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Abstract. This article aims to examine Koellner’s reconstruction of Pen-
rose’s second argument  a reconstruction that uses the DTK system to
deal with Gödel’s disjunction issues. Koellner states that Penrose’s argu-
ment is unsound, because it contains two illegitimate steps. He contends
that the formulas to which the T-intro and K-intro rules apply are both
indeterminate. However, we intend to show that we can correctly interpret
the formulas on the set of arithmetic formulas, and that, as a consequence,
the two steps become legitimate. Nevertheless, the argument remains par-
tially inconclusive. More precisely, the argument does not reach a result
that shows there is no formalism capable of deriving all the true arithmetic
propositions known to man. Instead, it shows that, if such formalism exists,
there is at least one true non-arithmetic proposition known to the human
mind that we cannot derive from the formalism in question. Finally, we
reflect on the idealised character of the DTK system. These reflections
highlight the limits of human knowledge, and, at the same time, its irre-
ducibility to computation.
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Introduction

Roger Penrose has wryly reflected on the philosophical implications of
Gödel’s incompleteness theorems. Penrose’s thoughts on this matter are
neatly summarised by two arguments he made to show the superiority of
the mind over the machine. The first of these two arguments [Penrose,
1989] rests on the fact that, while a machine cannot demonstrate its

Received March 8, 2021. Accepted December 2, 2021. Published online December 16, 2021

© The Author(s), 2021. Published by Nicolaus Copernicus University in Toruń

http://dx.doi.org/10.12775/LLP.2021.019
https://orcid.org/0000-0001-8227-2226
https://orcid.org/0000-0001-8552-1099


472 Antonella Corradini and Sergio Galvan

consistency, the mind can. In response to criticism raised against this
thesis, Penrose shifted his attention to the mind’s capabilities, rather
than continuing to focus on the machine’s limits. The result of this
change of perspective is the so-called second argument of Penrose.1 This
argument is first presented in [Penrose, 1994, sections 3.16, 3.23, and
3.24] and then in [Penrose, 1996, section 3.2], where it appears in the
following form:

Though I don’t know that I necessarily am F, I conclude that if I were,
then the system F would have to be sound and, more to the point, F’
would have to be sound, where F′ is F supplemented by the further
assertion “I am F”. I perceive that it follows from the assumption that
I am F that the Gödel statement G(F′) would have to be true and,
furthermore, that it would not be a consequence of F′. But I have
just perceived that “if I happened to be F, then G(F′) would have to
be true”, and perceptions of this nature would be precisely what F′ is
supposed to achieve. Since I am therefore capable of perceiving some-
thing beyond the powers of F′, I deduce that, I cannot be F after all.
Moreover, this applies to any other (Gödelizable) system, in place of F.

Although this formulation of the argument is clearer than the for-
mulations presented in [Penrose, 1989, 1994], it has, nonetheless, given
rise to a series of interpretations or  more accurately  of reconstruc-
tions, which are only partially equivalent. Scholars such as Chalmers
[1995], Shapiro [1998, 2003], and Lindström [2001, 2006] have shared the
conviction that Penrose’s second argument is not conclusive. The most
extensive and in-depth reconstruction of the argument has recently been
published by Peter Koellner in [2018b].

Koellner’s approach is interesting because he develops the reconstruc-
tion of the argument within the context of a rigorous formulation and
demonstration of Gödel’s disjunction.2 The use of a precise language, to
formulate the disjunction and identification of a precise system of rules
and axioms, allows Koellner to demonstrate the disjunction rigorously,
and, thus, to confirm Gödel’s claim that the disjunction represents a
mathematical result that is consequent to the incompleteness theorems.
Koellner’s valuable analysis on this front also allows him to deal  in a
refined manner  with the alleged demonstrations of the first disjunct,

1 Penrose’s arguments are in part anticipated by Lucas’ reflections, which present
strong similarities with Penrose’s ones [see Lucas, 1961, 1968].

2 See [Koellner, 2016, 2018a]. For Gödel’s disjunction see [Gödel, 1996, p. 310].
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including Penrose’s second argument. In summary, Koellner shows that
the EAT system (epistemic arithmetic with typed truth predicate), which
is sufficient to demonstrate Gödel’s disjunction, is not sufficient to ad-
dress the first disjunct demonstration successfully. The problem here is
that the truth predicate required by Penrose’s argument must be type-
free, since the epistemic knowledge operator K has a more extensive
referential range than it has in the EAT system. Koellner proposes to
replace the EAT system with the DTK system, which provides for the
possibility that certain propositions allowed by the free use of the truth
predicate are indeterminate, and, therefore, are not likely to be true
or false. In the argument as reconstructed in DTK, Koellner identi-
fies two illegitimate steps  in that they involve indeterminate proposi-
tions  and, further on, he even demonstrates that the first disjunct is
undecidable. Now, it should be noted that, when Koellner deals with
Penrose’s argument,3 he presents it in a partially formalised way, so that
the illegitimacy claim lacks the required formal details. Koellner [2016]
limits himself to illustrating the reason why it is necessary to move from
a system with a typed truth predicate  like EAT  to one with a free
truth predicate  like DTK. After that, he proceeds to show  through
Theorem 7.16.2  the undecidability of the first disjunct and the nega-
tion of the second. In [2018a, IV.1] Koellner states that steps (2) and
(5) of the argument are illegitimate, because the formulas involved are
indeterminate. He also shows, through Theorem 7, that indeterminate-
ness can be demonstrated in DTK. In IV.2, however, he states that,
although indeterminateness can also be demonstrated for the full version
of the disjunction, it no longer applies to the restricted version of the
disjunction  i.e., the disjunction restricted to arithmetic formulas. The
question, of course, arises as to whether this indeterminateness can be
removed through a similar restriction, also from the formulas involved in
steps (2) and (5) of the argument. And if so, what are the consequences
for the conclusiveness of the argument?

This issue is the central theme of this article, and to which the first
two sections of this article are devoted. In the first section, the dis-
junction is proved by adopting a metatheoretical extension of EA, in
which it is quantified over metavariables. In this way  unlike Koellner 
the disjunction can be obtained without an explicit predicate of typed
truth. This section serves to show that, for the formalisation of Gödel’s

3 See on this both [Koellner, 2016, 164–166] and [Koellner, 2018b, 459–461].
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disjunction, the truth predicate is even dispensable, if one makes use of
the metatheoretical extension of EA. In any case, a free truth predicate
is not necessary. On the contrary, in the demonstration of Penrose’s
argument, the use of a type-free truth predicate is necessary.

Section 2 of this article is the central one. Here, we will recon-
struct Penrose’s argument  along Koellner’s lines  and, in particular,
examine the formal details of the steps that, according to Koellner, are
unsound. We will see that, on the restricted interpretation of deter-
minateness, these steps become sound. As a consequence of the same
interpretation, however, the last step of the whole argumentation be-
comes unsound. It is unsound on the restricted interpretation. Nev-
ertheless, steps 1–7  corrected on the restricted interpretation  allow
Penrose’s thesis to be obtained in its general interpretation. As sur-
prising as this result may seem, however, this article shows that it only
partially achieves the intent pursued by Penrose. Indeed, it is true that
the argument thus reconstructed is not able to establish that there is
no formalism capable of deriving all humanly knowable mathematical
propositions. But, even assuming that such formalism does exist, it is
nevertheless possible to state that there is at least one humanly knowable
non-mathematical proposition that is not deducible in this formalism.4

In Section 3 we will try to show that the relationship between mind
and machine, i.e., between knowledge and formal deduction, can be con-
ceived in a different way from how it is within systems such as DTK.
Namely, we can base it on a conception of mathematical knowledge as
something that is both formal and informal. It is formal, because it is
ideally open to formalisation, and informal, because it cannot be elimi-
nated in favour of the formal. From this perspective, we will emphasise
the problems presented by a computational conception of the mind and
therefore with the negation of the first disjunct.

