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Abstract. The logics BN4 and E4 can be considered as the 4-valued logics
of the relevant conditional and (relevant) entailment, respectively. The
logic BN4 was developed by Brady in 1982 and the logic E4 by Robles and
Méndez in 2016. The aim of this paper is to investigate the implicative
variants (of both systems) which contain Routley and Meyer’s logic B and
endow them with a Belnap-Dunn type bivalent semantics.
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1. Introduction

Belnap-Dunn semantics (BD-semantics) was originally introduced by
means of the well-known logic B4 developed by Belnap and Dunn to
treat inconsistent and incomplete information [cf. 5, 6, 9, 10]. Accord-
ing to this semantics, there is the possibility of assigning T , F , both
T and F or neither T nor F to a formula (T represents truth and F
represents falsity). The logic B4 is equivalent to Anderson and Belnap’s
First Degree Entailment (FDE), a logic characterized (determined) by
Smiley’s matrix MSm4 [cf. 1, pp. 161–162], which is in its turn a simplifi-
cation of Belnap’s 8-elements matrix M0 [cf. 4], a matrix of considerable
importance in the development of relevant logics [cf. 21, pp. 176–179].

Brady defined in 1982 the system BN4 [cf. 7], a logic built upon the
matrix MBN4 which is also a modification of the matrix MSm4 referred
to above. This system is closely related to both Belnap and Dunn’s logic
B4 and Routley and Meyer’s logic B. On the one hand, BN4 can be
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considered a strengthening of B4 obtained by implicatively expanding
the latter. On the other hand, the logic BN4 was first developed by
taking as the starting point the axiomatization of B, as Brady himself
stated. Therefore, BN4 can also be seen as a 4-valued extension of Rout-
ley and Meyer’s logic B. As a matter of fact, even though it is tempting
to read BN4 as B(oth) and N(either) 4-valued logic, the label was chosen
by Brady because “the system contains the basic system B of Routley
et al. 1982, Chapter 4, and has a characteristic 4-valued matrix set,
one of the values being ’n’, representing neither truth nor falsity” [cf. 7,
p. 32, note 1]. BN4 may be seen as an interesting 4-valued extension
of B since Meyer et al. maintain that “BN4 is the correct logic for the
4-valued situation where the extra values are to be interpreted in the
both and neither senses” [14, p. 25] and according to Slaney, BN4 has
the truth-functional implication most naturally associated with the logic
FDE referred to above (and equivalent to B4; cf. [22, p. 289]). Moreover,
the system BN4 is a central non-classical logic not only due to its relation
with the family of relevant logics but also because of its position among
other important many-valued logics. In particular, the “strong implica-
tion” of the bilattice logic GLB⊃ [cf. 2, 3] of considerable importance in
artificial intelligence is actually the conditional of BN4 [cf. 13, Appendix].

The logic E4 is built upon a modification of Brady’s matrix MBN4
and was developed by Robles and Méndez as a companion to the system
BN4 worthy of consideration [cf. 18]. They believe that E4 is related to
BN4 in a similar way to which Anderson and Belnap’s logic of entail-
ment E is related to the system R [cf. 1 about the logics E and R]. In
this sense, the system E4 could be understood as the 4-valued entailment
counterpart to the 4-valued relevant conditional presented in BN4.

In the conclusions of [18], Robles and Méndez suggest that E4 might
not be the only alternative to BN4 and set out six different tables for f→

which could be of interest. I will investigate the logics built upon these
tables and prove that these matrices are the only implicative variants of
MBN4 and ME4 that verify Routley and Meyer’s logic B (cf. §3; they
also verify FDE since B is a proper extension of FDE). In that sense, we
will talk about the class of all implicative expansions of B4 verifying B
while maintaining the conditional structure of MBN4 or ME4. The aim
of this paper is to display the systems built upon these six alternative
tables for f→ and endow them with a Belnap-Dunn semantics in order
to investigate whether any of these tables can advantageously substitute
those of MBN4 and ME4. The results also contribute to pursue further
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investigation on implicative expansions of FDE1, which is well-known to
be a core non-classical system among many-valued and relevant logics
[cf. 15 and references therein].

The structure of the paper is now explained. In Section 2, Belnap
and Dunn’s matrix MB4 is defined while in Section 3, the six implicative
variants of MBN4 and ME4 are displayed and the fact that they are
the only ones of their kind verifying Routley and Meyer’s logic B is
proved. In Section 4, a basic sublogic (labeled “b4”) contained in all
the systems developed upon the previous matrices (including BN4 and
E4) is presented and some of its properties are proved. In Section 5,
all the logics characterized by those matrices (let them be called Lti-
logics) are axiomatized in a Hilbert-style way as extensions of b4. In
Section 6, each Lti-logic is endowed with a Belnap-Dunn semantics and
the soundness theorems are proved. In Section 7, I display the extension
and primeness lemmas which will be useful in the completeness theorem
proved later, in Section 8. Finally, in Section 9, some properties of
Lti-logics are explained: Lti-logics have the quasi-relevance property [1,
p. 417, Proposition 9.4 of this paper] and their characteristic matrices are
natural implicative expansions2 of MB4 (i.e., FDE; cf. Corollary 9.12)
among other related properties.

2. The matrix MB4

In this section, the matrix characteristic of Belnap and Dunn’s logic B4,
MB43, will be presented. First of all, some basic notions will be defined.

Definition 2.1 (Languages). The propositional language consists of a
denumerable set of propositional variables (P) p0, p1, . . . , pn, . . . and
some or all of the following connectives → (conditional), ∧ (conjunction),
∨ (disjunction), ¬ (negation). The biconditional (↔) and the set of wffs
(F) are defined in the customary way. A, B (possibly with subscripts 0,
1, . . . , n), etc. are metalinguistic variables.

1 In [15], some of the most well-studied implicative expansions of the logic FDE
are briefly explained, including BN4. In the conclusion of the paper, Omori and Wans-
ing mention some interesting topics for further research, including new expansions of
FDE and axiomatizations of relevant logics à la American plan.

2 I follow Tomova’s notion of natural implication as it has been redefined by
Robles and Méndez (cf. [23, p. 175] and [19, p. 2, note 2]).

3 By this label, I will refer to the matrix presented in [5, 6, 10], which is charac-
teristic of the logic FDE.
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Definition 2.2 (Logics). A logic L is a structure 〈L, ⊢L〉 where L is
a propositional language and ⊢L is a (proof-theoretical) consequence
relation defined on L by a set of axioms and a set of rules of derivation.
The notions of proof and theorem are understood as it is customary in
Hilbert-style axiomatic systems (Γ ⊢L A means that A is derivable from
the set of wffs Γ in L; and ⊢L A means that A is a theorem of L).

Definition 2.3 (Extensions and expansions of a propositional logic L).
On the one hand, let L and L′ be two propositional languages. L′ is
a strengthening of L if the set of wffs of L is a proper subset of the
set of wffs of L′. On the other hand, let L and L′ be two logics built
upon the propositional languages L and L′, respectively. Furthermore,
suppose that every axiom of L is a theorem of L′ and all primitive rules
of inference of L are provable in L′. Then, L′ is an extension of L if L
and L′ are the same propositional language; and L′ is an expansion of L
if L′ is an strengthening of L. An extension L′ of L is a proper extension
if L is not an extension of L′.

