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Abstract. The logic BN4 was defined by R.T. Brady as a four-valued ex-
tension of Routley and Meyer’s basic logic B. The system EF4 is defined as
a companion to BN4 to represent the four-valued system of (relevant) impli-
cation. The system Ł was defined by J. Łukasiewicz and it is a four-valued
modal logic that validates what is known as strong Łukasiewicz-type modal
paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł
without modal paradoxes. This paper aims to define a Belnap-Dunn seman-
tics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł
are strongly sound and complete w.r.t. their respective semantics and that
EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.
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1. Introduction

One of Jan Łukasiewicz’s latest works was the definition of the sys-
tem Ł. This system is a four-valued modal logic that, for him, was the
definitive modal and many-valued system, as it encompassed all that
he sought throughout his life-long work. Despite Łukasiewicz’s efforts,
the system was somewhat short-lived as multiple voices claimed that it
was deeply flawed [12]. The main reason for this was that it verified
what are generally known as strong Łukasiewicz-type modal paradoxes.
These paradoxes include theses such as (MA ∧ MB) → M(A ∧ B) or
L(A ∨ B) → (LA ∨ LB). The system received a backlash so substantial
that it has even been said that it pushes the boundaries of what the no-
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tion of modality is [cf. 14]. Nevertheless, Łukasiewicz disdained all the
claims that arose just by saying that those paradoxes were, in fact, char-
acteristic of what he considered to be the perfect modality, the one of his
system Ł [15]. It is easy to see how Ł became forgotten quite quickly after
its introduction and was regarded as an extravagance at best. However,
it is worth mentioning that the interest in this system has recently in-
creased, as it can be seen in [11], where the authors explore Łukasiewicz’s
logic, or [18], where a new interpretation for the system is given.

It was back in [7] where Brady introduced his famous system BN4.
This system is pretty well known and have been studied in depth, but yet
it is of interest. In particular, the characteristic matrix of BN4 was de-
fined as an expansion of Smiley’s four-valued matrix, which in its turn is
the characteristic matrix for the system First Degree Entailment (FDE).
Furthermore, according to [9], Smiley’s matrix would be a simplification
of N. Belnap’s eight-valued matrix [cf. 3]. In Brady’s words, the system
BN4 was meant to be a four-valued extension of B, Routley-Meyer’s basic
logic, that would act as the four-valued logic of the relevant conditional
[cf. 7]. Also, in accordance with J. Slaney, BN4 would be the adequate
extension of FDE in the case that one wanted to endow it with a relevant
conditional [cf. 24].

As a companion to the aforementioned BN4, the system E4 was in-
troduced by G. Robles and J. M. Méndez in [22]. According to them, this
system is related to BN4 just as E, the system of (relevant) entailment,
relates to R. Therefore, E4 is a four-valued extension of reductioless E.
Even though the importance of E4 is out of the question, it was Slaney
himself who mentioned to Robles and Méndez that E4 might not be the
perfect companion to BN4. This is mostly because the characteristic
matrix of E4 cannot be divided into two three-valued matrices unlike
the characteristic matrix of BN4. Additionally, Slaney wonders if the
logic defined by the matrix M4 could be a better companion to BN4
than E4 [cf. 22]. And EF4 is the system determined by the matrix M4.

This matrix M4 has the same source as the characteristic matrix of
BN4, except for the conditional function. This matrix would support
EF4 as the four-valued system of (relevant) entailment. Thus, if BN4 is
the four-valued system of relevant conditional, EF4 is its companion, the
four-valued system of (relevant) entailment; just as E acts with respect
to R. It is also interesting to mention that BN4 can be seen as a four-
valued contractionless version of R whereas EF4 has the attribute of
being a four-valued reductioless version of E.
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At the same time, EF4 will act as the base system to introduce
two different modal systems: EF4-M and EF4-Ł. These two systems
are defined as modal expansions of EF4. The first one, EF4-M, is built
upon the modal notions that A. Monteiro introduced. These notions
were investigated by J. M. Font and M. Rius in [10], and have more
recently been brought again into the spotlight by J. Y. Beziau in [6].
The second system, EF4-Ł, is based upon the inherent modal notion of
EF4, that is to say, the modality inherent to E [cf. 1]. Furthermore, in
the case of EF4-Ł, the inherent modality of E happens to be equivalent
to the notion of modality that Łukasiewicz and A. Tarski developed for
the many-valued systems of the former [cf. 15], thus granting EF4-Ł an
exclusive perspective on the modality of E and the modality of Ł.

The main aim of this paper is to introduce the systems EF4, EF4-M,
EF4-Ł. To do so, we will introduce the logical matrix M4, the character-
istic matrix of EF4, and its inherent semantics. Also, we will endow the
systems with a Belnap-Dunn bivalent semantics. This semantics, while
one might say that this semantics provides a motivation for BN4 [cf. 21],
it is also a really good tool for addressing the implicative expansions of
FDE, as was done in [16]. Therefore, it is appealing to use it in order to fa-
cilitate our investigation of the systems. The last result of this paper is to
show that both EF4-M and EF4-Ł are free from the strong Łukasiewicz-
type modal paradoxes that were at the heart of the system Ł.

To sum this up, the structure of the paper is as follows. This first
introductory section is followed up by a second section focused on the
logical matrix M4. In that section, the notion of a logical matrix will
be defined as well as the matrix M4. Moreover, its semantics is intro-
duced as well as the notions of consequence and validity. In Section 3
we will introduce the system EF4 in an Hilbert-style axiomatic fashion.
Afterwards, the system will be endowed with the aforementioned Belnap-
Dunn bivalent semantics which, in its turn, will be shown to be equiva-
lent to the inherent semantics of the matrix M4. Once the equivalence
between both semantics has been proven, we can easily show that EF4
is strongly sound w.r.t. the aforementioned semantics. The final part of
that section is meant to show that the system is complete in a strong
sense. In order to do this, we will introduce an extension lemma and the
canonical model, based on the Belnap-Dunn bivalent semantics. As for
the last and fourth section, we will introduce the logical matrices MM4
and ŁM4, the characteristic matrices of EF4-M and EF4-Ł. Obviously,
the systems will be defined too and endowed with Belnap-Dunn bivalent
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semantics. We will show how, similarly to EF4, both systems are sound
and complete in a strong sense. To conclude, we will show how none
of the strong Łukasiewicz-type modal paradoxes holds for any of the
modal systems defined. There is a section for conclusions at the end of
the paper to sum up all that has been done.

Before getting into the second section, we will define a series of basic
concepts:

Definition 1.1 (Basic concepts). A propositional language is a enu-
merable set of propositional variables p0, p1, . . . , pn, . . . , and every
or a few of the following connectives → (entailment), ∧ (conjunction),
∨ (disjunction), ¬ (negation), M (possibility) and L (necessity). Well-
formed formulae (wffs) and sets of them are defined in the customary
way.

2. The matrix M4 and its semantics

This second section introduces the matrix M4 and its inherent semantics.
First of all we introduce the notion of a logical matrix and afterwards
we define the matrix M4.

2.1. The matrix M4

Definition 2.1. A logical matrix M is a structure 〈K, T, F, f〉, where:

(i) K is a non-empty set;
(ii) T (the set of designated elements) and F (the set of non-designated

elements) are two non-empty subsets of K such that T ∪ F = K
and T ∩ F = ∅;

(iii) f is the set of n-ary functions on K which are used to interpret the
connectives in M such that for each n-ary connective c there is a
function fc ∈ f such that fc : Kn → K.

Definition 2.2. The matrix M4 is a logical matrix of the form 〈KM4,
TM4, FM4, fM4〉, where:

(i) KM4 = (0, 1, 2, 3) and is partially ordered as follows:

3

2 1

0
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(ii) TM4 = (2, 3) and FM4 = (0, 1);
(iii) fM4 = {f∧, f∨, f→, f¬}, where for all a, b ∈ K: f∧ := min(a, b);

f∨ := max(a, b); and

f→(a, b) :=















3 if either a = 1 = b or both a = 0 and b = 3

2 if a = 2 = b

0 in any other cases

f¬(a) :=























3 if a = 0

2 if a = 2

1 if a = 1

0 if a = 3

Thus, the connectives are expressed in the following truth-tables:

∧ 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

→ 0 1 2 3

0 3 3 3 3
1 0 3 0 3
2 0 0 2 3
3 0 0 0 3

¬

0 3
1 1
2 2
3 0

Remark 2.3. For the matrix M4, the truth value 0 can be understood as
false, the truth value 1 can be understood as neither true nor false, the
truth value 2 can be understood as true and false at the same time, and
the truth value 3 can be understood as true.