It must be stressed that the main purpose of this article is to formalise
in detail the proof of the second argument  in the restricted formulation
mentioned  within Koellner’s DTK system. This article does not intend
to take stock of the whole debate concerning the relationship between
Gödel’s theorems and the mechanistic thesis, nor to draw conclusions
about the results obtained by other authors [see, e.g., Krajewski, 2020].
Rather, this essay aims to realise the hard work of formal elaboration, the

4 This is perfectly in line with the undecidability result independently achieved
by Koellner through Theorem 7.16.2 in [2016].
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only one that, if successful, allows us to reach a result of mathematical
certainty.5

1. Gödel’s disjunction

1.1. Koellner’s approach

The impact that the incompleteness theorems have had on the philoso-
phy of mind is a given. The difficulty of their philosophical interpretation
lies in rigorously expressing the consequences that the theorems imply,
without misinterpreting their meaning, or amplifying or reducing it, ex-
cessively. Gödel himself was aware of the philosophical consequences of
his theorems, and also the difficulty of treating them rigorously. That is
why he came to formulate the consequences so late on, in his 1951 Gibbs
Lecture, the final draft of which was posthumously published. Gödel’s
wording, here, is informal, and the reasoning that leads to it is also car-
ried out informally. The interest of Koellner’s work,6 therefore, lies in
his reconstruction of the disjunction within a strictly formal framework.
This framework rests on three fundamental concepts.

A. Relative provability. Relative provability is the notion of provability
concerning a specific formal system. Let us take, for example, a formal
system (set of axioms and rules) F. Then, the propositions provable in
F are propositions provable relatively to this system. Since it is a formal
system, the set of these propositions is recursively enumerable.7 We
express the derivability of ϕ in F through the following two equivalent
ways: ⊢F ϕ and F (pϕq)  where ⊢ is the usual metatheoretical sign
of derivability, pϕq represents the code of the proposition ϕ, and F
represents, in the context of F (pϕq), the provability predicate in F PRF .
The expression F (pϕq) is often simplified as Fϕ. Finally, the notion of a
formal system corresponds to that of an idealised finite machine (Turing
machine).

5 Avron [2020, p. 106] claims: “An argument that cannot be fully formalized
cannot be taken as a mathematical proof”.

6 In [Koellner, 2016, pp. 160–162] the disjunction is formalised in EAT; in [2016,
pp. 174–176] in DTK; and in [2018a, pp. 349–355] in EAT.

7 This is the meaning of the usual expression of computability. A proposition is
computable to the extent that there is a formal system in which it is provable.
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B. Absolute provability. The concept of absolute provability corresponds
to what Gödel calls ‘subjective mathematics’ , i.e., the set of mathemat-
ical propositions that are knowable with mathematical certainty by the
ideal mathematician. For our purposes, however, it is not necessary to
speak of the totality of the mathematical propositions but, rather, the
totality of the arithmetical propositions. Furthermore, it is not possi-
ble to know a priori which propositions are knowable. It is also not
important to draw a precise line of demarcation between knowable and
unknowable propositions. As we infer from the evidence, Gödel believed
that there were no true mathematical propositions absolutely inaccessi-
ble to the human mind, but he did not rule out the possibility either.
So much so, that the existence of absolutely undecidable propositions
is the content of the second horn of the disjunction. The restriction to
only true arithmetical propositions and the irrelevance of a demarcation
line between knowable and unknowable propositions make it possible
to simplify the construction of the calculus characterising the notion of
mathematical knowability without losing its essentials. Koellner meets
this requirement by introducing the EA system of epistemic arithmetic.
The language of EA is the language of Peano’s arithmetic PA8 expanded
to include an operator K with formulas of L(EA) as arguments. The
axioms of EA are simply those of PA, with the only difference being
that the induction scheme is taken to cover all formulas in L(EA). ⊢EA

indicates derivability in EA. EA axioms are those of PA, plus the fol-
lowing rules or axioms (where ϕ belongs to L(EA) and 
 ϕ indicates the
notion of logical first order validity):

EA Axioms

K1: 
 ϕ ⇒ ⊢EA Kϕ
K2: ⊢EA Kϕ ∧K(ϕ→ ψ)→ Kψ
K3: ⊢EA Kϕ→ ϕ
K4: ⊢EA Kϕ→ KKϕ

The first axiom states that K holds of all first-order logical validities.
The second states that K is closed under modus ponens. The third is a
way of asserting the correctness of K. And finally the fourth axiom says
that K is self-reflective.

Note 1. K3 is also present in DTK. In this system it appears under the
guise of axiom K1.

8 For details of the PA language see Section 2.2.1.
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C. Truth. T is the predicate of mathematical truth. Gödel does not
specify the meaning of the notion of truth, but grounds his idea of
mathematical truth in the realistic conception of mathematical objects.
These exist, and are endowed with properties and relationships. Math-
ematical truths are all propositions that are true about such entities.
From Tarski, however, we know that there cannot be a global predicate
of truth. There are only partial predicates of truth, in the sense that,
for example, there is an arithmetic truth predicate, but this is not an
arithmetical predicate. The denial of the existence of a global predicate
of truth derives from the Tarskian assumption that a correct  i.e., not
antinomic  truth predicate is necessarily a typed predicate, i.e., such
that it cannot be applied to itself. It is currently accepted, however,
that there are truth theories that are not typed, and that allow for the
phenomenon of self-referentiality without becoming incorrect. Despite
the versatility of the type-free notion of truth, Koellner considers the
use of a typed truth predicate to be sufficient for the rigorous formula-
tion of the Gödelian disjunction. This predicate is the Tarskian truth
predicate T , restricted to L(EA), axiomatically introduced in par. 7.6
of [Koellner, 2016]. But an important question arises, which we must
address from the outset. Why do we primarily need the truth predicate?
Is it not possible to be satisfied with an informal notion of truth? After
all, Gödel himself is happy with the formulation of the disjunction in an
informal language. To answer this question, we will try to produce the
disjunction proof without the truth predicate. In contrast, the formal-
ization of Penrose’s argument in the second section shows that, on pain
of incurring insurmountable difficulties, it is impossible to dispense with
the truth predicate  and, more, a type-free truth predicate.

1.2. The disjunction proof in EAm

EAm system is a metatheoretical extension of the EA system. This
extension requires one to distinguish between the part of the system
constituted by EA and the part that constitutes its extension, regarding
both the language and its axiomatic structure. As far as the language
is concerned, L(EA) is L(PA) expanded, to include an operator K with
formulas of L(EA) as arguments. The formulas that are arguments of
the K operator are, therefore, arithmetical propositions, or propositions
containing, in turn, the K operator. Among the arithmetic propositions
there are also propositions resulting from the arithmetisation process of
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EA’s syntax. Since K is an operator, and not a predicate, it can only
act on formulas, and not on numerical variables for these.

For this reason, the generalisation over the formulas must occur on
a metatheoretical level. The metatheoretical extension serves exclu-
sively for that purpose. The typology of the formulas, to which the
generalisation refers, is decided on a case-by-case basis. With regard to
the axiomatic structure, the extension includes the use of propositional
and quantificational rules for propositional metavariables  in particular,
amongst these, are the rules of introduction of ∀ϕ and elimination of ∃ϕ
in the antecedent (∀I

m

, ∃I
m

), and in the succedent (I∀
m

, I∃
m

). As basic
logic calculus we adopt a sequent version of natural deduction calculus.9

The Tarskian scheme for the truth predicate  pϕq is true iff ϕ
allows the formulation of the concepts of identity K = T , K = F , and
soundness, without using the truth predicate. Cons(F ) means that the
system F is consistent. G1 stands for the first Gödel’s theorem and
G2 for the second. We assume to quantify only on syntactical concrete
objects, as arithmetical formulas or formal systems.