Definition 2.4 (Logical matrix). A (logical) matrix is a structure 〈V, D,
̥〉, where (1) V is a (ordered) set of (truth) values; (2) D is a non-empty
proper subset of V (the set of designated values); (3) ̥ is the set of n-ary
functions on V such that for each n-ary connective c (of the propositional
language in question), there is a function fc ∈ ̥ such that fc : Vn → V.

Definition 2.5 (M -interpretations, M -consequence, M -validity). Let
M be a matrix for L. An M -interpretation I is a function from F to
V according to the functions in ̥. Then, for any set of wffs Γ and wff
A, Γ �M A (A is a consequence of Γ according to M) iff I(A) ∈ D
whenever I(Γ ) ∈ D for all M-interpretations I (I(Γ ) = infI(B) | B ∈ Γ ,
so I(Γ ) ∈ D iff I(B) ∈ D for each B ∈ Γ ). In particular, �M A (A is M -
valid; A is valid in the matrix M) iff I(A) ∈ D for all M -interpretations I.

Definition 2.6 (Belnap and Dunn’s matrix MB4). The propositional
language L consists of the connectives ∧, ∨ and ¬. Belnap and Dunn’s
matrix MB4 is the structure 〈V, D,̥〉, where (i) V is {0, 1, 2, 3} and it
is partially ordered as shown in the following lattice

3

2 1

0
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(ii) D = {2, 3}; (iii) ̥ = {f∧, f∨, f¬}, where f∧ and f∨ are defined
as the glb (or lattice meet) and the lub (or lattice join), respectively.
Finally, f¬ is an involution with f¬(0) = 3, f¬(3) = 0, f¬(1) = 1 and
f¬(2) = 2. Tables for ∧, ∨ and ¬ are displayed below.

∧ 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

0 1 2 3

¬ 3 1 2 0

The notions of MB4-interpretation, MB4-consequence and MB4-validity

are defined according to Definition 2.5.

Remark 2.7 (On the intuitive meaning of the four values). The truth
values 0, 1, 2 and 3 can intuitively be interpreted in MB4 as follows.
Let T and F represent truth and falsity. Then, 0 = F , 1 = N (either),
2 = B (both) and 3 = T . Or, in terms of subsets of {T, F}, we have:
0 = {F}, 1 = ∅, 2 = {T, F} and 3 = {T}.

The following notion will be especially useful throughout this paper.

Definition 2.8 (Logics determined by matrices). Let L be a proposi-
tional language, M a matrix for L and ⊢L a (proof theoretical) con-
sequence relation defined on L. Then, the logic L (cf. Definition 2.2)
is determined by M iff for every set of wffs Γ and wff A, Γ ⊢L A iff
Γ �M A. In particular, the logic L (considered as the set of its theorems)
is determined by M iff for every wff A, ⊢L A iff �M A (cf. Definition 2.5).

3. Implicative variants of MBN4 and ME4 which verify

Routley and Meyer’s logic B

On the one hand, Brady developed the system BN4 as a 4-valued exten-
sion of B [cf. 21, Chapter 4]. On the other, the system E4 was presented
by Robles and Méndez [18] as a companion of BN4 worthy of consider-
ation. As stated by them, E4 is the 4-valued entailment counterpart to
the 4-valued relevant conditional represented in BN4. However, they also
pointed out that E4 may not be the only interesting alternative to BN4.
As a matter of fact, they suggested that there would be at least six other
interesting alternatives to it. The aim of this section is to present these
matrices and prove that they are the only ones (of their kind) verifying
Routley and Meyer’s basic logic B.
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I start by displaying the matrices upon which logics BN4 and E4 are
built.

Definition 3.1 (Brady’s 4-valued matrix MBN4 and Robles and Mén-
dez’s 4-valued matrix ME4). The propositional language consists of the
connectives →, ∧, ∨, ¬. MBN4 and ME4 are structures (V, D, ̥) where
V, D, f∧, f∨ and f¬ are defined as in MB4 (cf. Definition 2.6) and f→

is defined according to the following implicative tables:

BN4 (t1)

→ 0 1 2 3

0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

E4 (t5)

→ 0 1 2 3

0 3 3 3 3
1 0 2 0 3
2 0 0 2 3
3 0 0 0 3

On the other hand, the notions of interpretation, consequence and
validity in MBN4 and ME4 are understood according to Definition 2.5.

As it has been mentioned above, Robles and Méndez asserted that E4
may not be the only interesting alternative to BN4. In this sense, they
suggested that the matrices built upon the following six implicational
tables are the only implicative variants of MBN4 and ME4 that verify
Routley and Meyer’s basic logic B:

t2

→ 0 1 2 3

0 3 3 3 3
1 0 3 0 3
2 0 0 2 3
3 0 0 0 3

t3

→ 0 1 2 3

0 3 3 3 3
1 1 3 1 3
2 0 0 2 3
3 0 0 0 3

t4

→ 0 1 2 3

0 3 3 3 3
1 0 3 0 3
2 0 1 2 3
3 0 1 0 3

t6

→ 0 1 2 3

0 3 3 3 3
1 0 2 0 3
2 0 1 2 3
3 0 0 0 3

t7

→ 0 1 2 3

0 3 3 3 3
1 0 2 1 3
2 0 0 2 3
3 0 0 0 3

t8

→ 0 1 2 3

0 3 3 3 3
1 0 2 1 3
2 0 1 2 3
3 0 0 0 3

The label Mti (1 ¬ i ¬ 8) will be used to refer to the matrix char-
acterized by the implicative table ti.4 It is worth underlining that the
matrices characterized by the expansions of MB4 with those tables, to-
gether with MBN4 and ME4, are the only ones which satisfy B while

4 I will use the labels Mt1 and Mt5 to refer to MBN4 and ME4, respectively.
Consequently, labels Mt2-Mt4 will be used to refer to the implicative variants of
MBN4 and similarly, labels Mt6-Mt8 will be employed to allude to the variants of
ME4.
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preserving one of the following general structures (i.e., either BN4 or E4
implicative matrix structure):

(BN4-type)

→ 0 1 2 3

0 3 3 3 3
1 3 3
2 2 3
3 3

(E4-type)

→ 0 1 2 3

0 3 3 3 3
1 2 3
2 2 3
3 3

Now, suppose that the entries recorded in the tables above are fixed
and the blank spaces can be filled with any truth-value from V (cf. Def-
inition 2.6). Next, we will prove that MBN4, ME4 and the matrices
characterized by the rest of the implicative tables shown above (i.e.,
t2–t4 and t6–t8) are the only ones verifying B.