Remark 2.4 (Divisibility of M4). The conditional truth-table of the ma-
trix M4 can be divided into two different three-valued truth-tables. The
first one is built using the truth values 0, 1 and 3, obtaining the truth-
table corresponding to the conditional of the matrix MS5Ł

3 [17]. The
second one uses truth values 0, 2 and 3, generating the truth table of
the conditional of the matrix MRM3 [7]. Each matrix is characteristic
of the system whose name it bears. These truth-tables are as follows:

MS5Ł
3 0 1 3

0 3 3 3
1 0 3 3
3 0 0 3

MRM3 0 2 3

0 3 3 3
2 0 2 3
3 0 0 3

Remark 2.5. For all wffs A and B, the following are the characteristic
theses and the rule of the matrix M4. Let it be noted that, here and on
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the rest of the paper, we use the dot (�) to point out the main conditional
of the wff:

t1. A ∧ B → A A ∧ B → B

t2. ¬(A ∧ B) →� ¬A ∨ ¬B

t3. A → A ∨ B B → A ∨ B

t4. ¬(A ∨ B) → ¬A ¬(A ∨ B) → ¬B

t5. ¬A ∧ ¬B →� ¬(A ∨ B)

t6. ¬A → ¬A

t7. ¬¬A → A

t8. A → ¬¬A

t9. (A ∨ ¬B) ∨ (A → B)

t10. ¬A →� A ∨ (A → B)

t11. B →� ¬B ∨ (A → B)

t12. ¬A ∧ B →� A → B

t13. ¬(A → B) ∧ ¬A →� A

t14. (¬(A → B) ∧ ¬A) ∧ B →� A

t15. ¬(A → B) →� ¬B ∨ A

t16. ¬(A → B) ∧ B →� ¬B

t17. ¬B →� ¬A ∨ ¬(A → B)

t18. A →� B ∨ ¬(A → B)

r1. A, ¬B ⇒ ¬(A → B).

2.2. M4-semantics

After defining the matrix M4, now we can introduce its intrinsic four-
valued semantics.

Definition 2.6 (M4-interpretation). An M4-interpretation, IM4, is de-
fined as a function from the set of wffs to KM4, following Definition 2.2.

Definition 2.7 (M4-consequence and M4-validity). For any set of wffs Γ
and any wff A, A is a consequence of Γ within the M4-semantics, in sym-
bols Γ |=M4 A, iff 2 or 3 ∈ IM4(A) as long as 2 or 3 ∈ IM4(Γ ) for every
M4-interpretation IM4, IM4(Γ ) = inf{IM4(B) | B ∈ Γ}. Specifically, A
is valid within the M4-semantics, in symbols |=M4 A, iff 2 or 3 ∈ IM4(A)
for every M4-interpretation IM4. By |=M4 we refer to the relation we
have just defined.
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3. The four-valued system of (relevant) entailment: EF4

In this section we introduce the system EF4 and endow it with a bivalent
Belnap-Dunn (BD) semantics. We will prove that the M4-semantics is
equivalent to the BD-semantics for EF4. Afterwards we will give a sound-
ness proof in the strong sense and introduce the canonical models for the
BD-semantics. Then we will prove an extension lemma that is necessary
for us to obtain completeness of the system EF4 in a strong sense.

3.1. The system EF4

Firstly, we define what a logic is, then we introduce the axiomatization
of the system EF4 and display some basic definitions related to it.

Definition 3.1. A logic S is a structure 〈L, ⊢S〉, where L is a proposi-
tional language (cf. Definition 1.1) and ⊢S is a consequence relationship
defined over L by a set of axioms and derivation rules. The notions of
proof and theorem are the customary ones for axiomatic Hilbert-style
systems; i.e., for any set of wffs Γ and any wff A, Γ ⊢S A means that A
follows from Γ in S and ⊢S A means that A is a theorem of S.

The axiomatization of EF4 is as follows:

A1. A → A
A2. A ∧ B → A A ∧ B → B
A3. A → A ∨ B B → A ∨ B
A4. (A → B) ∧ (A → C) →� A → (B ∧ C)
A5. (A → C) ∧ (B → C) →� (A ∨ B) → C
A6. A ∧ (B ∨ C) →� (A ∧ B) ∨ (A ∧ C)
A7. A → B →� (B → C) → (A → C)
A8. A → B →� (C → A) → (C → B)
A9. A → ¬B →� B → ¬A
A10. ¬¬A → A
A11. A → (A → B) →� A → B
A12. [(A → A) ∧ (B → B)] → C →� C
A13. (A ∨ ¬B) ∨ (A → B)
A14. B ∧ ¬(A → B) →� ¬B
A15. ¬(A → B) →� A ∨ ¬B
R1. A, B ⇒ A ∧ B
R2. A → B, A ⇒ B
R3. C ∨ A, C ∨ ¬B ⇒ C ∨ ¬(A → B)
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This axiomatization can be seen as a four-valued extension of reductioless
E. Let it be noted that the Reductio axiom is (A → ¬A) → ¬A. The
inclusion of the disjunctive version of Counterexample, R3, is necessary
for the proof of the extension lemma as can be seen later. The axioms
of EF4 are independent of each other with the exception of A13. This
can be verified thanks to [23].

As an alternative to E4, it is worth noting that this axiomatization
mainly differs from the one of E4 in A15, a characteristic thesis of the
matrix M4. On the other hand, all of E4 axioms hold in EF4 with the
exception of ¬(A → B) ∧ (A ∧ ¬B) →� (A → B). This is due to the fact
that both systems are based upon E. It is also interesting to mention that
both EF4 and E4 (and for what matters, most four-valued systems of
any interest like BN4) validate theses of the form A →� ¬A → A, either
as theorems or as derivation rules. When these theses are validated as
theorems, they are considered to be modal fallacies by Anderson and
Belnap as they violate the Ackermann Property [1]. The main reason
for these theses to appear in EF4 as theorems is the fact that it verifies
the famous Mingle axiom, A →� A → A, while E4 does not.

Now we define a series of notions that are basic for the system.

Definition 3.2 (EF4-derivability). For any set of wffs Γ and any wff
A, A follows from Γ in EF4, in symbols Γ ⊢EF4 A, iff there is a finite
sequence of wffs B1, . . . , Bn such that Bn is A and for every other
Bi such that 1 ¬ i ¬ n it corresponds to one of the following cases:
(i) Bi ∈ Γ ; (ii) Bi is one of the axioms of EF4; (iii) Bi is the outcome of
applying one derivation rule to one or more of the previous wff.

Definition 3.3 (Disjunctive EF4-derivablity). For any sets of wffs Γ
and Θ, Θ is disjunctively EF4-derivable from Γ , in symbols Γ ⊢d

EF4 Θ,
iff A1 ∧ · · · ∧ Am ⊢EF4 B1 ∨ · · · ∨ Bn for some wffs A1, . . . , Am ∈ Γ and
B1, . . . , Bn ∈ Θ, as long as m, n  1.