Definition 1. K = T := ∀ϕ(Kϕ↔ ϕ)

Definition 2. K = F := ∀ϕ(Kϕ↔ Fϕ)

Definition 3. Soundness of F := ∀ϕ(Fϕ→ ϕ)

The three definitions are constituted of metatheoretical propositions,
as they quantify over the propositional metavariables. Still, this charac-
teristic of the definitions does not prevent us from formally developing
the disjunction proof. It is sufficient to work in EAm.

Gödel’s disjunction: ⊢EAm ¬∃F (K = F ) ∨ ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ))
(where ϕ is a metavariable for arithmetical propositions, and F is a
metavariable for formal systems).

Proof in two parts. The “K = T”-part:

∀ϕ(Fϕ→ ϕ) ⊢EAm F ⊥ → ⊥ logic
∀ϕ(Fϕ→ ϕ) ⊢EAm Cons(F ) def. Cons

∀ϕ(Fϕ→ ϕ) ⊢EAm ∃ϕ(ϕ ∧ ¬Fϕ) G1
K = T, K = F ⊢EAm ∀ϕ(Fϕ→ ϕ) by def. K = T = F

9 See, e.g., [Sundholm, 1983] and [Ebbinghaus et al., 1984, pp. 57–75]. Also
afterwards we adopt, as a basic logic calculus, the same version of natural deduction
calculus.
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K = T, K = F ⊢EAm ∃ϕ(ϕ ∧ ¬Fϕ) chain
K = T, K = F ⊢EAm ∃ϕ(Kϕ ∧ ¬Fϕ) by def. K = T
K = T, K = F ⊢EAm ¬(K = F ) by def. K = F
K = T ⊢EAm ¬(K = F ) self-contradiction
K = T ⊢EAm ¬∃F (K = F ) I∀

m

and logic
K = T ⊢EAm ¬∃F (K = F ) ∨ ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ)) I∨

m

The “K 6= T”-part:

ϕ, K(¬ϕ)→ ¬ϕ ⊢EAm ¬K(¬ϕ) logic
⊢EAm K(¬ϕ)→ ¬ϕ K3
ϕ ⊢EAm ¬K(¬ϕ) chain
ϕ ∧ ¬Kϕ ⊢EAm ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ) logic
∃ϕ(ϕ ∧ ¬Kϕ) ⊢EAm ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ)) I∃

m

, ∃I
m

K 6= T ⊢EAm ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ)) def. K 6= T
K 6= T ⊢EAm ¬∃F (K = F ) ∨ ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ)) I∨

m

Then by exhaustion: ⊢EAm ¬∃F (K = F ) ∨ ∃ϕ(ϕ ∧ ¬Kϕ ∧ ¬K(¬ϕ)) ⊣

In the context of disjunction formalisation, metatheoretical generali-
sations don’t need to be arithmetisable. In particular, it is not necessary
for definitions 1–3. The level of formalisation required to deal with the
disjunction only includes the ability to pronounce on the truth of the
propositions that fall within the range of action of the operator K or of
the predicate F . But none of the generalisations could enter the domain
of K or F . Thus, there is no need to arithmetise them, to insert them
within the range of action reserved for arithmetical formulas.

2. Penrose’s second argument

2.1. Analysis of Koellner’s reconstruction

In this paragraph, we will retrace Koellner’s analysis of Penrose’s ar-
gument. The aim of Koellner’s approach is known. He elaborates the
DTK system, which is a mixed system including both the knowledge
predicate and a type-free truth predicate, to formalise Penrose’s argu-
ment. The outcome is the disvaluing of the argument, as two of its
crucial steps are found to involve indeterminate propositions, and are
therefore illegitimate. Now, we have two goals, here. The first is to
expose the system, the second is to provide a careful examination of
every single step of the argument to ascertain the satisfaction of every
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step’s legitimacy conditions. An integral part of our first goal concerns
the justification of the necessity of making use of a type-free predicate of
truth. We should ask, not only why a type-free predicate is needed, but
also why a truth predicate, in general, is needed. Both of these questions
require a detailed, step-by-step, analysis of the argument. We will start
with an explanation of the reasons given for why the system language
must contain a truth predicate.

As can be deduced from our following analysis, Penrose’s argument 
like Gödel’s disjunction proof  is characterised by the occurrence of
propositional generalisations. Concerning the context of disjunction,
however, there is a profound difference. Unlike as with disjunction, in
Penrose’s argument, truth and knowledge are also attributed to gen-
eralizations. The schematic use of metavariables for propositions is,
therefore, not sufficient to attribute truth or knowledge to such gen-
eralisations. It is necessary to quantify within the theory over numerical
variables for codes of formulas. The system’s syntax must therefore be
fully arithmetised.

2.2. Koellner’s DTK system

The DTK system10 is an extension of Feferman’s [2008] DT system,11

which, in turn, is an extension of Peano’s PA arithmetic.

2.2.1. DTK language

The set of formulas of L(DTK) is the set of arithmetical formulas of
L(PA) increased by the addition of formulas obtained through the fur-
ther use of predicates T and K. T is the type-free truth predicate, K
is the knowledge predicate. In particular, the non-logical fundamental
symbols of the arithmetical language L(PA) are: the constant ‘0’ , the
symbol ‘S’ for the succession function, the symbols ‘+’ and ‘·’ , for
the sum and product operations, respectively. The terms are formed
by induction from the fundamental non logical symbols. Numerals are
the terms obtained inductively from 0 by application of the succession
function S. For example, SS0  generated by applying the function S 2-
times  is the numeral corresponding to the number 2 and is denoted by
2̄. In general n̄ denotes the numeral resulting by application of S n-times.

10 The presentation of the system will follow the treatment carried out by Koell-
ner in parr. 7.13 and 7.14 of [2016, pp. 169–174]

11 For a treatment of DT system by Koellner see [2016, par. 7.11, pp. 166–167].
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2.2.2. A note about arithmetisation

As already noted, the DTK system’s syntax must be fully arithmetised,
that is, the whole syntactical structure of DTK must be expressed in the
PA language. The arithmetisation is carried out in the standard way.
However, it is worth recalling three important notational elements.12

Firstly, it is useful to explain the use of the so-called Feferman dot-
notation. Let pϕq be the code of the formula ϕ and pψq the code of
the formula ψ, and suppose we want to denote the code of the molecular
formula ϕ∧ψ. The classic way is to exploit the code definition of a con-
junction. If the code definition is pϕ ∧ ψq = p0

pϕq · p1
pψq, then the code

of the conjunction can be denoted by its specific value. However, this
denotation modality is very complicated and would become impractical
if one went beyond a certain level of complexity. This is why Feferman
introduced the dot-notation technique. The code of ϕ ∧ ψ, i.e. pϕ ∧ ψq,
is represented with pϕq∧. pψq. The technique is general, so that in the
case of negation one has, for instance, p¬ϕq = ¬. pϕq. Moreover, if x and
y are variables for formulas codes, then it is not sensless to write x∧. y to
indicate the code of the conjunction of the formulas coded by x and y,
respectively.

Secondly, the arithmetisation allows syntactic notions to be defined
arithmetically through predicates that are valid for their respective
codes. Thus, for example, there is the predicate V ar(x) for the no-
tion of being a variable  x is the code for a variable  ; the predicate
At-SentPA(x) for the notion of an atomic arithmetical proposition, i.e.,
the basic arithmetical formulas without connectives or quantifiers  x is
the code for an atomic arithmetical formula  ; the predicate SentPA(x)
for the notion of a formula of L(PA)  x is the code for an arithmetical
formula. Similarly, there exists the predicate of provability in the theory
T PRT (x)  x is the code of a theorem of T. Finally, there is the possi-
bility of formalising the idea that the formula of which x is the code is
knowable or true. Indeed, in DTK, even K  besides T  is a predicate
and not an operator.