Proposition 3.2 (Expansions of MB4 which verify Routley and Meyer’s
basic logic B). Given the general implicative structures shown above,
there are only eight implicative expansions of MB4 (Mt1–Mt8) that ver-
ify Routley and Meyer’s basic logic B  which can be axiomatized with
(A1)–(A7) of b4 (cf. Definition 4.1) and modus ponens, adjunction, pre-
fixing, suffixing and contraposition in the form A → ¬B ⇒ B → ¬A, as
rules of inference  while being based on one of those structures. Those
expansions of MB4 can be defined as follows: each Mti (1 ¬ i ¬ 8) is
a structure 〈V, D,̥〉, where V, D, f∧, f∨ and f¬ are defined as in MB4
(cf. Definition 2.6) and f→ is defined according to the corresponding ti
above (t1 is MBN4 and t5 is ME4).

Proof. The fact that the rules and axioms of B are valid in Mti (1 ¬
i ¬ 8) can be easily proved with the help of a tester [cf. 12]. However,
we also want to specify the reasons why those matrices are the only
possible ones (having one of those implicative structures) that verify
B. The method will consist in constraining the possibilities for blank
spaces in such a way that the validity of (firstly) the rules and (then)
the axioms of B is preserved. (1) In order to make the rule MP valid,
the following possibilities have to be non-designated: f→(2, 0), f→(3, 0),
f→(2, 1), f→(3, 1). Once we have limited the possibilities of blank spaces
according to (1), we take these results into account and keep limiting pos-
sibilities until the validity of the rules and axioms of B is preserved. (2)
To validate the rule contraposition, the succeeding possibilities need to
take a non-designated value: f→(3, 2), f→(1, 2), f→(1, 0). (3) Likewise,
the restriction of the values resulting from the following possibilities to
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0 is needed to preserve prefixing or suffixing rules: f→(2, 0), f→(3, 2),
f→(3, 0). According to the points made so far, our implicative structures
will be restricted as shown below:5

(BN4-type)

→ 0 1 2 3

0 3 3 3 3
1 a1 3 a2 3
2 0 a3 2 3
3 0 a4 0 3

(E4-type)

→ 0 1 2 3

0 3 3 3 3
1 b1 2 b2 3
2 0 b3 2 3
3 0 b4 0 3

The previous restrictions are still not sufficient for our matrices to vali-
date the prefixing and suffixing rules, let alone every theorem of B. Thus,
the restrictions just remarked will be separately analyzed from now on.
Let us start with BN4-type implicational table. For the BN4-type, we
find that there are two pairs of values which are related to each other.
(4) To verify prefixing rule and A3 of B ([(A → B) ∧ (A → C)] → [A →
(B ∧ C)]) [cf. 21, Chapter 4], a1 and a2 should be the same value (0 or
1); and (5) the same goes for the pair a3 and a4 in order to verify the
suffixing rule and A5 of B ([(A → C) ∧ (A → B)] → [(A ∨ B) → C])
[cf. 21, Chapter 4]. The final result of the restrictions just made are
tables t1-t4 shown above. Now, let us consider E4-type implicational
table. To assure that rules of B are valid in E4-type matrices, two more
restrictions are needed: (6) b1 and b4 should be the value 0. Therefore,
restrictions in (6) together with those in (1)–(3) result in implicational
tables t5–t8 displayed on the previous page.

It would be easy to verify that if any of the restrictions remarked
above is not followed, the resulting implicational tables will fail to ver-
ify some rules (or theorems) of B. For instance, let us skip restriction
(2). Then, let f→(3, 2) ∈ D be the case. For any distinct propositional
variables p and q, there is an interpretation I such that I(p) = 3 and
I(q) = 2. Therefore, the rule of contraposition will fail since we have
I(p → q) ∈ D but I(¬q → ¬p) /∈ D, giving f¬ and the restrictions
previously made to verify MP (1) –in particular, f→(2, 0) /∈ D.

4. The basic logic b4 and its properties

Before defining the eight logics determined by each Mti (1 ¬ i ¬ 8),
it will be useful to define the logic b4. b4 is a new system contained

5 Where ai ∈ {0, 1} (1 ¬ i ¬ 4) and bj ∈ {0, 1} (1 ¬ j ¬ 4).
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in all the logics we are going to define in this paper and serves a mere
instrumental purpose.6 The label b4 is intended to abbreviate “basic
logic included in every variant of BN4 or E4 which contain Routley and
Meyer’s logic B”. In what follows, the basic logic b4 is defined and some
of its properties are proved.

Definition 4.1 (b4). The logic b4 is axiomatized with the following
axioms and rules of inference.

Axioms:

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

A7. ¬¬A → A

A8. A → ¬¬A

A9. ¬A → [A ∨ (A → B)]

A10. B → [¬B ∨ (A → B)]

A11. (A ∨ ¬B) ∨ (A → B)

A12. (A → B) ∨ [(¬A ∧ B) → (A → B)]

Rules of inference:

Adjunction (ADJ): A, B ⇒ A ∧ B

Modus Ponens (MP): A, A → B ⇒ B

Disjunctive Modus Ponens (dMP): C ∨ A, C ∨ (A → B) ⇒ C ∨ B

Disjunctive prefixing (dPREF):
C ∨ (A → B) ⇒ C ∨ [(D → A) → (D → B)]

Disjunctive suffixing (dSUF): C∨(A → B) ⇒ C∨[(B → D) → (A → D)]

Disjunctive Contraposition (dCON): C ∨ (A → B) ⇒ C ∨ (¬B → ¬A)

Disjunctive Counterexample (dCTE): C ∨ (A ∧ ¬B) ⇒ C ∨ ¬(A → B)

Remark 4.2 (About b4). b4 is the result of adding the axioms A9–A12
and rules dMP, dPREF, dSUF, dCON and dCTE to Routley and Meyer’s

6 In order to homogenize the proofs developed throughout this paper, I will use
a common axiomatic base as wide as possible (i.e., the instrumental system b4 even if
that means including some weak rules of inference which are not necessary to axiom-
atize every expansion of B4 considered (cf. Remark 2 in the Conclusion). Otherwise,
we would have to specify different proofs for all the eight logics determined by each
Mti. (Regarding the need for disjunctive rules in Completeness proofs cf. [8].)



38 Sandra M. López

basic logic B. As a matter of fact, b4 can be seen as an extension of dB
(i.e., the disjunctive version of Routley and Meyer’s logic B).

Proposition 4.3. The following theorems are derivable in b4:

T1 A ↔ (A ∨ A)
T2 ¬(A ∧ B) ↔ (¬A ∨ ¬B)
T3 (¬A ∧ ¬B) ↔ ¬(A ∨ B)

Proof. T1–T3 are theorems of FDE, a system included in b4 [see, e.g.,
1, p. 158].

In the following lines, I will introduce the notion of a Eb4-theory and
the types of Eb4-theories of interest in this paper in order to prove some
predicable properties of both b4-theories and Eb4-theories. By the label
EL, I will refer to an extension (or an expansion, as the case may be) of
the logic L (cf. Definition 2.3).

