interior point of X .

• We say that the regions x and x′ are congruent, and we write x ≡ x′,
if there is a movement τ such that τ(x) = x′.

• We say that the segment PQ is congruent to the segment P ′Q′ if
there is a movement τ such that, for every oval x, PQ ∈in x if and
only if P ′Q′ ∈in τ(x).
Once we have seen that all primitive notions of Hilbert’s approach are

definable, we can use a simple trick to extend Axiom 1 into a satisfactory
theory. This trick, which is named the “cannibalization of a theory” in
[5], was adopted by Tarski in his famous paper [15]. In Tarski’s paper
one cannibalizes Pieri’s system of axioms for Euclidean geometry. In our
case the trick applies to Hilbert’s system of axioms for plane geometry.

Indeed, denote by L a language containing the language LP F for
the basic point-free structures and Hilbert language LH . Then in L we
can define a theory HT with formulas expressing Axiom 1, formulas
expressing all the definitions of the primitive notions of Hilbert theory
and mainly all the axioms of Hilbert theory. HT is consistent since the

13 Observe that the relation ≡p is compatible with both ∈in and ∈on, i.e.
P ∈in x and Q ≡p P ⇒ Q ∈in x,
P ∈on x and Q ≡p P ⇒ Q ∈on x.

As a consequence, a point [P ] is an interior point of a region x (lies on the
boundary of a region x) if and only if all the r-points in [P ] are interior points of x
(lie on the boundary of x).



Measures in Euclidean point-free geometry 635

union of PPF and PPB is an interpretation of L which is a model of
HT . Moreover, all models of HT admit a reduct which satisfies Hilbert’s
system of axioms. This means that the axiom system HT is an point-
free approach to Euclidean geometry which is adequate from a logical
point of view.

As a matter of fact, as highlighted by Tarski in [15], the cannibal-
ization method is far from being satisfactory, since it seems preferable
to individuate a system of axioms expressing intrinsic properties of re-
gions.14 In this paper we will consider only two axioms enabling us to
extend measures defined in PPF to the whole class of the basic point-free
structures.

9. Measuring by square-tessellation

We now extend some definitions, early given in PPF , to the basic point-
free structure.
• Two incident lines are perpendicular whenever the associated angles

are pairwise congruent. In this case these angles are named right

angles.
• Two stripes are perpendicular whenever the lines defining the first

strip are perpendicular to the lines defining the second strip.
• A square is the meet of two perpendicular and congruent stripes.
• A square-tessellation is a partition of the universe whose elements

are pairwise congruent squares.
At this point two existence axioms are necessary.

Axiom 2. For every square s, there is a square-tessellation of the universe
whose elements are congruent to s.

Axiom 3. For every square s, there exists a partition of s formed by four
pairwise congruent squares.

In what follows we fix a square u, called unit square, and a square-
tessellation Π, whose elements are congruent to u, called unitary tessel-

lation. Axioms 2 and 3 allow us to give the following definition.

Definition 9.1. Given a unitary tessellation Π we obtain a sequence
(Πn)n∈N of tessellations by setting

14 An attempt in this direction was been made in [7].
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– Π1 = Π
– Πk is obtained by substituting each square s in Πk−1 with its partition

formed by four pairwise congruent squares.

In turn, we can define an infinitesimal mass.

Definition 9.2. Given a unitary tessellation Π, we define the sequence
m = (mn)n∈N by putting mk(x) = 41−k whenever x is an element of the
partition Πk and mk(x) = 0 otherwise.

The proof of the following proposition is straightforward.

Proposition 9.1. Let m = (mn)n∈N be as in Definition 9.2. Then m
is an infinitesimal mass which is invariant with respect to the group
of movements. Consequently, the associated measure is invariant with
respect this group.

10. Conclusions and open questions

As the title claims, this paper, as well as our paper [3], is exploratory in
nature. Mainly, it aims to indicate the existence of a problem:

the need of a satisfactory measure theory for mereological structures and,

mainly, in point-free geometry.

This means that our proposals are just one way to draw attention to
this question and to suggest some ideas. We have no claims to consider
our proposals to be complete and even less the only ones possible. In
this paper we have sketched measures in point-free geometry, which are
based on an infinitesimal mass derived by a square tessellation. However,
nothing prevents us from considering a different tessellation; for example,
a tessellation based on an equilateral triangle taken as unitary. In this
regard it is interesting to observe that, with reference to PPF , both
the formula Area = l2 to calculate the area of a square with side l (by
applying square-tessellation) and the formula Area = l2 to calculate the
area of an equilateral triangle with the same side (by applying triangle-
tessellation) are correct. Indeed, fix an equilateral triangle t, then there
exists a tessellation formed by triangles which are congruent to t. More-
over, since every equilateral triangle is a union of four pairwise congruent
equilateral triangles, we can define an infinitesimal mass exactly as in the
case of squares. It is immediate to see that, with respect to this mass, an
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equilateral triangle with side l = 2 is a union of four pairwise congruent
equilateral triangles, therefore its measure is 22. Likewise, if l = 3, then
its measure is 32, if l = 1/3, then its measure is (1/3)2 and so on.

A further question that could be addressed is the extension of this
idea of measurement for a point-free approach to non-Euclidean geome-
try. In this case the notion of a tessellation might be again the basis of
a definition of measures.

Finally, one could investigate the possibility of substituting measures
understood as an assignment of a real number to a region, with “mea-
sures” understood as a comparison between extensions of regions, based
on the relation of equidecomposability.15

Recall that, roughly speaking, two figures A and B are called equide-

composable whenever B can be obtained from A by cutting A into a finite
number of pieces and then recomposing them by suitable movements.
More precisely:

Definition 10.1. Two regions x, x′ are called equidecomposable if there
are a partition {x1, . . . , xn} of x and a partition {x′

1, . . . , x′
n} of x′ such

that x′
i is congruent to xi, for i ∈ {1, . . . , n}.
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