Some theorems of EF4. The following wffs are EF4-theorems as they fol-
low from the axiomatization or, in some cases, from other EF4-theorems:

• Idempotency of Disjunction, A ∨ A →� A, follows from A1 and A5;
• Transitivity, A → B, B → C ⇒ A → C, follows from A7 and R2;
• Associativity of Conjunction, (A ∧ B) ∧ C →� A ∧ (B ∧ C), follows

from A2, A4, and Transitivity;
• Associativity of Disjunction, (A∨B) ∨C →� A∨ (B ∨C), follows from

A3, A5 and Transitivity;
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• Distribution (I), (A ∨ B) ∧ C →� A ∨ (B ∧ C), follows from A2, A3,
A4, A5, A6, and Transitivity;

• Distribution (II), (A ∨ B) ∧ (A ∨ C) →� A ∨ (B ∧ C), follows from A2,
A3, A4, A5, A6, Transitivity and Distribution (I);

• Distribution (III), A ∨ (B ∧ C) →� (A ∨ B) ∧ (A ∨ C), follows from A2,
A3, A4, A5, and Transitivity;

• Import, A → (B → C) →� (A ∧ B) → C, follows from A2, A7, A8,
A11 and Transitivity;

• Modus Ponens, (A → B) ∧ A →� B, follows from A1 and Import;
• Modus Tollens, (A → B) ∧ ¬B →� ¬A, follows from A9 and Import;
• Double Negation, A → ¬¬A, follows from A1 and R2;
• Contraposition, ¬A → B →� ¬B → A, follows from A8, A9, A10 and

Transitivity;
• De Morgan (I), ¬(A ∨ B) →� ¬A ∧ ¬B, follows from A3, A4 and A9;
• De Morgan (II), ¬(A∧B) →� ¬A∨¬B, follows from A3, A4, A10 and

Contraposition;
• Summation, A → B ⇒ C ∨ A →� C ∨ B, follows from A3, A5 and

Transitivity;
• Disjunctive Modus Ponens, (C ∨(A → B))∧(C ∨A) →� C ∨B, follows

from Modus Ponens, Summation and Distribution (III);
• Counterexample, A, ¬B ⇒ ¬(A → B), follows from A3, R2, R3 and

Idempotency of Disjunction;
• Product, A → B ⇒ C ∧ A →� C ∧ B, follows from A2, A4, and

Transitivity;
• Conjunction’s Commutative Property, A ∧ B →� B ∧ B, follows from

A2 and A4;
• Disjunction’s Commutative Property, A ∨ B →� B ∨ A, follows from

A3 and A5.

In order to conclude the introduction of the system EF4, we will prove
that the characteristic theses of matrix M4 are part of the axiomatization
of EF4 that we have displayed above.

Theorem 3.4 (the matrix M4 and the axiomatization of EF4). The

characteristic theses of the matrix M4 from Remark 2.5 are part of the

axiomatization of EF4.

Proof. We have to show that all the theorems and the rule of Re-
mark 2.5 follow from the axiomatization of EF4: t1 follows from A2; t2
from De Morgan (II); t3 from A3; t4 from A3 and A9; t5 from De Morgan
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(I); t6 from A1; t7 from A10; t8 from Double Negation; t9 from A13; t10
from A10, t13, A9 and De Morgan (II); t11 from A14, A9, Double Nega-
tion and De Morgan (II); t12 from A10, A15, A9, Double Negation and
De Morgan (I); t13 from A10, A14, A9, Product and Transitivity; t14
from A2, t13 and Transitivity; t15 from A15; t16 from A14; t17 from A9,
Modus Ponens and De Morgan (II); t18 from A10, A9, Double Negation,
De Morgan (II) and Modus Tollens; Finally, r1 follows from R3.

3.2. Bivalent Belnap-Dunn Semantics

Right now, the goal is to introduce the BD-semantics for EF4. It is im-
portant to note that the BD-semantics does not have a clause for entail-
ment per se, so we add one in order to be able to deal with the entailment
of EF4. For more on this semantics the reader should check out [8].

Definition 3.5 (BD-models). A BD-model is a structure 〈K4
BD, IBD〉,

where K4
BD = {{T}, {F}, {T, F},∅} and IBD is an interpretation from

the set of wffs to K4
BD. Each IBD assigns one element of K4

BD to each
propositional variable. Wff meet the following clauses:

(I) Conjunction:
(a) F ∈ IBD(A ∧ B) iff F ∈ IBD(A) or F ∈ IBD(B);
(b) T ∈ IBD(A ∧ B) iff T ∈ IBD(A) and T ∈ IBD(B);

(II) Disjunction:
(a) F ∈ IBD(A ∨ B) iff F ∈ IBD(A) and F ∈ IBD(B);
(b) T ∈ IBD(A ∨ B) iff T ∈ IBD(A) or T ∈ IBD(B);

(III) Negation:
(a) F ∈ IBD(¬A) iff T ∈ IBD(A);
(b) T ∈ IBD(¬A) iff F ∈ IBD(A).

Definition 3.6 (BD-consequence and BD-validity). A follows from Γ in
a BD-model M , in symbols Γ |=BD-M A, iff T ∈ IBD(A) as long as T ∈
IBD(B) for any B ∈ Γ . Particularly, A is true in M , in symbols |=BD-M

A, iff T ∈ IBD(A). Then, A follows from Γ in BD-semantics, in symbols
Γ |=BD A, iff Γ |=BD-M A in any BD-model M . In particular, A is valid
in the BD-semantics, in symbols |=BD A, iff |=BD-M A for any BD-model
M . By |=BD we are referring to the relation we have just defined.

Definition 3.7 (Entailment clause). The following is the corresponding
clause for the entailment of EF4:

(i) F ∈ IBD(A → B) iff either T ∈ IBD(A), F ∈ IBD(B), or F /∈
IBD(A), F ∈ IBD(B), or T ∈ IBD(A), T /∈ IBD(B);
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(ii) T ∈ IBD(A → B) iff both either T /∈ IBD(A) or T ∈ IBD(B), and
either F /∈ IBD(B) or F ∈ IBD(A).

It is necessary to make clear that, despite appearing individually, the
clause for entailment of Definition 3.7 is part of the BD-models intro-
duced in Definition 3.5.

3.3. The equivalence of the BD- and M4-semantics

In order to prove the equivalence of the BD and M4-semantics, we need
to introduce a series of definitions and lemmas.

Definition 3.8. Let IM4 be an M4-interpretation. Then we define a
corresponding BD-interpretation IBD as follows: for every propositional
variable pi,

(i) IM4(pi) = 0 iff IBD(pi) = {F} and IBD(pi) 6= {T};
(ii) IM4(pi) = 1 iff IBD(pi) = ∅;

(iii) IM4(pi) = 2 iff IBD(pi) = {T, F};
(iv) IM4(pi) = 3 iff IBD(pi) = {T} and IBD(Pi) 6= {F}.

Lemma 3.9 (Correspondence of IM4 with respect to IBD). Given Defi-

nition 3.8, we extend the equivalence of propositional variables to wffs.

For any wff A, it follows:

(i) IM4(A) = 0 iff IBD(A) = {F} and IBD(A) 6= {T};

(ii) IM4(A) = 1 iff IBD(A) = ∅;

(iii) IM4(A) = 2 iff IBD(A) = {T, F};

(iv) IM4(A) = 3 iff IBD(A) = {T} and IBD(A) 6= {F}.

Proof. The proof goes by induction on the complexity of wffs as it is
shown in [16, 22]. Additionally, the correspondence for wffs can be easily
extended to sets of wff.

Proposition 3.10 (Correspondence of IBD with respect to IM4). Given

a BD-interpretation, IBD, the corresponding M4-interpretation, IM4, can

be defined similarly as in Definition 3.8. Then, the correspondence be-

tween IBD and IM4 can be proved similarly as in Lemma 3.9.

Theorem 3.11 (Equivalence of M4-validity and BD-validity). The con-

cepts of BD-validity, from Definition 3.6, and M4-validity, from Defini-

tion 2.7, are equivalent.

Proof. For any wff A, we assume |=M4 A. Necessarily, we have |=BD A,
as, otherwise, if we had 6|=BD A, there would be a BD-interpretation
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IBD such that IBD(A) 6= T and, by Proposition 3.10 there would be
an M4-interpretation, IM4, such that IM4(A) = 0 or 1, contradicting
our assumption. For the case where we assume |=BD A, the proof goes
similarly, applying Lemma 3.9 instead of Proposition 3.10. Furthermore,
for any set of wffs Γ , we assume Γ |=BD A and need to show Γ |=M4 A.
Let IM4 be an M4-interpretation such that IM4(Γ ) = 2 or 3 from which
we need to show that IM4(A) = 2 or 3. Then we define a corresponding
BD-interpretation to the previous IM4. Since we have that IM4(Γ ) =
2 or 3, then IBD(Γ ) = T necessarily follows by Lemma 3.9. And, from
there, IBD(A) = T . Finally, by Proposition 3.10 we have IM4(A) =
2 or 3. For the case where we assume Γ |=BD A, Lemma 3.16 is used
instead of Lemma 3.18 and vice versa.