Thirdly, as already mentioned above, it is important to be able to
express in L(DTK) that a given formula is valid for all numerals, i.e., to
generalise over the numerals representing codes of formulas. To this end,

12 For further details on the arithmetisation technique and in particular for the
use of Feferman’s dot-notation adopted by Koellner, see [Koellner, 2016, par. 7.2,
pp. 155–156]. See also [Halbach, 2014, pp. 29–38].
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two functions must be used: the function of substituting a term in place
of a variable in a formula, and the function of coding a numeral. Let us
take, for example, the formula ϕ(x) in which the variable x is freely given.
Let us suppose that we wish to represent the code of the substitution
in ϕ(x) of the variable x with the term t. This is given by the function
so(pϕ(x)q, pxq, ptq). t is of course a generic term. It could be, in particu-
lar, a numeral and in that case we would have so(pϕ(x)q, pxq, pn̄q). The
value of the function represents the code of the formula ϕ(n̄), which says
that ϕ is true of the n-th numeral. Of course one can use directly ϕ(pn̄q)
as the code of ϕ(n̄), but there are contexts in which it is essential to make
use of the substitution function. Let us suppose, in fact, that we want
to assert within L(PA) that a certain formula ϕ(x) is provable for each
numeral. As we know, the predicate of provability in PA is PRPA(x).
Therefore, the statement that ϕ(n̄) is provable will be PRPA(pϕ(n̄)q).
However, if we want to express that ϕ is provable for every n, it is not
sufficient to quantify over n and say that the statement of provability
is valid for every n. This quantification is, in fact, metatheoretical and,
therefore, not finitary, having the same meaning as the following infinite
configuration: PRPA(pϕ(0)q), PRPA(pϕ(1̄)q), PRPA(pϕ(2̄)q), ... and so
on. If the general statement is to be arithmetised within the PA lan-
guage, it is necessary to combine the use of the substitution function
with that of the numeral function. num(x) is the function which as-
sociates each numeral with its code. It is not important to know how
the function is constructed; it is important that it is definable in L(PA)
and that for every n, num(n̄) = pn̄q. Suppose, then, that we want to
express that ϕ is provable for each numeral. The way to achieve this
consists in writing ∀x(PRPA(so(pϕ(x)q, pxq, num(x)))), which is usually
abbreviated to ∀x(PRPA(pϕ( ˙̄x)q)) and, to underline the variable which
is replaced, to ∀x(PRPA(pϕ( ˙̄x)q)/pxq). The same method is also used
when the predicates of truth T and knowability K are involved.

2.2.3. DTK axiomatic system

⊢DTK ϕ is the usual syntactical expression of the DTK derivability re-
lation of ϕ, just as ⊢F ϕ stands for the F derivability relation of ϕ. Of
course, these syntactical propositions can be arithmetised. For exam-
ple, PRF (pϕq)  in short F (pϕq)  is the result of the arithmetisation
of ⊢F ϕ. PRF is an arithmetical predicate. The previous syntactical
expressions  both metatheoretical and arithmetical  are schematic, in
that they contain metatheoretical signs such as the metavariable ϕ. But,
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since, as we have seen, it is necessary to generalise over the propositions
and other syntactical elements, the arithmetisation of the syntactical
expressions must be complete. For this reason, syntactical predicates
must act on variables that belong to the arithmetic language. There-
fore, we have, for example, the predicate PRF (x) for the derivability in
F, and so on. The primitive predicates T and K act on numerical vari-
ables, too. When useful, we will switch smoothly from full to schematic
arithmetisation.

Group I: Arithmetic axioms. PA axioms with induction extended to
predicates T and K.

Group II: Axioms of determinateness

D(pϕq) := T (pϕq) ∨ T (p¬ϕq)

D1: ⊢DTK ∀x(At-SentPA(x)→ D(x))
D2: ⊢DTK ∀x(Sent(x)→ (D(¬. x)↔ D(x)))
D3: ⊢DTK ∀x∀y(Sent(x) ∧ Sent(y)→ (D(x∨. y)↔ D(x) ∧D(y)))
D4: ⊢DTK ∀x∀y(Sent(x) ∧ Sent(y)→ D(x→. y)↔

(D(x) ∧ (T (x)→ D(y))))
D5: ⊢DTK ∀x∀z(V ar(z) ∧ Sent((∀.z)x)→ (D((∀.z)x)↔ ∀yD(x( ˙̄y/z))))
D6: ⊢DTK ∀x(D(T. ( ˙̄x))↔ D(x))
D7: ⊢DTK ∀x(D(K. ( ˙̄x))↔ D(x))

Note 2. The axioms state the determinateness conditions of DTK lan-
guage propositions. It is worth commenting on the form of D5, D6 and
D7. Let us first see the structure of the equivalence that appears at
the end of D5. This is D((∀.z)x) ↔ ∀yD(x( ˙̄y/z)). What does it mean?
It lays down the determinateness conditions of a universal formula. A
universal formula is determinate if and only if all its numerical instances
are determinate. Of course, the equivalence antecedent only makes sense
if V ar(z) and Sent(x), i.e., if z is a code for a variable and x is a code
for a proposition. These assumptions are made explicitly in the axiom.
The axiom D6 says that the truth of a formula is determinate under the
specific condition that the formula itself is determinate. Similarly, D7
says that the knowability of a formula is determinate if and only if this
formula is determinate. For further details see [Feferman, 2008].

Group III: Truth axioms. They regulate the use of the type-free
predicate T and its relations with K and D.
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Tr1: For each atomic formula R(x1, ..., xn) of L(PA):
⊢DTK ∀x1, ..., ∀xn(T (R. ( ˙̄x1, ..., ˙̄xn))↔ R(x1, ..., xn))

Tr2: ⊢DTK ∀x(Sent(x) ∧D(x)→ (T (¬. x)↔ ¬T (x)))
Tr3: ⊢DTK ∀x∀y(Sent(x) ∧ Sent(y) ∧D(x∨. y)

→ (T (x∨. y)↔ T (x) ∨ T (y)))
Tr4: ⊢DTK ∀x∀y(Sent(x) ∧ Sent(y) ∧D(x→. y)→

(T (x→. y)↔ T (x)→ T (y)))
Tr5: ⊢DTK ∀x∀z(V ar(z) ∧ Sent((∀.z)x) ∧D((∀.z)x)

→ (T ((∀.z)x)↔ ∀y(T (x( ˙̄y/z))))
Tr6: ⊢DTK ∀x(D(x)→ (T (T. ( ˙̄x))↔ T (x)))
Tr7: ⊢DTK ∀x(D(x)→ (T (K. ( ˙̄x))↔ K(x)))

Note 3. Alongside the classical axioms of truth, we find the analogues
of the last three determinateness axioms. Tr5 states that a general for-
mula is true if and only if all its instances are true and if it is also a
determinate proposition. It is therefore not enough for all instances to
be true: the generalisation result itself must be determinate. Tr6 states
that if a determinate formula is true, then it is true that it is true and
vice versa. Tr7 declares that, under the condition of determinateness,
the knowability of a proposition is equivalent to the truth that it is
knowable.

Group IV: Knowledge rules and axioms. They regulate the use of
the predicate K, alone and in its relations with T and D.

K1: ⊢DTK ∀x(Sent(x)→ (K(x)→ T (x)))
K2: ⊢DTK ∀x∀y(Sent(x) ∧ Sent(y)→ (K(x→. y) ∧K(x)→ K(y)))
K3: ⊢DTK ∀x(Sent(x)→ (K(x)→ (K(K. ( ˙̄x)))
K-intro rule: ⊢DTK ϕ ∧D(pϕq)⇒ ⊢DTK K(pϕq)
T-intro rule: ⊢DTK ϕ ∧D(pϕq)⇒ ⊢DTK T (pϕq).