Definition 4.4 (Eb4-theories). Let L be an Eb4-logic. An L-theory T
is a set of wffs closed under adjunction (Adj) and provable L-entailment
(L-ent). That is to say, a set of wffs is closed under Adj iff, whenever A,
B ∈ T , then A ∧ B ∈ T ; a set of wffs is closed under L-ent iff, whenever
A → B is a theorem of L and A ∈ T , then B ∈ T .

Definition 4.5 (Types of Eb4-theories). Let L be an Eb4-logic and T
be an L-theory. We set (1) T is prime iff, for wffs A and B, whenever
A ∨ B ∈ T , then either A ∈ T or B ∈ T ; (2) T is regular iff T contains
all theorems in L; (3) T is trivial iff it contains every wff; (4) T is a-
consistent (consistent in an absolute sense) iff T is not trivial; (5) T is
empty iff it contains no wff.

Immediate by A7 and A8 and the fact that L-theories for Eb4-logics
are closed by L-entailment we obtain:

Lemma 4.6. For theory T for an Eb4-logic: A ∈ T iff ¬¬A ∈ T .

Lemma 4.7. Let L be an Eb4-logic and T be a prime L-theory. Then,
(1a) A ∧ B ∈ T iff A ∈ T and B ∈ T ; (1b) ¬(A ∧ B) ∈ T iff ¬A ∈ T
or ¬B ∈ T ; (2a) A ∨ B ∈ T iff A ∈ T or B ∈ T ; (2b) ¬(A ∨ B) ∈ T iff
¬A ∈ T and ¬B ∈ T .

Proof. (1a) From left to right (⇒): by A2 and the fact that L-theories
are closed by L-ent.7 From right to left (⇐): by the fact that L-theories

7 This justification, namely, the fact that L-theories are closed by L-ent is con-
stantly used throughout these proofs. Therefore, I will omit it from now on.
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are closed by Adj. (1b) (⇒): by T2 (¬(A ∧ B) ↔ (¬A ∨ ¬B)) and the
fact that T is a prime theory. (⇐): by A4. (2a) (⇒): by the fact that T
is prime. (⇐): just by A4. (2b) (⇒): by T3 ((¬A ∧ ¬B) ↔ ¬(A ∨ B))
and A2. (⇐): by T3 and the fact that T is closed under Adj.

Definition 4.8 (Sets of wffs closed under a certain rule). A set of wffs
Γ is closed under a rule R iff the conclusion of R belongs to Γ whenever
the hypothesis belongs to Γ .

Definition 4.9 (Full regularity). Let L be an Eb4-logic, a L-theory T
is fully regular iff it is a regular L-theory (cf. Definitions 4.4 and 4.5)
which is closed under the following rules: MP, dMP, dCON, dPREF,
dSUF, dCTE (cf. Definition 4.8).

Proposition 4.10 (Derived rules under which fully regular Eb4-theories
are closed). Let L be an Eb4-logic, if T is a fully regular L-theory, then
it is closed under (1) CON, (2) PREF, (3) SUF, (4) CTE, (5) MT and
(6) TRAN.

Proof. Cases (1)–(4): by A4 and T1 (A ↔ (A ∨ A)) and the fact that
T is fully regular (i.e., closed under dCON, dPREF, dSUF and dCTE,
respectively for each case). Cases (5)-(6): by hypothesis, T is fully
regular (therefore closed under MP) and by the fact that T is closed
under CON and SUF (given what has already been proved in cases (1)
and (3)), respectively for each case.

Lemma 4.11. Let L be an Eb4-logic and T be a prime full regular L-
theory.8 Then, A → B ∈ T iff either A /∈ T or B ∈ T and either ¬A ∈ T
or ¬B /∈ T .

Proof. (a) (⇒): Suppose (1) A → B ∈ T and, by reductio, (2i) (A ∈ T
and B /∈ T ) or (2ii) (¬A /∈ T and ¬B ∈ T ). If we suppose (2i), given
that T is closed under MP, we get B ∈ T , which is impossible. Let us
suppose then (2ii). We will get ¬A ∈ T since T is closed under MT
(cf. Proposition 4.10). But this is also impossible.9 (b) (⇐): Suppose

8 We do not actually need our theories to be fully regular in order to prove this
lemma, but we do need them to be regular and closed under MP and MT at least.
However, being closed under MP and MT also requires being closed under dMP and
dCON for some of the logics considered in this paper.

9 Subcases (2i) and (2ii) could be also proved by means of the corresponding
axioms instead of MP and MT rules. However, since only some of the logics we are
considering in this paper validate those axioms (cf. Definition 5.1), I will use the rules
to generalize the proof as much as possible.
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(1) (A /∈ T or B ∈ T ) and (¬A ∈ T or ¬B /∈ T ). Four options should
be considered: (1i) A /∈ T & ¬A ∈ T or (1ii) B ∈ T & ¬B /∈ T or
(1iii) A /∈ T & ¬B /∈ T or (1iv) B ∈ T & ¬A ∈ T . In cases (1i) and
(1ii), we obtain A → B ∈ T by axioms A9 and A10, respectively, and
the fact that T is prime. Similarly, case (1iii) is solved by A11 and the
fact that T is a prime regular L-theory. Suppose now case (1iv) B ∈ T
and ¬A ∈ T . Moreover, let us suppose (2) A → B /∈ T by reductio.
Then, given that T is regular, we get (3) (A → B) ∨ [(¬A ∧ B) → (A →
B)] ∈ T by A12. Now, considering (2) and the fact that T is prime, (4)
(¬A ∧ B) → (A → B) ∈ T . To end, we obtain (5) A → B ∈ T , by the
hypothesis of the case (1iv) and the closure of T by MP (since T is fully
regular). However, (5) is impossible given (2).

5. Extensions of the basic logic

In the present section, eight different extensions of b4 are defined. Six
of them are the logics built upon the implicative variants of MBN4 and
ME4 (cf. §3). The remaining two are BN4 and E4 themselves. All eight
systems will be axiomatized by adding to b4 some axioms of those listed
below:

A13. (A ∧ ¬B) → [(A ∧ ¬B) → ¬(A → B)]
A14. A ∨ [¬(A → B) → A]
A15. ¬B ∨ [¬(A → B) → ¬B]
A16. [A ∧ (A → B)] → B
A17. [(A → B) ∧ ¬B] → ¬A
A18. A → [B ∨ ¬(A → B)]
A19. ¬B → [¬A ∨ ¬(A → B)]
A20. [¬(A → B) ∧ ¬A] → A
A21. ¬(A → B) → (A ∨ ¬B)
A22. [¬(A → B) ∧ B] → ¬B
A23. B → {[B ∧ ¬(A → B)] → A}
A24. (A → B) ∨ ¬(A → B)
A25. (¬A ∨ B) ∨ ¬(A → B)
A26. [(A → B) ∧ (A ∧ ¬B)] → ¬(A → B)
A27. ¬(A → B) ∨ [(A ∧ ¬B) → ¬(A → B)]
A28. {[¬(A → B) ∧ ¬A] → ¬B} ∨ ¬B
A29. {[¬(A → B) ∧ B] → A} ∨ A
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Definition 5.1 (Extensions of b4). We refer by Lti (1 ¬ i ¬ 8) to the
eight extensions of b4 considered in this paper, namely, the eight logics
built upon the matrices characterized by the eight implicative tables
displayed in §3. It will be proved that the logic Lti is characterized by
the matrix Mti (1 ¬ i ¬ 8). These logics are axiomatized by adding the
following axioms to b4:

Lt1 (BN4): A13-A15
Lt2: A16-A22
Lt3: A13, A14, A17, A18, A21-A23
Lt4: A15, A16, A19-A21
Lt5 (E4): A16-A20, A22, A24-A26
Lt6: A16, A19, A20, A22, A25, A27, A28
Lt7: A13, A17, A18, A20, A22, A25, A29
Lt8: A13, A20, A22, A25, A28, A29

Next, an essential proposition about the behavior of negated condi-
tionals of Lti (1 ¬ i ¬ 8) will be proved.