After proving that the M4-semantics and the BD-semantics are equiv-
alent, by induction on the length of formulas, we can now show that EF4
is a sound system in the strong sense.

Theorem 3.12 (Strong soundness for EF4). For any set of wffs Γ and

any wff A: If Γ ⊢EF4 A, then Γ |=M4 A and, accordingly, Γ |=BD A.

3.4. Canonical BD-models

Now we introduce the canonical EF4-models for the BD-semantics. We
firstly define the EF4-theories, and then move onto the canonical models
themselves.

Definition 3.13 (EF4-theories). An EF4-theory a is a set of wffs closed
under EF4-entailment, Adjunction and Disjunctive Counterexample; i.e.,
a is an EF4-theory iff for all wffs A, B and C:

(i) if A → B is an EF4 theorem, ⊢EF4 A → B, and A ∈ a, then B ∈ a;
(ii) if A ∈ a and B ∈ a, then A ∧ B ∈ a;

(iii) if C ∨ A ∈ a and C ∨ ¬B ∈ a, then C ∨ ¬(A → B) ∈ a.

Definition 3.14. For any EF4-theory a:

(i) a is prime iff for all wffs A, B, if A ∨ B ∈ a, then A ∈ a or B ∈ a;
(ii) a is regular iff all EF4 theorems belong to a;

(iii) a is a-consistent iff a is non-trivial; i.e., a does not have all wffs.

Since all theories are closed under EF4-entailment and the system
possesses the theorematic versions of Modus Ponens and Modus Tollens
(see Subsection 3.1), we obtain:
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Proposition 3.15. Let a be an EF4-theory. Then a is closed under

Modus Ponens and Modus Tollens; i.e., for all wffs A, B, if A → B ∈ a
and A ∈ a, then B ∈ a; and if A → B ∈ a and ¬B ∈ a, then ¬A ∈ a,

respectively.

Moreover, by A10 and Double Negation (see Subsection 3.1), we have:

Lemma 3.16 (EF4-Theories and Double Negation). In any EF4-theory a,

for any wff A: A ∈ a iff ¬¬A ∈ a.

Lemma 3.17 (Conjunction and Disjunction in prime EF4-theories). In

any prime EF4-theory a, for all wffs A, B:

(i) A ∧ B ∈ a iff A ∈ a and B ∈ a;

(ii) ¬(A ∧ B) ∈ a iff ¬A ∈ a or ¬B ∈ a;

(iii) A ∨ B ∈ a iff A ∈ a or B ∈ a;

(iv) ¬(A ∨ B) ∈ a iff ¬A ∈ a and ¬B ∈ a.

Proof. (i) Follows by A2 and the fact that a is closed under Adjunction.
(ii) Follows by De Morgan (II) and the primeness of a. (iii) Follows by
A3 and the fact that a is prime. (iv) Follows by De Morgan (I) and the
closure of a under Adjunction.

Lemma 3.18 (Entailment in prime and regular EF4-theories). In any

prime and regular EF4-theory a, for all wffs A, B:

(i) A → B ∈ a iff both either A /∈ a or B ∈ a, and either ¬A ∈ a or

¬B /∈ a;

(ii) ¬(A → B) ∈ a iff either A ∈ a, ¬B ∈ a, or ¬A /∈ a, ¬B ∈ a, or

A ∈ a, B /∈ a.

Proof. The properties of the EF4-theory a, such as its closure under
EF4-entailment, will be used along the proof. Also, the theses t10–t12,
t16–t18 from Remark 2.5, axioms A13–A15 of EF4, and the derivation
rule Counterexample from Subsection 3.1 will be used.

(i) From left to right: We assume A → B ∈ a and by reductio ad
absurdum we have (α) A ∈ a and B /∈ a, and (β) ¬A /∈ a and ¬B ∈ a,
but both lead us to a contradiction, as a is closed under Modus Ponens
and Modus Tollens, as it was shown back in Proposition 3.15.

From right to left we have four different cases: (α) A /∈ a and ¬A ∈ a,
(β) A /∈ a and ¬B /∈ a, (γ) B ∈ a and ¬A ∈ a, and (δ) B ∈ a and
¬B /∈ a. (α) follows by t10; (β) follows by A13; (γ) follows by t12; (δ)
follows by t11.
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(ii) From left to right: We assume ¬(A → B) ∈ a, and by reductio
we have: (α) A /∈ a and ¬A ∈ a, (β) A /∈ a, ¬A ∈ a and B ∈ a, (γ)
A /∈ a and ¬B /∈ a, (δ) A /∈ a, ¬B /∈ a and B ∈ a, (ε ) ¬B /∈ a, ¬A ∈ a
and A /∈ a, (ζ) ¬B /∈ a, ¬A ∈ a and B ∈ a; and (η) ¬B /∈ a and B ∈ a.
(α) follows by t16; (β) follows similarly to α; (γ) follows by A15; (δ)
follows by A14; (ε) follows similarly to the first two cases; (ζ) follows
similarly to δ; (η) follows similarly to the fourth case.

From right to left we have three different cases: (α) A ∈ a and
¬B ∈ a, (β) ¬A /∈ a and ¬B ∈ a, and (γ) A ∈ a and B /∈ a. (α) follows
by the derivation rule Counterexample; (β) follows by t17; (γ) follows
by t18.

Definition 3.19 (τ -interpretation). Let K4c be a set equivalent to K4
BD

(from Definition 3.11) and τ a regular and prime EF4-theory. Then, a
τ -interpretation is a function from the set of wffs to K4c such that for
any propositional variable pi:

(i) F ∈ Iτ (pi) iff ¬pi ∈ τ ;
(ii) T ∈ Iτ (pi) iff pi ∈ τ .

Additionally, for any wff A, a τ -interpretation assigns an element from
K4c accordingly to Definitions 3.5 and 3.7.

Definition 3.20 (BD-semantics canonical model). The BD-semantics
canonical model is a structure 〈K, Ic

τ 〉, where K4c is the set from Defi-
nition 3.19 and Ic

τ is a τ -interpretation.

The canonical model is a particular instance of the general structure
BD-models constitute.

Definition 3.21 (Canonical relation |=τ ). For any set Γ of wffs and
any wff A, the canonical relation |=τ is defined as follows: Γ |=τ A iff
T ∈ Iτ (A), as long as T ∈ Iτ (B) for any B ∈ Γ . In particular, |=τ A,
A is valid in the canonical model, iff T ∈ Iτ (A).

Directly from Definitions 3.5, 3.7 and 3.20 we have:

Theorem 3.22 (The canonical model is a BD-model). The canonical

model is a BD-model.

Finally, we show that the propositional variables clauses can be ex-
tended into wffs τ -interpretations.
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Theorem 3.23 (Clauses extension into wffs τ -interpretations). In any

prime and regular EF4-theory τ (see Definition 3.19), for any wff A:

(i) F ∈ Iτ (A) iff ¬A ∈ τ ;

(ii) T ∈ Iτ (A) iff A ∈ τ .

Proof. The proof goes by induction on the length of the wffs. The proof
is by Proposition 3.15 and Lemmas 3.16, 3.17, 3.18. Also, Lemma 7.5
from [22] can be consulted for an in-depth look at this proof.

3.5. EF4 extension and primeness lemmas

The following are the extension and primeness lemmas that are going to
be used for the completeness of EF4. But before we include an useful
proposition from Anderson and Belnap’s FDE.

Proposition 3.24. For arbitrary wffs B1, . . . , Bn, B′, C1, . . . , Cm,

C′ and D we consider the following abbreviations: B := B1 ∧ · · · ∧ Bn,

C := C1 ∨ · · · ∨ Cm, B′′ := B ∧ B′, C′′ := C ∨ C′. If B ⊢EF4 C ∨ D
and B′ ∧ D ⊢EF4 C′, then B′′ ∧ D ⊢EF4 C′′, B′′ ⊢EF4 C′′ ∨ D, B′′ ⊢
C′′ ∨ (B′′ ∧ D), C′′ ∨ (B′′ ∧ D) ⊢EF4 C′′ ∨ C, C′′ ∨ (B′′ ∧ D) ⊢EF4 C and

B′′ ⊢EF4 C′′.