Note 4. The T-intro rule is not a primitive rule. It can proved as follows:

⊢DTK ϕ ∧D(pϕq) hypothesis
⊢DTK K(pϕq) K-intro
⊢DTK ∀x(Sent(x)→ (K(x)→ T (x))) K1
⊢DTK T (pϕq) logic

Note 5. The previous three axioms, together with the next two rules,
characterise the predicate of knowability. Axiom K1  also called the
K-T-axiom  states that the predicate of knowledge is correct; that is,
that truth is a necessary condition of knowledge. It appears to be a
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particularly strong axiom. Nevertheless, it follows from the very notion
of knowledge (that knowledge is factive). On the other hand, it should be
noted that K1 does not by itself imply the truth of knowledge. Accord-
ing to T-intro rule, a known proposition is true only if it is determinate.
More radically, according to the K-intro rule, the assignment of K to
a proposition is not a consequence of its derivability in DTK alone but
also of the fact that this proposition is provably determinate. Axiom K2
expresses the closure of the notion of knowledge with respect to impli-
cation. Axiom K3 states that the predicate of knowledge is reflexive.

2.3. Some basic theorems

The following theorems are derivable in DTK:13

T1 (K-out): ∀ϕ ∈ L(DTK) ⊢DTK K(pϕq)→ ϕ
T2 (T-out): ∀ϕ ∈ L(DTK) ⊢DTK T (pϕq)→ ϕ
T3 (T-in): ∀ϕ ∈ L(DTK) ⊢DTK D(pϕq)→ (ϕ→ T (pϕq))
T4: ∀ϕ ∈ L(DTK) ⊢DTK D(pϕq)→ (T (pϕq)↔ ϕ)
T5: ∀ϕ ∈ L(PA) ⊢DTK D(pϕq)
T6: ⊢PA ϕ⇒ ⊢DTK K(pϕq)

2.4. Formalisation of Penrose’s argument in DTK

Definition 1. K =PA F K =PA F := ∀x(SentPA(x)→ (K(x)↔ F (x)))
in short: ∀ϕ(K(pϕq) ↔ F (pϕq)), where ϕ is an arithmetical propo-
sition

Note 6. Note the difference in comparison to the definition of K = F in
EAm. Here, the definition is expressed in the formal language of DTK.
This is because, within the DTK system, the predicates of truth and
knowledge must be attributed to the formula K =PA F . This is only
possible if we can refer to the formula through its arithmetisation code,
which presupposes its formality.

Note 7. The definition of K =PA F is restricted to L(PA) formulas.
This restriction concerns the extension of the quantifiers’ range of action
contained in the formula. This range of action is restricted to arithmetic
formulas only. The reason for this restriction lies in the need to work
with determinate propositions, of which the arithmetic propositions are

13 For the proof see [Koellner, 2016, pp. 170–172].
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examples. We will see in short why the free use of propositional variables
can generate indeterminate propositions.

Note 8. The expression ∀ϕ(K(pϕq) ↔ F (pϕq)) (where ϕ is an arith-
metical proposition) is a convenient abbreviation of the defining for-
mula, obtained through the use of schematic propositional metavariables.
Propositional metavariables will also be used later in order to shorten
the proofs. It should be stressed, however, that this is simply a conve-
nient expedient. It is useful from an intuitive point of view, but does not
exempt us from providing an explicit proof in a fully formalised language.

Definition 2. Soundness
Sound K := ∀x(SentPA(x)→ (K(x)→ T (x)))
in short: ∀ϕ(K(pϕq) → T (pϕq)), where ϕ is an arithmetical propo-
sition

Sound F := ∀x(SentPA(x)→ (F (x)→ T (x)))
in short: ∀ϕ(F (pϕq) → T (pϕq)), where ϕ is an arithmetical propo-
sition

Note 9. It is also, in this regard, worth reflecting on the nature of the
given definition of soundness. The observations made in the previous
Note 1 are also valid for the definition of soundness. But we can also
learn something else from reflecting on the soundness definition. This
allows us to understand why the truth predicate is indispensable. Sup-
pose we want to define the notion of the soundness of a formal system
F, for example, through the simplest and entirely plausible expression
∀ϕ(F (pϕq) → ϕ). Now, the definition should be formalised, anyway,
for the reasons set out above. Therefore, it should have the follow-
ing form: ∀x(SentPA(x) → (PRF (x) → x). However, this expression
is nonsense, since x is a variable for numbers and not a formula. A
obligatory outcome is to introduce the truth predicate T and write:
∀x(SentPA(x)→ (PRF (x)→ T (x)). This step, however, is fraught with
significant consequences. It is necessary not only to introduce a truth
predicate, but it also must be type-free. As we will see, in fact, in steps
(2) and (5), respectively, of Penrose’s argument, it is essential to make
use of the rules of T introduction  T-in  and K introduction  K-intro.
But the joint use of the two rules implies the full self-applicability of the
truth predicate T [see Koellner, 2016, p. 165]. Therefore, not only does T
have an application with respect to K, but it also has a self-application
with respect to T . The self-applicability of T makes it necessary for T to



Analysis of Penrose’s second argument . . . 487

be a type-free predicate, which, in turn, implies the introduction of the
conditions of determinateness envisaged in DTK to avoid the antinomic
phenomenon of the liar paradox. This set of elements is the reason why
in the passages in which the rules require that the propositions involved
are determinate, the satisfaction of these conditions is decisive.

Note 10. The definition of soundness is restricted to L(PA) formulas, too.
As before, the reason for this restriction is the need for propositions that
are determinate, of which the arithmetic propositions are an example.

Let us now move on to the proof of the argument, which is divided
into eight steps. In demonstrations we often use the abbreviation «syn-
tax» for an arithmetised syntactical proposition.

Step (1) K =PA F ⊢DTK Sound F , i.e.
K =PA F ⊢DTK ∀z(SentPA(z)→ (F (z)→ T (z)))

The proof does not present any critical aspect, as no passage requires
the proof of the formulas’ determinateness:

SentPA(z)→ (K(z)↔ F (z)) SentPA(z) ⊢DTK F (z)→ K(z) logic
Sent(z) ⊢DTK K(z)→ T (z) from K1
SentPA(z) ⊢DTK Sent(z) syntax
SentPA(z)→ (K(z)↔ F (z)), SentPA(z) ⊢DTK F (z)→ T (z) chain
∀z(SentPA(z)→(K(z)↔F (z))) ⊢DTK ∀z(SentPA(z)→(F (z)→T (z)))

logic

Step (2) K =PA F ⊢DTK Sound F+

where: F+ = F + (K =PA F )

The second step proof presents a critical point. The T-in rule  which
performs the same function as T-intro  requires, in fact, the determi-
nateness of the formula to which the predicate of truth is attributed.
The determinateness proof of the formula concerned is provided through
Lemma 1 at the end of the step proof.

K =PA F, SentPA(pF (pK=PAFq→. y)q), F (pK=PAF q→. y) ⊢DTK K(pK =PA F q→. y)
logic

⊢DTK SentPA(pF (pK=PAF q→. y)q) syntax by arithmeticity of PRF (pK=PAF q→. y)
K(pK =PA Fq→. y), ⊢DTK T (pK = Fq→. y) K1
K =PA F, F (pK =PA F q→. y), ⊢DTK T (pK =PA F q→. y) logic
T (pK =PA Fq→. y), D(pK =PA Fq→. y) ⊢DTK T (pK =PA F q) → T (y) Tr4
K =PA F, F (pK =PA F q→. y), D(pK =PA F q→. y) ⊢DTK T (pK =PA F q) → T (y)

logic
D(pK =PA F q), D(y), ⊢DTK D(pK =PA Fq→. y) D4
SentPA(y) ⊢DTK D(y) T5
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D(pK =PA F q), SentPA(y), ⊢DTK D(pK =PA Fq→. y) logic
K =PA F, SentPA(y), F (pK=PAF q→. y), D(pK =PA F q) ⊢DTK T (pK=PAFq) → T (y)

logic
⊢DTK D(pK =PA Fq) Lemma 1
K =PA F ⊢DTK T (pK =PA Fq) T-in
K =PA F, F (pK =PA F q→. y), SentPA(y) ⊢DTK T (y) logic
K =PA F, F+(y), SentPA(y) ⊢DTK T (y) def. F+

K =PA F ⊢DTK ∀y(SentPA(y) → (F+(y) → T (y))) logic
K =PA F ⊢DTK Sound F+ def. soundness

We now have to prove the determinateness of K =PA F .