Lemma 5.2 (Negated conditionals in Lti-logics). Let L be an ELti-logic,
where Lti refers to one of the extensions of b4 displayed in Definition 5.1
and let T be a prime and fully regular L-theory. We have:

ELt1-logics: ¬(A → B) ∈ T iff A ∈ T & ¬B ∈ T .

ELt2-logics: ¬(A → B) ∈ T iff (A ∈ T & B /∈ T ) or (¬A /∈ T & ¬B ∈ T ) or
(A ∈ T & ¬B ∈ T ).

ELt3-logics: ¬(A → B) ∈ T iff (A ∈ T & B /∈ T ) or (A ∈ T & ¬B ∈ T ).

ELt4-logics: ¬(A → B) ∈ T iff (¬A /∈ T & ¬B ∈ T ) or (A ∈ T & ¬B ∈ T ).

ELt5-logics: ¬(A → B) ∈ T iff (A ∈ T or ¬A /∈ T ) & (B /∈ T or ¬B ∈ T ).

ELt6-logics: ¬(A → B) ∈ T iff (¬A /∈ T & B /∈ T ) or (A ∈ T & ¬B ∈ T ) or
(¬A /∈ T & ¬B ∈ T ).

ELt7-logics: ¬(A → B) ∈ T iff (A ∈ T & B /∈ T ) or (¬A /∈ T & B /∈ T ) or
(A ∈ T & ¬B ∈ T ).

ELt8-logics: ¬(A → B) ∈ T iff (¬A /∈ T & B /∈ T ) or (A ∈ T & ¬B ∈ T ).

Proof. This proof is similar to that of Lemma 4.11.10 Therefore, it
suffices to prove one case as example and provide a brief outline for the
others. Let us prove the case of ELt6-logics.

10 A couple of axioms from the list above are not used in this proof: A16 and
A17 (i.e., modus ponens and modus tollens axioms). However, those axioms could
have been used in the proof of Lemma 4.11 (instead of their corresponding rules) for
those Lti-logics which validate them, as it was already mentioned in that Lemma.
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(a) (⇒): Suppose (1) ¬(A → B) ∈ T and, for reductio, (2) (¬A ∈ T
or B ∈ T ) & (A /∈ T or ¬B /∈ T ) & (¬A ∈ T or ¬B /∈ T ). There are 8
subcases to consider:

(2a) ¬A ∈ T & A /∈ T & ¬A ∈ T
(2b) ¬A ∈ T & ¬B /∈ T & ¬A ∈ T
(2c) ¬A ∈ T & A /∈ T & ¬B /∈ T
(2d) ¬A ∈ T & ¬B /∈ T & ¬B /∈ T
(2e) B ∈ T & A /∈ T & ¬A ∈ T
(2f) B ∈ T & A /∈ T & ¬B /∈ T
(2g) B ∈ T & ¬B /∈ T & ¬A ∈ T
(2h) B ∈ T & ¬B /∈ T & ¬B /∈ T
Let us take subcase (2a): Given (1) ¬(A → B) ∈ T and the fact that

T is closed under adjunction, (3) ¬(A → B) ∧ ¬A ∈ T . Then, by A20
([¬(A → B) ∧ ¬A] → A), we get (4) A ∈ T . Thus, a contradiction arises
between subcase (2a) and (4). Let us now take subcase (2b): By A28
([(¬(A → B)∧¬A) → ¬B]∨¬B), the fact that T is a regular and prime
theory and subcase (2b) (¬B /∈ T ), we get (¬(A → B)∧¬A) → ¬B ∈ T .
Finally, contradicting (2b), we have ¬B ∈ T given (1), (2b) (¬A ∈ T )
and the fact that T is closed under MP. On the other hand, subcases
(2c) and (2e) can be solved by A20 similarly to (2a); and subcase (2d)
by A28 like subcase (2b). Now, let us take subcase (2f): given B ∈ T ,
the fact that T is closed under adjunction and (1) ¬(A → B) ∈ T , we
have (5) ¬(A → B) ∧ B ∈ T . Then, by A22 ([¬(A → B) ∧ B] → ¬B),
(6) ¬B ∈ T . However, (6) contradicts (2f). The rest of the subcases
(i.e., (2g) and (2h)) can also be solved using A22 in a similar way.

(b) (⇐): Suppose the following three alternatives (1i) ¬A /∈ T & B /∈
T or (1ii) A ∈ T & ¬B ∈ T or (1iii) ¬A /∈ T & ¬B ∈ T . We have to
derive ¬(A → B) ∈ T from each of them. Let us suppose (1i). We get
(2) ¬A ∨ B /∈ T since T is prime. Given A25 ((¬A ∨ B) ∨ ¬(A → B))
and the fact that T is regular, (3) (¬A ∨ B) ∨ ¬(A → B) ∈ T . And
finally, by (2), (3) and the primeness of T , ¬(A → B) ∈ T . Now, let
us suppose subcase (1ii) and by reductio (4) ¬(A → B) /∈ T . By A27,
(5) ¬(A → B) ∨ [(A ∧ ¬B) → ¬(A → B)] ∈ T (T is regular). Thus,
(6) (A ∧ ¬B) → ¬(A → B) ∈ T , given (4), (5) and the primeness of T .
Finally, (7) ¬(A → B) ∈ T due to the fact that T is closed under MP
and the subcase (1ii) A ∧ ¬B ∈ T . However, (7) contradicts (4). Lastly,
let us suppose subcase (1iii). By A19 (¬B → [¬A ∨ ¬(A → B)]) and
(1iii) ¬B ∈ T , we get (8) ¬A ∨ ¬(A → B) ∈ T . Given that T is prime
and (1iii) ¬A /∈ T , we have (9) ¬(A → B) ∈ T .
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I will provide now a brief outline of the proof for the rest of the
ELti-logics (1 ¬ i ¬ 8) considered.

ELt1-logics. For (⇒) we can use A14 and A15. As for (⇐), A13
could be used.

ELt2-logics. (⇒) by A20, A21 and A22; (⇐) by A18, A19 and the
fact that T is closed under CTE.