Lemma 3.25. If B1, . . . , Bn ⊢EF4 A, then C ∨ (B1 ∧· · ·∧Bn) ⊢EF4 C ∨A
for any wff C.

Proof. Assuming the hypothesis of the lemma, we proceed by induction
on the length of the derivation of A from {B1, . . . , Bn} in EF4. There
are five different options: (i) A ∈ {B1, . . . , Bn}: By A2 together with the
commutative and associative properties of ∧ we have ⊢EF4 (B1 ∧ · · · ∧
Bn) → A and, by Summation and Proposition 3.24, we get C ∨ (B1 ∧
· · ·∧Bn) ⊢EF4 C ∨A. (ii) A is an axiom: Since A is an axiom we already
have ⊢EF4 A. By A3 we get ⊢EF4 A →� C ∨A and, applying R2, we have
⊢EF4 C ∨ A. Then, by Proposition 3.24, C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4 C ∨ A.
(iii) A is derived using R1: A has the pattern D ∧ E for some wffs D, E.
By the induction hypothesis we have C ∨ (B1 ∧· · ·∧Bn) ⊢EF4 C ∨D and
C∨(B1∧· · ·∧Bn) ⊢EF4 C∨E. By using R1, we get C∨(B1∧· · ·∧Bn) ⊢EF4

(C ∨ D) ∧ (C ∨ E), whence by Distribution over Conjunction we have:
C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4 C ∨ (D ∧ E). (iv) A is derived using R2: By
the induction hypothesis, C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4 C ∨ (D → A) and
C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4 C ∨ D for some wff D. By using Disjunctive
Modus Ponens, we have C ∨ (B1 ∧· · ·∧Bn) ⊢EF4 C ∨A. (v) A is derived
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using R3: A has the pattern D ∨ ¬(E → F ) for some wffs D, E and F .
By the induction hypothesis we have C ∨(B1 ∧· · ·∧Bn) ⊢EF4 C ∨(D∨E)
and C∨(B1∧· · ·∧Bn) ⊢EF4 C∨(D∨¬F ). By Associativity of Disjunction
we get C ∨ (B1 ∧· · ·∧Bn) ⊢EF4 (C ∨D)∨E and C ∨ (B1 ∧· · ·∧Bn) ⊢EF4

(C ∨ D) ∨ ¬F , and now, using R3, we get C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4

(C ∨ D) ∨ ¬(E → F ), and using again Associativity of Disjunction we
get C ∨ (B1 ∧ · · · ∧ Bn) ⊢EF4 C ∨ (D ∨ ¬(E → F )).

Definition 3.26. Γ is a maximal set iff Γ 0
d
EF4 Γ̄ , where Γ̄ is the

complementary set to Γ .

Lemma 3.27 (EF4 extension lemma). Let Γ and Θ be sets of wffs such

that Γ 0
d
EF4 Θ. Then, there are sets of wffs Γ ′ and Θ′ such that Γ ⊆ Γ ′,

Θ ⊆ Θ′, Θ′ = Γ̄ ′ and Γ ′
0

d
EF4 Θ′.

Proof. Let A1, . . . , An, . . . be an enumeration of the set of wffs. Assum-
ing the hypothesis of the lemma, the sets Γ ′ and Θ′ are defined as follows:
Γ ′ =

⋃

k∈N
Γk and Θ′ =

⋃

k∈N
Θk, where Γ0 = Γ and Θ0 = Θ. For every

k ∈ N, Γk+1 and Θk+1 are built according to one of the following options.

(I) If Γk∪{Ak+1} ⊢d
EF4 Θk, then Γk+1 = Γk and Θk+1 = Θk∪{Ak+1}.

(II) If Γk ∪ {Ak+1} 0
d
EF4 Θk, then Γk+1 = Γk ∪ {Ak+1} and Θk+1 =

Θk. As a consequence we have Γ ⊆ Γ ′, Θ ⊆ Θ′ and Γ ′ ∪ Θ′ is the set
of wffs. We prove: (a) Γk 0

d
EF4 Θk, for every k ∈ N. By reductio ad

absurdum, we assume that, for any i ∈ N, it follows: (b) Γi 0
d
EF4 Θi but

Γi+1 ⊢d
EF4 Θi+1. Now we have to consider two different possibilities, the

two possible ways of building Γi+1 and Θi+1 from (I) and (II): (i) Γi ∪
{Ai+1} 0

d
EF4 Θi. By (II) we have Γi+1 = Γi ∪{Ai+1} and Θi+1 = Θi. By

(b) we have Γi ∪ {Ai+1} ⊢d
EF4 Θi, which leads us to a contradiction. (ii)

Γi ∪{Ai+1} ⊢d
EF4 Θi. By (I) we have Γi+1 = Γi and Θi+1 = Θi ∪{Ai+1}.

By (b) we have: (1). Γi ⊢d
EF4 Θi ∪ {Ai+1}. Now we assume Γi and Θi.

The wffs in this derivation are named as B1, . . . , Bm and C1, . . . , Cn,
where m, n  1. We will use B for the conjunction of B1, ..., Bm, i.e.,
B1 ∧ · · · ∧ Bm. We will use C for the disjunction of C1, . . . , Cn, i.e.,
C1 ∨ · · · ∨ Cn. Thanks to this, now we can rewrite (1) as follows: (2).
B ⊢EF4 C ∨ Ai+1. On the other hand, given hypothesis (ii), there is a
conjunction of elements of Γi named B′, and a disjunction of elements
of Θi named C′, such that: (3). B′ ∧ Ai+1 ⊢EF4 C′. By B′′ we will
refer to the conjunction of B and B′, B ∧ B′. By C′′ to the disjunction
of C and C′, C ∨ C′. Our intention is to prove: (4). B′′ ⊢EF4 C′′, i.e.,
Γi ⊢d

EF4 Θi, contradicting reductio hypothesis, (b), and thus proving (a).
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By Proposition 3.24 and (3) we have: (5). B′′ ∧ Ai+1 ⊢EF4 C′′. By (2)
and Proposition 3.24 we get: (6). B′′ ⊢EF4 C′′ ∨ Ai+1. Now, thanks to
(6) and Proposition 3.24 we get: (7). B′′ ⊢EF4 C′′ ∨ (B′′ ∧ Ai+1). And,
by (5) and Lemma 3.25, we get: (8). C′′ ∨ (B′′ ∧ Ai+1) ⊢EF4 C′′ ∨ C′′.
Which, simplified, is: (9). C′′ ∨ (B′′ ∧ Ai+1) ⊢EF4 C′′. Lastly, thanks to
(7) and (9) we have: B′′ ⊢EF4 C′′. That, as we had pointed out above,
is equivalent to: Γi ⊢d

EF4 Θi, contradicting the reductio hypothesis (b).
Consequently (a), Γk 0

d
EF4 Θk, for every k ∈ N, is proven. Thus, we

have sets of wff Γ ′ and Θ′ such that Γ ⊆ Γ ′, Θ ⊆ Θ′, Γ ′
0

d
EF4 Θ′, and

Θ = Γ̄ . Finally, let it be noted that Γ ′ is a maximal set since Γ ′ ⊢d
EF4 Γ̄ ′.

Therefore, Lemma 3.27 or EF4 extension lemma is proven.

Lemma 3.28 (EF4 primeness lemma). If Γ is an EF4 maximal set of

wffs, then Γ is a prime theory.