Lemma 1. ⊢DTK D(pK =PA Fq), i.e.,

⊢DTK D(p∀z(SentPA(z)→ (K(z)↔ F (z))q)

Proof. Firstly, for the “→”-part we prove:

⊢DTK ∀y(SentPA(y)→ D(pK( ˙̄y/z)→ F ( ˙̄y/z)q))

Sent(pK( ˙̄y/z)q), Sent(pF ( ˙̄y/z)q), D(pK( ˙̄y/z)q),
T (pK( ˙̄y/z)q)→ D(pF ( ˙̄y/zq)) ⊢DTK D(pK( ˙̄y/z)→ F ( ˙̄y/z)q) D4

SentPA(y) ⊢DTK Sent(pK( ˙̄y/z)q) syntax
SentPA(y) ⊢DTK Sent(pF ( ˙̄y/z)q) syntax
⊢DTK D(pF ( ˙̄y/z)q) T5 for arithmeticity of F ( ˙̄y/z)
⊢DTK T (pK( ˙̄y/z)q)→ D(pF ( ˙̄y/z)q) logic
⊢DTK D(pK( ˙̄y/z)q)↔ D(y) D7
SentPA(y) ⊢DTK D(y) T5 formalised
SentPA(y) ⊢DTK D(pK( ˙̄y/z)q) logic
SentPA(y) ⊢DTK D(pK( ˙̄y/z)→ F ( ˙̄y/z)q) chain
⊢DTK ∀y(SentPA(y)→ D(pK( ˙̄y/z)→ F ( ˙̄y/z)q)) logic

In short, schematically, the thesis is as follows: D(pK(pϕq)→ F (pϕq)q).
Now, the innermost formulas K(pϕq) and F (pϕq) are determinate.
F (pϕq) is determinate because F (pϕq) is arithmetic. K(pϕq) is de-
terminate in virtue of D7 and because ϕ is arithmetic. Thus, we have
the result:

Sent(pSentPA( ˙̄y/z)q), Sent(pK( ˙̄y/z) → F ( ˙̄y/z)q), D(pSentPA( ˙̄y/z)q),
T (pSentPA( ˙̄y/z)q) → D(pK( ˙̄y/z) → F ( ˙̄y/z)q), ⊢DTK

D(pSentPA( ˙̄y/z) → (K( ˙̄y/z) → F ( ˙̄y/z))q) D4
⊢DTK Sent(pSentPA( ˙̄y/z)q) syntax
⊢DTK D(pSentPA( ˙̄y/z)q) T5 for arithmeticity of SentPA( ˙̄y/z)
⊢DTK Sent(pK( ˙̄y/z) → F ( ˙̄y/z)q) syntax
T (pSentPA( ˙̄y/z)q) → D(pK( ˙̄y/z) → F ( ˙̄y/z)q) ⊢DTK

D(pSentPA( ˙̄y/z) → (K( ˙̄y/z) → F ( ˙̄y/z))q) chain
⊢DTK SentPA(y) → D(pK( ˙̄y/z) → F ( ˙̄y/z)q)
⊢DTK SentPA(y) ↔ T (pSentPA( ˙̄y/z)q) reflexivity of T
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⊢DTK T (pSentPA( ˙̄y/z)q) → D(pK( ˙̄y/z) → F ( ˙̄y/z)q) logic
⊢DTK ∀yD(pSentPA( ˙̄y/z) → (K( ˙̄y/z) → F ( ˙̄y/z))q) chain and I∀

Sent(p∀z(SentPA(z) → (K(z) → F (z)))q),
∀yD(pSentPA( ˙̄y/z) → (K( ˙̄y/z) → F ( ˙̄y/z))q) ⊢DTK

D(p∀z(SentPA(z) → (K(z) → F (z)))q) D5
⊢DTK Sent(p∀z(SentPA(z) → (K(z) → F (z)))q) syntax
∀yD(pSentPA( ˙̄y/z) → (K( ˙̄y/z) → F ( ˙̄y/z))q) ⊢DTK

D(p∀z(SentPA(z) → (K(z) → F (z)))q) chain
⊢DTK D(p∀z(SentPA(z) → (K(z) → F (z)))q) chain

The proof of the “←”-part:

⊢DTK D(p∀z(SentPA(z)→ (F (z)→ K(z)))q)

is a schematic variant of the first direction: just invert K with F . ⊣

Step (3) K =PA F ⊢DTK G(F+)
where: G(F+) is the Gödel sentence of F+.

The proof is carried out in a schematic form. Remember that pϕq
is used in this context as a metavariable for arithmetic formulas. There
are no critical points, here, as the applied rules do not require the deter-
minateness of the involved formulas.

K =PA F ⊢DTK ∀ϕ(F+(pϕq)→ T (pϕq)) from step (2)
K =PA F ⊢DTK F+(p⊥q)→ T (p⊥q) logic
K =PA F ⊢DTK F+(p⊥q)→⊥ T-out
K =PA F ⊢DTK ¬F+(p⊥q) logic
K =PA F ⊢DTK Cons(F+) def. Cons

K =PA F ⊢DTK G(F+) G2

Step (4) K =PA F ⊢DTK ¬F+(pG(F+)q)

The proof does not contain critical points:

K =PA F ⊢DTK Cons(F+) penultimate substep of step (3)
K =PA F ⊢DTK ¬F+(pG(F+)q) G1

Step (5) ⊢DTK K(pK =PA F → G(F+)q)

The proof presents a critical point: the K-intro rule is applied, which
requires the determinateness of the formula, to which the K predicate is
applied. The determinateness proof of the formula concerned is carried
out through Lemma 2 at the end of the step proof.

1. ⊢DTK K =PA F → G(F+) from step (3)
2. ⊢DTK D(pK =PA F → G(F+)q) Lemma 2
3. ⊢DTK K(pK =PA F → G(F+)q) K-intro
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We now have to prove the determinateness of K =PA F → G(F+):

Lemma 2. ⊢DTK D(pK =PA F → G(F+)q)

Proof. Sent(pK =PA Fq), Sent(pG(F+)q), D(pK =PA F q),
T (pK =PA Fq) → D(pG(F+)q) ⊢DTK D(pK =PA F → G(F+)q) D4

⊢DTK Sent(pK =PA Fq) syntax
⊢DTK Sent(pG(F+)q) syntax
D(pK =PA F q), T (pK =PA Fq) → D(pG(F+)q) ⊢DTK D(pK =PA F → G(F+)q)

chain
⊢DTK D(pK =PA Fq) Lemma 1
⊢DTK D(pG(F+)q) T5 for arithmeticity of G(F+)
⊢DTK T (pK =PA F q) → D(pG(F+)q) logic
⊢DTK D(pK =PA F → G(F+)q) chain

In short: G(F+) is arithmetical and therefore determinate; as to
K =PA F , we have already proved, through Lemma 1, that it is determi-
nate, so the formula K =PA F → G(F+) is itself determinate by virtue
of D4. The application of K-intro is therefore legitimate. ⊣

Step (6) K =PA F ⊢DTK ¬F (pK =PA F → G(F+)q)

The proof does not contain critical points.