ELt3-logics. (⇒) by A14 and A21-A23; (⇐) by A13 and A18.
ELt4-logics. (⇒) by A15, A20 and A21; (⇐) by A19 and the fact

that T is closed under CTE.
ELt5-logics. (⇒) by A20 and A22; (⇐) by A18, A19, A24-A26.
ELt7-logics. (⇒) by A20, A22 and A29; (⇐) by A13, A18, A25.
ELt8-logics. (⇒) by A20, A22, A28 and A29; (⇐) by A13 and A25.

6. Belnap-Dunn semantics for the Lti-logics

In this section, a Belnap-Dunn semantics for the Lti-logics is developed.
I start by defining the notions of Lti-models, Lti-consequence and Lti-
validity.

Definition 6.1 (Lti-models). An Lti-model is a structure 〈K4, I〉, where
(i) K4 = {{T}, {F}, {T, F}, ∅} and (ii) I is an Lti-interpretation from F
to K4 defined according to the following conditions for all p ∈ P and A,
B ∈ F : (1) I(p) ∈ K4; (2a) T ∈ I(¬A) iff F ∈ I(A); (2b) F ∈ I(¬A) iff
T ∈ I(A); (3a) T ∈ I(A∧B) iff T ∈ I(A) & T ∈ I(B); (3b) F ∈ I(A∧B)
iff F ∈ I(A) or F ∈ I(B); (4a) T ∈ I(A ∨ B) iff T ∈ I(A) or T ∈ I(B);
(4b) F ∈ I(A ∨ B) iff F ∈ I(A) & F ∈ I(B); (5a) T ∈ I(A → B) iff
(T /∈ I(A) or T ∈ I(B)) & (F ∈ I(A) or F /∈ I(B)). Clause (5b) for
each one of the Lti-models is as follows:

Lt1-models: (5b) F ∈ I(A → B) iff T ∈ I(A) & F ∈ I(B).
Lt2-models: (5b) F ∈ I(A → B) iff (T ∈ I(A) & T /∈ I(B)) or

(F /∈ I(A) & F ∈ I(B)) or (T ∈ I(A) & F ∈ I(B)).
Lt3-models: (5b) F ∈ I(A → B) iff (T ∈ I(A) & T /∈ I(B)) or

(T ∈ I(A) & F ∈ I(B)).
Lt4-models: (5b) F ∈ I(A → B) iff (F /∈ I(A) & F ∈ I(B)) or

(T ∈ I(A) & F ∈ I(B)).
Lt5-models: (5b) F ∈ I(A → B) iff (T ∈ I(A) or F /∈ I(A)) &

(T /∈ I(B) or F ∈ I(B)).
Lt6-models: (5b) F ∈ I(A → B) iff (F /∈ I(A) & T /∈ I(B)) or

(T ∈ I(A) & F ∈ I(B)) or (F /∈ I(A) & F ∈ I(B)).
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Lt7-models: (5b) F ∈ I(A → B) iff (T ∈ I(A) & T /∈ I(B)) or
(F /∈ I(A) & T /∈ I(B)) or (T ∈ I(A) & F ∈ I(B)).

Lt8-models: (5b) F ∈ I(A → B) iff (F /∈ I(A) & T /∈ I(B)) or
(T ∈ I(A) & F ∈ I(B)).

Definition 6.2 (Lti-consequence, Lti-validity). Let M be an Lti-model
(1 ¬ i ¬ 8). For any set of wffs Γ and wff A, Γ �M A (A is a consequence
of Γ in the Lti-model M) iff T ∈ I(A) whenever T ∈ I(Γ ) [T ∈ I(Γ ) iff
∀A ∈ Γ (T ∈ I(A)); F ∈ I(Γ ) iff ∃A ∈ Γ (F ∈ I(A))]. Then, Γ �Lti A (A
is a consequence of Γ in Lti-semantics) iff Γ �M A for each Lti-model
M . In particular, �Lti A (A is valid in Lti-semantics) iff �M A for each
Lti-model M (i.e., iff T ∈ I(A) for each Lti-model M). (By �Lti we shall
refer to the relation just defined.)

The following proposition proves that consequence relations �Mti (cf.
Definition 2.5 and Proposition 3.2) and �Lti (cf. Definition 6.2) are co-
extensive. Then, the soundness theorem will follow immediately.

Proposition 6.3 (Coextensiveness of �Mti and �Lti). For any i (1 ¬
i ¬ 8), set of wffs Γ and wff A, Γ �Mti A iff Γ �Lti A. In particular,
�Mti A iff �Lti A.

Proof. For any i (1 ¬ i ¬ 8), let I be an Mti-interpretation. Then,
define the Lti-interpretation I ′ corresponding to I as follows: for each
propositional variable p set

1. I ′(p) = {T} iff I(p) = 3;
2. I ′(p) = {T, F} iff I(p) = 2;
3. I ′(p) = ∅ iff I(p) = 1;
4. I ′(p) = {F} iff I(p) = 0.

I ′ interprets complex formulas according to clauses (2a)-(5b) (Definition
6.1). Then, by an easy induction we immediately have, for any wff A:
(a) T ∈ I ′(A) iff I(A) = 3 or I(A) = 2; and (b) F ∈ I ′(A) iff I(A) = 0
or I(A) = 2. In general, for any set of wffs Γ , we have: (a) T ∈ I ′(Γ ) iff
I(Γ ) = 3 or I(Γ ) = 2; and (b) F ∈ I ′(Γ ) iff I(Γ ) = 0 or I(Γ ) = 2.

On the other hand, given a Lti-interpretation I ′, the Mti-interpreta-
tion I corresponding to I ′ can be defined in a similar way with analogous
results.

Being the latter stated, the proof follows easily by Proposition 3.2
and Definitions 2.5, 2.6 and 6.2.
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Now, soundness is proved.

Theorem 6.4 (Soundness of Lti w.r.t. �Mti and �Lti). For any i (1 ¬
i ¬ 8), any set of wffs Γ and any A ∈ F , if Γ ⊢Lti A, then (1) Γ �Mti A
and (2) Γ �Lti A.

Proof. (1) Given one of the considered Lti-logics, it is easy to check
that the rules preserve Mti-validity, whereas the axioms of Lti are as-
signed either 3 or 2 by any Mti-interpretation I. Therefore, if Γ ⊢Lti A,
then Γ �Mti A. As for (2), it is immediate given (1) and Proposition 6.3.
Finally, if Γ is the empty set, the proof is similar.11

7. Extension and primeness lemmas

In the present section,we shall introduce the extension lemmas. Through-
out this section, we display a couple of definitions and some lemmas
which will be crucial points in the completeness theorem proved in the
next section. We follow the method developed in “Relevant logics and
their rivals I” [cf. 21, Chapter 4] and followed by Brady [cf. 7, pp. 24–25].
We shall omit some of those proofs since they are similar to Brady’s.12

Definitions and Lemmas throughout this section are developed in
general for extensions of the basic logic b4 (Eb4-logics). However, we
note that the class of Eb4-logics in Lemmas 7.2, 7.4 and 7.5 has to be
restricted to those logics closed under the rules that determine the full
regularity of Eb4-theories (cf. Definition 4.9). Otherwise it is possible
that the Extension Lemma is not provable for some Eb4-logic.