Proof. Let Γ be an EF4 maximal set of wffs. First we prove that
Γ is a theory. For this purpose we will show that is closed under (I)
Adjunction, (II) EF4-entailment, and (III) Disjunctive Counterexample:
(I): We assume A ∈ Γ and B ∈ Γ , and A ∧ B /∈ Γ as our reductio
hypothesis. Then we have Γ ⊢EF4 A and Γ ⊢EF4 B, which by R1 leads
us to Γ ⊢EF4 A∧B, and so contradicting Γ maximality. (II): We assume
⊢EF4 A → B and A ∈ Γ , and B /∈ Γ as our reductio hypothesis. We
have Γ ⊢EF4 A → B and Γ ⊢EF4 A, and, thanks to R2, Γ ⊢EF4 B,
which contradicts Γ maximality. (III): We assume C ∨ A ∈ Γ and
C∨¬B ∈ Γ , and C∨¬(A → B) /∈ Γ as our reductio hypothesis. We have
Γ ⊢EF4 C ∨A and Γ ⊢EF4 C ∨¬B. By R3, we get Γ ⊢EF4 C ∨¬(A → B),
which contradicts Γ maximality. Thus, it is proven that Γ is a theory.
Now we prove that is actually a prime theory: We assume A ∨ B ∈ Γ ,
A /∈ Γ , and B /∈ Γ as the reductio hypothesis. Then Γ ⊢d

EF4 A ∨ B,
contradicting the maximality of Γ .

Definition 3.29 (The set of consequences from set Γ with respect to
EF4). Let Γ be an EF4 set of wffs. Then, the set of consequences, in
symbols CnΓ [EF4], is defined as follows: CnΓ [EF4] = {A | Γ ⊢EF4 A}.

Observation 3.30 (CnΓ [EF4 is a regular theory). Let Γ be a set of

wffs. Then, it is obvious that CnΓ [EF4] is closed under EF4 derivation

rules and will contain every EF4 theorem. Consequently Γ is closed

under EF4-entailment, too.
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3.6. Completeness theorem for EF4

Finally, now we can show that EF4 is a complete system in a strong sense.
Also, this allows us to prove that EF4 is, actually, an axiomatization of
the matrix M4.

Theorem 3.31 (EF4 completeness theorem). For any EF4 wff A, if

Γ |=BD A, then Γ ⊢EF4 A.

Proof. Let Γ be a set of wffs and A any wff; we assume Γ 0EF4 A
and from there we will show that Γ 6|=BD A. Given the assumption we
have A /∈ CnΓ [EF4] and, therefore, CnΓ [EF4] 0d

EF4 A. Otherwise we
will have B1 ∧ · · · ∧ Bn ⊢EF4 A for wffs B1, . . . , Bn such that B1 ∧
· · · ∧ Bn ∈ CnΓ [EF4] and, thus, A would be part of CnΓ [EF4]. By
Lemma 3.27, EF4 extension lemma, there is a maximal set Γ ′ such that
CnΓ [EF4] ⊆ Γ ′, Γ ⊆ Γ ′, and A /∈ Γ ′. By Lemma 3.28 Γ ′ is a prime
theory and, by Observation 3.30, is a regular theory. Therefore we have
a τ -interpretation such that T ∈ Iτ (Γ ) but T /∈ Iτ (A). Additionally, by
Theorem 3.22, we have that the canonical model of Definition 3.20 is,
actually, a model. Lastly, we have Γ 6|=Iτ

A by Definition 3.20 and, from
there, by Definition 3.6 and Theorem 3.2, Γ 6|=BD A.

Corollary 3.32 (System EF4 is an axiomatization of the matrix M4).
The defined system EF4 is an axiomatization of the matrix M4 from

Definition 2.2.

Proof. Given that EF4 is a sound and complete system in a strong
sense with respect to BD-semantics by Theorems 3.12 and 3.31, and
thanks to the equivalence of the concepts of validity of the BD-semantics
and the M4-semantics shown in Theorem 3.19, we can conclude that the
system EF4 is an axiomatization of the the matrix M4.

3.7. EF4 characteristics

In order to conclude the section devoted to EF4 we show how the system
does not have the Variable Sharing Property (VSP), but has the quasi-
relevance property and it is a paraconsistent system.

Proposition 3.33 (EF4 does not have the VSP). The system EF4 does

not have the Variable Sharing Property (VSP), i.e., antecedent and con-

sequent of any entailment share at least one propositional variable.
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Proof. EF4 does not have the VSP since it does validate the theorem
¬(A → A) →� (B → B), a R-Mingle thesis [cf. 1]. This can be verified
by using [13]. Nevertheless, EF4 falsifies the most important paradoxes
of material implication, such as ¬A →� A → B, A →� B → A or
(A → B) ∨ (B → A).

Proposition 3.34 (EF4 has the quasi-relevance property). For any EF4
wffs A and B, if ⊢EF4 A → B, then either (a) both A and B share, at

least, one propositional variable, or (b) both ⊢EF4 ¬A and ⊢EF4 B.

Proof. We assume the case where ⊢EF4 A → B but A and B have no
common propositional variable. Additionally we assume, by reductio,
0EF4 ¬A and 0EF4 B. By Theorems 3.11 and 3.12, 6|=M4 ¬A or 6|=M4 B.
Then there will be M4-interpretations IM4 and I ′

M4 such that: (i) 0 ∈
IM4(¬A), or (ii) 1 ∈ IM4(¬A), (iii) 0 ∈ I ′

M4(B), or (iv) 1 ∈ I ′
M4(B). Now

we shall show that if ⊢EF4 A → B follows, then none of the cases (i)-(iv)
is possible, thus, proving Proposition 3.34. We will show just cases (i)
and (iv), as cases (ii) and (iii) are proven in a similar fashion. (i): We
have 3 ∈ IM4(A) from the hypothesis. Let I ′′

M4 be a M4-interpretation
identical to IM4, except that for every propositional variable pi of B, 2 ∈
I ′′

M4(pi). Necessarily, I ′′
M4 is consistent as A and B share no propositional

variables just as we assumed. Then 3 ∈ I ′′
M4(A) and 2 ∈ I ′′

M4(B), as {2}
is closed under ∧, ∨, → and ¬. Hence, 0 ∈ I ′′

M4(A → B), which leads
us to 0EF4 A → B, contradicting our first assumption. (iv): Let I ′′′

M4

be an M4-interpretation equal to I ′
M4 with the exception that, for every

propositional variable pi that happens in A, 2 ∈ I ′′
M4(pi). Just like the

case prior to this, I ′′′
M4 is consistent as A and B share no propositional

variables. Then 1 ∈ I ′′′
M4(B) and 2 ∈ I ′′′

M4(A), as {2} is closed under ∧, ∨,
→ and ¬. Thus 0 ∈ I ′′′

M4(A → B) and, then, 0EF4 A → B, contradicting
our very first assumption.

Proposition 3.35. The system EF4 is paraconsistent.

Proof. We have to prove that Ex Contradictione Quodlibet (ECQ) rule
of derivation, A ∧ ¬A ⇒ B, is not provable in EF4. We assume an M4-
interpretation IM4 for distinct propositional variables pi and pm such
that: 2 ∈ IM4(pi) and 1 ∈ IM4(pm). Then pi, ¬pi 6|=M4 pm, turning
ECQ into not-provable in EF4 by virtue of Theorem 3.12.
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4. The four-valued modal systems of (relevant) implication

This section is devoted to the introduction of the modal systems EF4-M
and EF4-Ł. The first one answers to the modality defined by Monteiro
that, as it has been said, was reintroduced by Font and Rius in [10] and,
more recently, by Beziau in [6]. The second one is the modality defined
by Tarski and Łukasiewicz for their own modal systems that, in this
case, is equivalent to the one that Anderson and Belnap defined for the
system E. In the first place, we will introduce the system EF4-M and we
will endow it with an extension of the previously defined BD-semantics
so we can obtain results of soundness and completeness in a strong sense.
Secondly, we will introduce EF4-Ł and obtain results of soundness and
completeness in a strong sense too. To conclude this section, we will
show how none of these systems has the modal paradoxes that were part
of Łukasiewicz’s system Ł.

4.1. First modality: EF4-M

In the first place we will define the characteristic matrix of EF4-M and
introduce its inherent semantics. Afterwards we define the BD-semantics
for EF4-M and show that it is equivalent to the matrix semantics. Then
it is time to introduce the system EF4-M itself and obtain results of
soundness and completeness in a strong sense.