K =PA F ⊢DTK ¬F+(pG(F+)q) step (4)
K =PA F ⊢DTK ¬F (pK = F → G(F+)q) def. of F+

Step (7) K =PA F ⊢DTK ∃ψ(ψ ≡ (K =PA F → G(F+))
∧ K(pψq) ∧ ¬F (pψq))

The proof does not contain critical points.

K =PA F ⊢DTK ¬F (pK =PA F → G(F+)q) step (6)
⊢DTK K(pK =PA F → G(F+)q) step (5)
K =PA F ⊢DTK ∃ψ(ψ ≡ (K =PA F → G(F+)) ∧K(pψq) ∧ ¬F (pψq)) logic

Step (8) ⊢DTK K 6= F , i.e., quantifying on F, ⊢DTK ¬∃F (K = F )

Particular attention should be paid to the fact that K = F means
∀x(Sent(x) → (K(x) ↔ F (x)), i.e., K and F are equivalent with re-
spect to all formulas belonging to L(DTK), whether they are purely
arithmetic  SentPA(x)  or not purely arithmetic  Sent¬PA(x). This
fact has a strong bearing on the meaning of step (8), which is discussed
throughout the final part of this section.

Let us assume the proof of the following two simple lemmas:

Lemma 3. K = F ⊢DTK K =PA F , i.e.,

∀x(Sent(x)→ (K(x)↔ F (x)) ⊢DTK ∀x(SentPA(x)→ (K(x)↔ F (x))
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Lemma 4.

∃x(Sent¬PA(x) ∧K(x) ∧ ¬F (x)) ⊢DTK ∃x(Sent(x) ∧K(x) ∧ ¬F (x))

Proof of step (8) proceeds then as follows:

K =PA F ⊢DTK ∃x(Sent¬PA(x) ∧K(x) ∧ ¬F (x)) Step (7)
K = F ⊢DTK ∃x(Sent¬PA(x) ∧K(x) ∧ ¬F (x)) Lemma 3
K = F ⊢DTK ∃x(Sent(x) ∧K(x) ∧ ¬F (x)) Lemma 4
K = F ⊢DTK K 6= F logic
⊢DTK K 6= F self contradiction

Note 11. It is important to note that step (7) does not allow us to
obtain by self-contradiction ⊢DTK K 6=PA F . Indeed, K =PA F means
∀ϕ(K(pϕq) ↔ F (pϕq)), where ϕ varies on arithmetic propositions. By
contrast, the sentence ψ  whose existence is asserted in the consequent
of the step  , is not an arithmetic proposition, because it contains the
knowledge predicate K. Hence, ∃ψ(ψ ≡ (K = F → G(F+))∧ K(pψq)∧
¬F (pψq)) cannot be the negation of K =PA F , since ψ is not an arith-
metic proposition. For this reason, K =PA F does not imply K 6=PA F ,
because, with regard to the arithmetical formulas, K and F coincide.
And, as a consequence of this coincidence, the self-contradiction rule
cannot be applied. Therefore, the proof of ⊢DTK K 6=PA F is not suc-
cessful. Instead, we obtained ⊢DTK K 6= F . The importance of this
difference is explained in the next subsection.

2.5. Penrose’s second argument is partially conclusive

There are two points to address.

1. Coherence of the result. Step (8), as proven by us, says: it is ex-
cluded that there exists a formalism capable of deriving all humanly
knowable mathematical or non-mathematical propositions. However, we
know from Koellner’s Theorem 7.16.2 that:

0DTK ¬∃F (K =PA F )

i.e., it is not excluded that there exists a formalism capable of deriving
all humanly knowable mathematical propositions.

The two results may appear to contradict each other. But it is
a wrong impression. On the contrary, the coexistence of both results
makes it possible to clarify the purpose of Penrose’s argument as it is
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formalized in DTK. It is likely that Penrose’s aim in his second argument
was precisely to prove the thesis that there is no formalism capable of
equalling human knowledge both about mathematical propositions and
about non-mathematical propositions belonging to DTK’s language.

Now, according to Koellner’s theorem it cannot be ruled out that,
with respect to mathematical knowledge, the machine can equal the
human mind, while on the basis of step (8) it is impossible that there
exist a formalism that can generate every humanly knowable proposition.
Koellner’s theorem, thus, drops a part of Penrose’s thesis, namely that
according to which the human mind cannot be equalled by a formalism
as far as mathematical propositions are concerned. However, Koellner’s
Lemma cannot say anything about the other part of Penrose’s thesis;
that is to say, it cannot exclude that for every formalism there is at
least one known non-mathematical proposition that is not derivable in
it. This is what is stated by step (8), which, while it cannot exclude the
existence of a formalism capable of obtaining all knowable mathematical
propositions, excludes the existence of a formalism capable of deriving all
humanly knowable propositions. Koellner’s theorem and step (8), then,
match in that what the first does not rule out  i.e., that there are non-
mathematical propositions that are not derivable  the second asserts,
and what the first asserts  i.e., that it is possible for all arithmetical
propositions to be formally derivable  the second does not rule out.

The counter evidence of the just outlined matching is obtained
through reflection on the following fact, already pointed out in the
previous note: from step (7) one cannot obtain by self contradiction
⊢DTK K 6=PA F . Nevertheless, we have K =PA F ⊢DTK ∃x(Sent¬PA(x)∧
K(x) ∧ ¬F (x)). Thus, it is true that we have not been able to prove
that there is no formalism that is capable of deriving all the knowable
arithmetical propositions. However, we have come to the conclusion that
if K coincides with F as far as arithmetical formulas are concerned, then
we know in DTK that there is a non-arithmetical ψ formula belonging
to K that is determinate, true, and not derivable in F . Even in the
hypothesis, therefore, that there is a formalism that captures all the
knowable mathematical formulas, we can be sure that this formalism
cannot capture all the knowable true formulas.

2. Determinateness of the result. A second critical aspect of the result
obtained is given by the fact that Penrose’s thesis, although derivable in
DTK, is not determinate. Koellner’s Theorem 7.15.1, in fact, states that
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the proposition ∃F (K = F ) is provably indeterminate and, consequently,
so is its negation ¬∃F (K = F ). Of course the formula ¬∃F (K = F )
is obtained in DTK without any illegitimate step, but in spite of this,
being it indeterminate, it is not susceptible of being declared true in
DTK. This difficulty can, however, be removed. Let us simply modify
Step 8 as follows:
Step (8′) ⊢DTK K =PA F →

∃x(Sent(x)∧x = pK =PA F → G(F+)q ∧ K(x)∧¬F (x))
The proof is immediate by logic from step (7).

Now, by Lemma 2 and the axioms of determinateness, the implication
is determinate, knowable by K-intro, and, therefore, true by K1. The
different formal appearance with respect to step (8) does not change the
meaning.

In conclusion, Penrose’s second argument formalized in DTK sys-
tem is partially conclusive since the DTK system proves that even in
the hypothesis that there is a formalism that captures all the know-
able mathematical formulas, the same formalism cannot capture all the
knowable true formulas. Furthermore, the DTK system proves that this
result is determinate.

3. Revisiting the justifiability of the first disjunct

3.1. Beyond DTK

The previous paragraph points out the partial validity of Penrose’s argu-
ment. This result derives from a close analysis of the formal work carried
out by Koellner, within detailed assumptions and formal constraints. In
this section we will try to broaden the discussion by adopting the point
of view of those who claim that thought is in principle irreducible to
the functioning of a machine. We share the opinion that the difference
between machine and mind does not only depend on the superiority
of the mind with respect to the machine  the aim of Penrose’s second
argument  , but also on the different way in which mind and machine
work. What we wish to emphasise is the difference between the machine’s
resources in doing concrete mathematics and the mind’s resources, con-
stitutively intertwined with formal and informal aspects. The difference
in resources reveals an essential fracture in the way the mind proceeds
compared to the machine.
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3.2. Reasons against the identity of mind and machine

In this paragraph we will try to show that the mind differs from the
machine for at least two fundamental reasons.