Firstly, we set a preliminary definition.

Definition 7.1 (Disjunctive Eb4-derivability). Let L be an Eb4-logic,
Γ and Θ be non-empty sets of wffs, then Θ is disjunctively derivable
from Γ in Eb4 (in symbols, Γ ⊢d

L Θ) iff A1 ∧ · · · ∧ An ⊢L B1 ∨ · · · ∨ Bn

for some wffs A1, . . . , An ∈ Γ and B1, . . . , Bn ∈ Θ.

The following lemma is essential in order to prove the Extension to

maximal sets lemma (see Lemma 7.4). We get it by induction on the
length of formulas (cf. p. 27 in [7] and Lemma 6.2 in [18]).

11 Cf. [12] in case a tester is needed.
12 We shall also follow Robles and Méndez’s structure and method for the exten-

sion lemmas [cf. 18, pp. 845–847].
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Lemma 7.2 (Preliminary lemma to the extension lemma). Let L be
an Eb4-logic closed under no other rules than those specified in Defini-
tion 4.9. For any wffs A, B1, . . . , Bn, if {B1, . . . , Bn} ⊢L A, then, for
any wff C, C ∨ (B1 ∧ · · · ∧ Bn) ⊢L C ∨ A.

Now, the process of extending sets of wffs to maximal sets is required.

Definition 7.3 (Maximal sets). Let L be an Eb4-logic, Γ is a L-maximal
set of wffs iff Γ 0d

L Γ (where Γ is the complement of Γ ).

Just like Lemma 9 in [7] and Lemma 6.4 in [18], we get:

Lemma 7.4 (Extension to maximal sets). Let L be an Eb4-logic closed
under no other rules than those specified in Definition 4.9, Γ and Θ sets
of wffs such that Γ 0d

L Θ. Then, there are sets of wffs Γ ′ and Θ′ such
that Γ ⊆ Γ ′, Θ ⊆ Θ′, Θ′ = Γ ′ and Γ ′ 0d

L Θ′ (i.e., Γ ′ is a L-maximal set
such that Γ ′ 0d

L Θ′).

Finally, the Primeness Lemma can now be proved.

Lemma 7.5 (Primeness). Let L be an Eb4-logic closed under no other
rules than those specified in Definition 4.9. If Γ is a L-maximal set, then
it is a fully regular prime L-theory.

Proof. The fact that Γ is a L-theory (i.e., a set of wffs closed un-
der adjunction and L-entailment) can be proved as Brady did for the
logic BN4 (cf. Lemma 8 in [7]). Now, let us prove that Γ is prime
and fully regular. (1) Γ is regular (i.e., Γ contains any theorem of L).
It is clear that, if Γ is a L-maximal set (Γ 0d

L Γ ), Γ must contain
every theorem of L. Otherwise, there would be some wff A such that
⊢L A and A /∈ Γ . Therefore, we would have A ∈ Γ and consequently,
Γ ⊢d

L Γ , contradicting the maximality of Γ . (2) Γ is fully regular (cf.
Definition 4.9). We have to prove that Γ is closed under the rules of L.
For instance, let us prove that Γ is closed under dPREF. By reductio,
suppose there are wffs A, B, C, D such that C ∨ (A → B) ∈ Γ and
C ∨ [(D → A) → (D → B)] /∈ Γ . Then, C ∨ (A → B) ⊢ C ∨ (A → B)
by A1 and, by dPREF, C ∨ (A → B) ⊢ C ∨ [(D → A) → (D → B)],
contradicting the maximality of Γ . (3) Γ is prime. If there were some
wffs A, B such that A ∨ B ∈ Γ but A /∈ Γ and B /∈ Γ , then Γ would not
be L-maximal given A1 ((A ∨ B) → (A ∨ B)).
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8. Completeness of the Lti-logics

We shall prove the completeness of the Lti-logics (1 ¬ i ¬ 8) (cf. Defini-
tion 5.1) w.r.t. both �Mti and �Lti. Completeness w.r.t. �Lti is proved
by means of a canonical model construction. Then, completeness w.r.t.
�Mti follows immediately by Proposition 6.3.

We begin by the definition of canonical Lti-models. It will be proved
that if A is not derivable from Γ in a Lti-logic, then A does not follow
from Γ in some canonical Lti-model. The concept of a canonical Lti-
model is based upon the notion of a T -interpretation.

Definition 8.1 (T -interpretations). Let L be an Lti-logic and K4 be
the set {{T}, {F}, {T, F}, ∅} as in Definition 6.1. Let T be a prime,
regular and a-consistent L-theory. Then, the function I from the set F
to K4 is defined as follows: for each propositional variable p, we set: (a)
T ∈ I(p) iff p ∈ T and (b) F ∈ I(p) iff ¬p ∈ T . Next, I assigns a member
of K4 to each formula A according to the corresponding conditions 2–5
in Definition 6.1. Then, it is said that I is a T -interpretation. (As in
Definition 6.2, T ∈ I(Γ ) iff ∀A ∈ Γ (T ∈ I(A)); F ∈ I(Γ ) iff ∃A ∈ Γ
(F ∈ I(A)).)

Definition 8.2 (Canonical Lti-models). Let L be an Lti-logic. A canon-
ical L-model is a structure (K4, IT ) where K4 is defined according to
Definition 6.1 and IT is a T -interpretation built upon a prime, regular
and a-consistent L-theory T .

Definition 8.3 (The canonical relation �IT
). Let L be an Lti-logic and

(K4, IT ) a canonical L-model. The canonical relation �IT
is defined as

follows. For any set of wffs Γ and wff A, Γ �IT
A (A is a consequence of

Γ in the canonical L-model (K4, IT )) iff T ∈ IT (A) whenever T ∈ IT (Γ ).
In particular, �IT

A (A is true in the canonical L-model (K4, IT ), iff
T ∈ IT (A).

It is clear that any canonical L-model is an L-model given Definitions
8.2 and 8.3.

Proposition 8.4 (Any canonical L-model is an L-model). Let L be an
Lti-logic and M = 〈K4, IT 〉 a canonical L-model. Then M is indeed an
L-model.

Proof. It follows immediately by Definitions 6.1, 8.2 and 8.3. (Notice
that each propositional variable –and so, each wff  can be assigned {T},
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{F}, {T, F} or ∅ since T is required to be neither complete nor consistent
in the classical sense.)

The following lemma generalizes conditions (a) and (b) in Defini-
tion 8.1 to the set F of all wffs.

Lemma 8.5 (T -interpreting the set of wffs F). Let L be an Lti-logic and
I be a T -interpretation defined on the L-theory T . For each wff A, we
have : (1) T ∈ I(A) iff A ∈ T ; (2) F ∈ I(A) iff ¬A ∈ T .