4.1.1. MM4-semantics, MBD-semantics and their equivalence

We define the matrix MM4 and its semantics.

Definition 4.1 (The matrix MM4). The matrix MM4 is defined as
a modal expansion of the matrix M4 from Definition 2.2. The set f is
modified to be as follows: f = {f∧, f∨, f→, f¬}, fLM4 and fMM4. For
the already defined elements of f , Definition 2.2 applies. The newly
introduced elements are defined as follows:

L

0 0
1 0
2 0
3 3

M

0 0
1 3
2 3
3 3

Proposition 4.2 (Non-definibility of fL and fM). Functions fL and

fMM4 are non-definable from functions f∧, f∨, f→ and f¬ in MM4.
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Proof. It suffices to show that f∧(2, 2) = f∨(2, 2) = f→(2, 2) = f¬(2) =
2, while LA = 2 or MA = 2 are impossible by Definition 4.1 above.

Remark 4.3 (Characteristic theses of the matrix MM4). The following
are the characteristics theses of the matrix MM4. For all wffs A and B:

t19. LA → A

t20. LA ∧ ¬A →� A

t21. A →� ¬A ∨ LA

t22. ¬LA ∧ A →� ¬¬A

t23. ¬A → ¬LA

t24. ¬LA ∨ A

t25. LA ∧ ¬LA →� B

t26. MA ∧ ¬A →� A

t27. A → MA

t28. ¬A ∨ MA

t29. ¬MA → ¬A

t30. MA ∧ ¬A →� A

t31. ¬A →� A ∨ ¬MA

t32. MA ∧ ¬MA →� B

The notions of MM4-interpretation, MM4-consequence and MM4-
validity are defined similarly to those of EF4. Therefore, the reader
might refer to Defintions 2.6 and 2.7.

Next, we define an updated version of the bivalent Belnap-Dunn
models to include the modal connectives:1

Definition 4.4 (MBD-models). An MBD-model is a structure 〈K4
BD,

IMBD〉, where K4
BD is the set of Definition 3.11 and IMBD is a function

from the set of wffs to K4
BD. For propositional variables, pi, one of

K4
BD elements is assigned. For Conjunction, Disjunction, Negation and

Entailment wff, the clauses from Definitions 3.11 and 3.13 follow. For
the connectives of Necessity and Possibility, the following clauses apply:

(I) Necessity:
(a) F ∈ IMBD(LA) iff either F ∈ IMBD(A) or T /∈ IMBD(A);
(b) T ∈ IMBD(LA) iff F /∈ IMBD(A);

(II) Possibility:
(a) F ∈ IMBD(MA) iff both F ∈ IMBD(A) and T /∈ IMBD(A);
(b) (b) T ∈ IMBD(MA) iff F /∈ IMBD(A).

1 For modal connectives in Belnap-Dunn semantics see [20].
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The notions of MBD-consequence and MBD-validity are equal to
those of Definition 3.6.

Finally, we prove that the MM4-semantics and the MBD-semantics
are equivalent in a similar fashion of what we did back for EF4.

The proof of the equivalence of the concepts of MM4-validity and
MBD-validity is equal to that of EF4 (cf. Subsection 3.3), therefore we
omit it. Let it be noted that:

Proposition 4.5 (Equivalence of MM4-validity and MBD-validity).
There is a strict equivalence relationship between items; e.g., MBD-

validity with BD-validity.

4.1.2. EF4-M axiomatization

The axiomatization of EF4-M is equal to that of EF4 plus the following
axioms:

A16. LA → A
A17. A →� ¬A ∨ LA
A18. ¬LA ∨ A
A19. LA ∧ ¬LA →� B

4.1.3. Some theorems of EF4-M

We will show that EF4-M is a modal expansion of EF4 and, after that, we
will show that the characteristic theses of the matrix MM4 are included
in the axiomatization of EF4-M.

Immediate by Proposition 4.2 we obtain:

Theorem 4.6 (EF4-M is a modal expansion of EF4). The system EF4-M
is a modal expansion of EF4.

Theorem 4.7 (The matrix MM4 and the axiomatization of EF4-M).
Characteristic theses of the matrix MM4 are part of the axiomatization

of EF4-M.

Proof. The theses of EF4 follow automatically as EF4-M is a modal
expansion of EF4 by Theorem 4.7, and we have shown that M4 theses are
part of EF4 in Theorem 3.4. Thus, we need to show that the new theses
from Remark 4.3, corresponding o the modal connectives, follow: t19
follows from Conjunction’s Commutative Property; t20 from A2, A7, and
Conjunction’s Commutative Property; t21 from A9, A10, Disjunction’s
Commutative Property, Double Negation, and De Morgan (II); t22 from
Disjunction’s Commutative Property; t23 from A9, and Conjunction’s
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Commutative Property; t24 from A16; t25 from A22; t26 from A17; t27
from A18; t28 from A19; t29 from A9 and A18; t30 from A2; t31 from
A9, A10, A17, and De Morgan (II); t32 from A23.

4.1.4. Soundness and completeness for EF4-M

Now it is time to give a soundness proof in the strong sense for EF4-M.
Since strong soundness was proven for EF4 back in Theorem 3.12, to
give a strong soundness proof for EF4-M, it is enough to show that the
new axioms are valid [cf. 13].

Theorem 4.8 (Strong soundness for EF4-M). For any set of wffs Γ ,

and any wff A, if Γ ⊢EF4-M A, then Γ |=MM4 A and, consequently,

Γ |=MBD A.

For the completeness theorem, first we will extend the notion of EF4-
theories to include the modal connectives. Afterwards we will define
modal interpretations and a canonical model for the MBD-semantics.
All that allows us to extend the clauses of modal interpretations into
wffs. Then we will be ready to give the completeness theorem. We will
also show that EF4-M is an axiomatization of the matrix MM4.

Lemma 4.9 (Necessity and possibility connectives in regular, a-consistent
and prime theories). Let a be a regular, a-consistent and prime theory,

and A a wff. Unlike the case of EF4, it is worth noting that in this case,

theories need to be a-consistent. The following clauses applyf :

(I) (a) LA ∈ a iff A ∈ a and ¬A /∈ a;

(b) ¬LA ∈ a iff ¬A ∈ a or A /∈ a;

(II) (a) MA ∈ a iff A ∈ a or ¬A /∈ a;

(b) ¬MA ∈ a iff ¬A ∈ a and A /∈ a.

Proof. We begin with (I) from left to right: (a) We assume LA ∈ a; by
Conjunction’s Commutative Property we have A ∈ a. By reductio we
have ¬A ∈ a, and by A9 and Conjunction’s Commutative Property we
have ¬LA ∈ a, and, afterwards, LA∧¬LAn ∈ a. Lastly, by A22, we have
B ∈ a for any wff B, contradicting the a-consistency of a; (b) We assume
¬LA ∈ a and ¬A /∈ a, and A ∈ a as our reductio hypothesis. By t21 we
have LA ∈ a, and by t25, we have B ∈ a for any wff B, contradicting
a a-consistency; From right to left: (a) We assume A ∈ a and ¬A /∈ a.
By t21 we get LA ∈ a; (b) We assume ¬A ∈ a or A /∈ a. For the case
¬A ∈ a, by t23 we get ¬LA ∈ a. For the case A /∈ a, by A16, and since
a is regular and prime, we have ¬LA ∈ a.
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For (II), from left to right: (a) We assume MA ∈ a, and A /∈ a and
¬A ∈ a as reductio hypothesis. By A17 we have A ∈ a, which leads to
a contradiction; (b) We assume ¬MA ∈ a , and by t29 we have ¬A ∈ a.
We also assume A ∈ a by reductio. By A18 we have MA ∈ a and, by A23
we have B ∈ a for any wff B, contradicting a a-consistency; From right
to left: (a) We assume A ∈ a or ¬A /∈ a; by A18 we have MA ∈ a, and
by A19 and the fact that a is prime, we have MA ∈ a; (b) We assume
¬A ∈ a and A /∈ a; by t31 we have ¬MA ∈ a.