Reason 1: The machine cannot grasp the relationship between formal
and informal kinds of reasoning.

Let us start from afar, by trying to understand the meaning of
the limitation theorems, not from the systematic point of view  taken
into consideration in the discussion of Gödel’s disjunction  but from
Hilbert’s foundational perspective. From this point of view, the analysis
of formal systems’ limiting phenomena, starting from Gödel’s theorems,
has highlighted that human reasoning, being not entirely formalisable,
presents intuitive, irreducibly informal aspects. In the course of gradual
careful reflection on these aspects, they lose their residual character 
the character they present at the beginning  and are taken as necessary
presuppositions of formal reasoning. In principle, Hilbert himself recog-
nise the need to take into consideration the informal dimension alongside
the formal one.14 When Hilbert speaks of the finitist foundation of the
mathematical building, he means the consistency proof of formal mathe-
matics, starting from the use of finitist procedures in a content-oriented
way (inhaltlich). The consistency test, in this sense, has to be conducted
in a system which has intuitive meaning. It is true that these procedures
concern objects of the same type as formal objects  which are undoubt-
edly finitist  and that, precisely for this reason, the intuitive content-
oriented aspect has to correspond perfectly to the formal one. However,
in Hilbert’s perspective, it is the intuitive content-oriented aspect that
carries the foundational load. The finitist procedures appear founded not
because they are formalisable but because they are finitistically evident.
The evidence is, therefore, conceived by Hilbert as the essential factor
of the epistemic dignity of real mathematics. Gödel’s theorems sanction
the failure of formalism not because it is not connected with some form
of intuition, but because this form of intuition is too weak and limited
to the concrete [Gödel, 1972]. On Hilbert’s approach, only finitist proce-
dures are evident, and all mathematics rests on them. Gödel breaks this
closure because G2 expressly declares that the consistency proof of the
ideal mathematics cannot be conducted through the finite procedures of
real mathematics. Indeed, speaking more formally, G2 shows that it is

14 To explore this topic in more detail see [Mancosu, 1998, 1999].
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not possible to guarantee the consistency of formal systems satisfying
very general conditions, not even of the PRA system, which  according
to Tait’s [1981] thesis  exactly formalises finitist arithmetic. How then
can this guarantee be obtained?

All research following Gödel highlights the importance of the different
forms of evidence: they are reflected in the hierarchy of arithmetic theo-
ries that lie above and below PRA. There is no single form of evidence 
the finitist one  but, rather, the evidence is stratified. There are levels
of evidence that are different according to gradually different degrees
of content abstractness and different content types. These differences
already appear with overwhelming clarity, arising from the fact that, by
G2, no form of finitist foundationalism can be justified if finitist evidence
is conceived as the only form of available evidence. Let us assume that
according to Tait’s thesis, they are precisely capturable by the PRA
primitive recursive arithmetic system. This assumption means that all
PRA theorems  and only they  are finitistically evident. On the other
hand, according to the finitist’s foundationalist perspective, only finitist
evidence guarantees the truth  i.e., only finitist evidence is indisputably
sound. But then, the finitist finds herself in severe difficulty. She must
state that PRA is sound because all its theorems are true, and yet can-
not say that the consistency (implied by soundness) of PRA is a finitist
truth, because this is not derivable in PRA. Formally:

• Let the finitist evidence operator EF be sound, i.e., EFϕ⇒ ϕ
• Let Tait’s thesis be valid, i.e., ⊢PRA ϕ⇔ EFϕ.

Then we have:

⊢PRA ⊥ absurdum hypothesis
EF ⊥ by Tait’s thesis
EF ⊥⇒⊥ soundness of EF
⊥ logic
0PRA ⊥ refutation

The finitist can reject Tait’s thesis but not the soundness of the fini-
tist evidence. For this reason, she must distinguish between evidence
contents that can be formalised in PRA, and evidence contents that
cannot be formalised in PRA  thus, admitting that there is reliable ev-
idence outside PRA. But the finitist must admit that the content charac-
terising such evidence external to PRA is not homogeneous with that for-
malisable in PRA. That is to say, that this content has abstract features



496 Antonella Corradini and Sergio Galvan

that are incompatible with the expressive abilities of PRA and which,
therefore, is required to be learned independently of the linguistic sign.

In other words, the fact that PRA formalises at least a part of the
finitist procedures, allows us to say, intuitively, that they are reliable.
But if they are reliable, their use certainly cannot lead to a contradiction.
Therefore, intuitively, we obtain with certainty that PRA is consistent,
even if consistency is not obtainable through finitist procedures that
are formalisable in PRA. The non-formal intuitive aspect, therefore,
becomes relevant in the very proof of the consistency of a theory like
PRA.15

Moreover, post-Gödelian developments have revealed that the various
forms of evidence underlying the construction of mathematical knowl-
edge are reflected in the hierarchy of arithmetic theories, starting from
the weakest fragments such as Q up to PA at the second order, and set
theory. The foundational theses differ by stating that reliability is limited
to this or that other type of evidence or that it is spread over theories,
up to a specific bound. For example, the finitist, à la Tait, affirms that
finitist evidence is reflected in PRA; the finitist à la Parsons [1998] stops
at I∆0; the ultrafinitist Nelson [1986] even says that there is no certainty
that PA is consistent, and declares that only the predicative arithmetic
formalisable in Q is reliable. Some authors, like Gentzen [1969], on the
other hand, push the bound upwards and believe that even induction up
to ǫ0 can be considered a finitist procedure. But it is not essential to
adopt the point of view of a precise foundational thesis. Rather, the core
issue is that, whatever the foundational thesis defended, this acceptance
entails the acceptance of intuitive truths that do not belong to the set
of claims justified according to that thesis. Knowledge, if it is such,
is an open system, based on formal reasoning and informal intuition,
and a mutual relationship between the two. And a machine, having no
dimension beyond the formal one, cannot be this.

Reason 2: The machine only interacts with finitist data. The mind in-
teracts with the abstract. Human evidence has a broader horizon
than that to which the finitist evidence extends.

A further aspect touched on only implicitly in Reason 1, is the fact
that the machine can only interact with a finitist language. This fact is

15 Some authors have recently insisted on the importance of the informal dimen-
sion in the context of mathematical proof [see, e.g., Leitgeb, 2009].
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an immediate consequence of the computational nature of the machine.
A machine functions as a formal system, in the precise sense that the
procedure through which the machine reaches a result can be perfectly
represented by the set of steps that allow deriving the result within the
formal system. Now, what kind of evidence is needed to build such a
derivation? Well, what is needed is the ability to grasp the form of
specific linguistic signs and to know how to combine these signs, appro-
priately, in accordance with the rules of formation and inference of the
system. But linguistic signs are concrete objects, and the operations
involved in the derivation of the result are, in turn, operations on con-
crete signs, which generate equally concrete properties and relationships.
The formal system, therefore, works with, and on finite objects. No
other forms of evidence are at stake. The computational machine is also
equipped with the same form of evidence. And the machine proceeds
based on the ascertainment of the presence of specific signs, and their
elaboration in conformity with rules of composition and inferentiality.
In conclusion, the machine cannot interact, except with finitist objects.
As seen in our discussion of Reason 1, the human mind, however, has
kinds of evidence that go beyond the purely finitist ones, whether these
belong to the informal domain or to levels of formalisation different from
the finitist one.

This does not mean that the machine cannot achieve results concern-
ing abstract contents belonging to theories that go beyond finitist arith-
metic. Importantly, these contents must be previously formalised within
purely formal systems whose dominability does not require non-finitist
forms of evidence. It is also worth pointing out that the considerations we
make in Reason 2 concern machines that conform to the computational
model of the mind  and are therefore isomorphic to formal systems 
and do not claim to apply sic et simpliciter to biological machines such
as the neural networks of a living organism.
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