Remark 4.10 (EF4-M axiomatization). From Lemma 4.9 it follows that
EF4-M could be axiomatizated by using just A16, A17, A18 and A19
as we have proposed in Subsection 4.1.2. Nevertheless, the option of
axiomatizating by adding the theses corresponding to possibility also
exists. Both ways of providing EF4-M axiomatization are valid.

The concepts of Mτ -interpretation, MBD-semantics canonical
model, and canonical relation |=Mτ are defined similarly to those of EF4
(cf. Definitions 3.19–3.21) and therefore omitted. Furthermore, Lemma 9
takes care of the canonical interpretation of the modal operators. Finally,
completeness is also proven similarly to EF4 (cf. Theorem 3.31), with
the only exception that the maximal set Γ is a-consistent, since A /∈ Γ .

Corollary 4.11 (System EF4-M is an axiomatization of the matrix
MM4). The defined system EF4-M is an axiomatization of the matrix

MM4 from Definition 4.1.

Proof. Given that EF4-M is a sound and complete system in a strong
sense, with respect to MBD-semantics, and thanks to the equivalence
of the concepts of validity of MBD-semantics and MM4-semantics from
Proposition 4.5, we can conclude that the system EF4-M is an axioma-
tization of the matrix MM4.

4.2. Second modality: EF4-Ł

For this second modality we are taking a different approach: EF4-Ł
would be introduced as a definitional extension. Therefore, it is obvious
that it follows automatically from and is equivalent to EF4. Never-
theless, the system still holds quite some value as the definitions used
for introducing the modal connectives are of importance. On the one
hand, we will use the definitions that Tarski used to modally interpret
Łukasiewicz’s many-valued systems that, in part, motivate EF4. On the
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other hand, we will use the notion of Necessity implicit in E, the other
great motivator for EF4. In this particular case, both different ways of
defining the modality lead to the same results, as can be seen below.
Therefore, the main aim of this system EF4-Ł, despite how obvious it
might be, is to show explicitly how the inherent modality of EF4 works.
This is especially important since EF4 can be considered as a four-valued
version of E and a spiritual successor to Łukasiewicz’s many-valued sys-
tems as modally interpreted by Tarski.

As we did with the first modal system, we will introduce the matrix
ŁM4 first and define the axiomatization of EF4-Ł just after that. We
will show how it is equivalent to EF4 and, therefore, the characteristics
of EF4 are also the characteristics of EF4-Ł. Let it be noted that the
name EF4-Ł does not derive from the system Ł, but rather from the
fact that it is inspired by Łukasiewicz’s many-valued logics. As said, we
begin by introducing the matrix ŁM4.

Definition 4.12 (The matrix ŁM4). The matrix ŁM4 is defined as a
modal expansion of the matrix M4 from Definition 2.2, where the set f
is modified as follows: f = f∧, f∨, f→, f¬, f ′

L
and f ′

M
. For the already

defined elements of f we will follow Definition 2.2. The new ones are
defined as follow:

L

0 0
1 0
2 2
3 3

M

0 0
1 3
2 2
3 3

Additionally, by ILM4 we will be referring to a ŁM4-interpretation
built upon the matrix ŁM4, defined in a similar way to the previous
cases.

Remark 4.13 (Characteristic theses of the matrix ŁM4). The following
theses and rules are the characteristic of the matrix ŁM4:

t33. LA → A
t34. ¬LA ∧ A → ¬ � A
t35. ¬A → ¬LA
t36. ¬LA ∨ A
t37. MA ∧ ¬A →� A
t38. A → MA
t39. ¬A ∨ MA
t40. ¬MA → ¬A
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r2. A ⇒ LA
r3. ¬A ⇒ ¬MA

Definition 4.14 (Definitional extensions and interdefinitions of L and
M). For any wff A, L and M definitional extensions are as follow:

(i) LA := ¬(A → ¬A)
(ii) LA := A → A →� A

(iii) MA := ¬A → A
(iv) MA := ¬(¬A → ¬A) → ¬A

As pointed out above, in this specific case, the definitional extensions for
the corresponding connectives are equivalent and, therefore, we include
all of them. The interdefinitions are:

(v) LA := ¬M¬A
(vi) MA := ¬L¬A

It follows automatically by the above definition that:

Observation 4.15 (Definibility of f ′
L

and f ′
M

). Functions f ′
L

and f ′
M

are

definable from the functions f→ and f¬ in the matrix ŁM4 and, thus,

also in the matrix M4.

As obvious as the above observation is, it has been included to keep
a parallelism with EF4-M.

4.2.1. EF4-Ł axiomatization

The axiomatization of EF4-Ł is equal to that of EF4 plus the following
axioms: A16, A18 and

A17′. ¬LA ∧ A →� ¬A
R4. A ⇒ LA

It follows automatically as EF4-Ł is a definitional extension of EF4 that:

Observation 4.16 (EF4-Ł properties). EF4-Ł is a sound and complete

system in a strong sense.

4.3. Modal paradoxes elimination in EF4-M and EF4-Ł

We will show how the main modal paradoxes that are part of Łukasie-
wicz’s system Ł are not valid in EF4.

Theorem 4.17 (Modal paradoxes elimination). For any distinct propo-

sitional variables p and q, the following Łukasiewicz-type strong modal

paradoxes:
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(i) Mp ∧ Mq →� M(p ∧ q)
(ii) L(p ∨ q) →� Lp ∨ Lq

(iii) Lp →� q → Lq
(iv) Lp →� Mq → q
(v) p → Lp

(vi) LMp → p

are not valid in any of the defined modal systems, EF4-M and EF4-Ł.

Proof. We will show that there is, at least, an interpretation for every
modal paradox for each system that falsifies them.

In EF4-M: The interpretation IMM4(p) = 2 and IMM4(q) = 1 falsifies
(i) and (ii). The interpretation IMM4(p) = 3 and IMM4(q) = 1 falsifies
(iii) and (iv). The interpretation IMM4(p) = 2 falsifies (v) and (vi).

In EF4-Ł: The interpretation ILM4(p) = 2 and ILM4(q) = 1 falsifies
(i)–(iv). The interpretation ILM4(p) = 1 falsifies (v) and (vi).

To conclude, it is important to mention that, while (i)–(vi) of Theo-
rem 4.17 above are the most important modal paradoxes, there are more.
For example A → B →� MA → MB and A → B →� LA → LB. These
two new paradoxes are valid in both EF4-M and EF4-Ł and, while this
might seem like a downside for both systems, it should only be regarded
as so if the intention behind the logics was the one of establishing a
classical conditional, as in the case of the system Ł. Nevertheless, since
in both systems, EF4-M and EF4-Ł, the connective → is based on EF4
and, therefore it represents an entailment, then both theses can be seen
as acceptable. Finally, let us point out that, while (V) and (VI) are
flagrant modal paradoxes, they are not valid in Łukasiewicz’s logic as
they are immediately falsified by the four-valued matrix characteristic
of said logic.

5. Conclusions

The conclusions that we can draw from all of the previous sections are
twofold. On the one hand, the system EF4 is a very interesting com-
panion to BN4. Just as Brady’s system can be seen as a four-valued
extension of contractionless R, in the same sense EF4 can be seen as
a four-valued extension of reductioless E. It could be argued that the
system E4 is indeed the companion to BN4. Nevertheless, the same
results follow for both systems (i.e., soundness and completeness in a
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strong sense). Therefore, when choosing E4 or EF4 as the companion
for BN4 one has to ask oneself if the divisibility of the matrix M4, the
characteristic matrix of EF4, is enough to overlook the validation of the
Mingle axiom or if, otherwise, it would be preferable to have a non-
divisible matrix such as the one of E4.

On the other hand, the modal systems we introduced, EF4-M and
EF4-Ł, are two modal systems of interest. Both of them being sound
and complete in the strong sense makes them, at least, worth noting.
Furthermore, EF4-M is a great representation of how the modality of
four-valued systems can be expressed and provides solid ground for the
ideas rekindled by Beziau. As for EF4-Ł, we are able to have a look
at what a solid version of Łukasiewicz’s Ł would be like, in the same
sense that other four-valued logics free of strong Łukasiewicz-type modal
paradoxes are. As, for example, the logics from [16]. In this case, EF4-Ł,
a quasi-relevant one.
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