Proof. By induction on the length of A (clauses cited in points (b)-(e)
below refer to those in Definition 6.1; H.I. abbreviates “hypothesis of
induction”). (a) A is a propositional variable: by conditions (a) and (b)
in Definition 8.1. (b) A is of the form ¬B: (i) T ∈ I(¬B) iff (clause 2a)
F ∈ I(B) iff (H.I.) ¬B ∈ T . (ii) F ∈ I(¬B) iff (clause 2b) T ∈ I(B) iff
(H.I) B ∈ T iff (Lemma 4.6) ¬¬B ∈ T . (c) A is of the form B ∧ C: (i)
T ∈ I(B ∧ C) iff (clause 3a) T ∈ I(B) and T ∈ I(C) iff (H.I.) B ∈ T
and C ∈ T iff (Lemma 4.7) B ∧ C ∈ T ; (ii) F ∈ I(B ∧ C) iff (clause 3b)
F ∈ I(B) or F ∈ I(C) iff (H.I.) ¬B ∈ T or ¬C ∈ T iff (Lemma 4.7)
¬(B ∧ C) ∈ T . (d) A is of the form B ∨ C: the proof is similar to (c)
by using clauses 4a, 4b and Lemma 4.7. (e) A is of the form B → C: (i)
T ∈ I(B → C) iff (clause 5a) (T /∈ I(B) or T ∈ I(C)) and (F ∈ I(B)
or F /∈ I(C)) iff (H.I.) (B /∈ T or C ∈ T ) and (¬B ∈ T or ¬C /∈ T ) iff
(Lemma 4.11) B → C ∈ T ; (ii) A is a conditional assigned F by I. We
have to consider 8 cases. I will choose two cases as examples. The rest of
them are proved similarly. Let us take, for instance, the case of the logic
Lt3. We have F ∈ I(B → C) iff (clause 5b for Lt3-logics) (T ∈ I(B) and
T /∈ I(C)) or (T ∈ I(B) and F ∈ I(C)) iff (H.I.) (B ∈ T and C /∈ T )
or (B ∈ T and ¬C ∈ T ) iff (Lemma 5.2) ¬(B → C) ∈ T . As a second
example, let Lti be now Lt6: F ∈ I(B → C) iff (clause 5b for L6-logics)
(F /∈ I(B) and T /∈ I(C)) or (T ∈ I(B) and F ∈ I(C)) or (F /∈ I(B)
and F ∈ I(C)) iff (H.I.) (¬B /∈ T and C /∈ T ) or (B ∈ T and ¬C ∈ T )
or (¬B /∈ T and ¬C ∈ T ) iff (Lemma 5.2) ¬(B → C) ∈ T .

Next, we prove completeness. In order to do so, the notion of “set of
consequences in Lti of a given set of wffs Γ” is recalled.

Definition 8.6 (The set CnΓ [Lti]). The set of consequences in Lti of
a set of wffs Γ (in symbols CnΓ [Lti]) is defined as follows: CnΓ [Lti] =
{A | Γ ⊢Lti A}.
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Remark 8.7 (The set of consequences of Γ in Lti is a fully regular theory).
It is obvious that for any Γ , CnΓ [Lti] contains all theorems of Lti and
is closed under the rules of Lti. Consequently, it is also closed under
Lti-entailment.

Theorem 8.8 (Completeness of Lti-logics). For any i (1 ¬ i ¬ 8), any
set of wffs Γ and any wff A, (1) if Γ �Lti A, then Γ ⊢Lti A; (2) if
Γ �Mti A, then Γ ⊢Lti A.

Proof. (1) Suppose Γ 0Lti A for some set of wffs Γ and wff A. We
need to prove Γ 2Lti A. If Γ 0Lti A, then clearly we have A /∈ CnΓ [Lti].
Thus, CnΓ [Lti] 0d

Lti {A}; otherwise B1 ∧ · · · ∧ Bn ⊢Lti A for some
B1 ∧ · · · ∧ Bn ∈ CnΓ [Lti] whence A would be in CnΓ [Lti] after all.
By Lemma 7.4, there is a maximal set T such that CnΓ [Lti] ⊆ T and
A /∈ T . By Lemma 7.5, T is a fully regular prime theory. On the
other hand, given Lema 8.5, T generates a T -interpretation IT such
that T ∈ IT (Γ ) (since T ∈ IT (T ) and CnΓ [Lti] ⊆ T ) but T /∈ IT (A).
Therefore, Γ 2IT

A, by Definition 8.3 and Proposition 8.4, consequently,
Γ 2Lti A, by Definition 6.2. (2) Completeness w.r.t. �Mti is immediate
by (1) and Proposition 6.3.

9. Some facts about Lti-logics

I will investigate if some properties characteristic of relevant logics are
predicable of the Lti-logics. In particular, I will prove that no Lti-logic
(1 ¬ i ¬ 8) is a relevant logic since they lack the “variable-sharing
property” (vsp). However, they are strongly related to the family of
relevant logics since they have another related property called “quasi
relevant property” (qrp).

Definition 9.1 (Variable-sharing property –vsp). A logic L has the
“variable-sharing property” if for every theorem of L of the form A → B,
A and B share at least a propositional variable.

Proposition 9.2. Every Lti-logic (1 ¬ i ¬ 8) lacks the vsp.

Proof. Let M be the matrix determining the logic L. The proof is
immediate since, for any distinct propositional variables p and q, the wff
¬(p → p) → (q → q) is M-valid, this is, the wff is valid in any Lti-logic
[cf. 12].
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Definition 9.3 (Quasi-relevance property –qrp). A logic L has the
“quasi-relevance property” if for every theorem of L of the form A → B,
either A and B share at least a propositional variable or both ¬A and
B are also theorems of L.

Proposition 9.4. Every Lti-logic (1 ¬ i ¬ 8) has the qrp.

Proof. Let M be the matrix determining the logic L. By reductio,
suppose that there are wffs A and B which have no propositional variable
in common and such that A → B is M-valid but either ¬A or B is not.

(i) Let us suppose that ¬A is not M-valid. Then, there is an M-
interpretation I such that I(¬A) = 0 or I(¬A) = 1 (i.e., I(A) = 3 or
I(A) = 1). Now, let I ′ be exactly as I except that for each propositional
variable p in B, I ′(p) = 2. Then, clearly I ′(B) = 2 since {2} is closed
under →, ∧, ∨ and ¬, and either I ′(A) = 3 or I ′(A) = 1, since A
and B do no share propositional variables. Consequently, we get either
I ′(A → B) = 0 or I ′(A → B) = 1 (depending on i, 1 ¬ i ¬ 8; cf. Mti in
Section 3), contradicting the M-validity of the wff A → B.

(ii) Let us suppose now that B is not M-valid. Then, there is an
M-interpretation I such that I(B) = 0 or I(B) = 1. Let I ′ be exactly as
I except that for each propositional variable p in A, I ′(p) = 2. Similarly,
as in case (i), we get I ′(A) = 2 and either I ′(B) = 0 or I ′(B) = 1.
Then, I ′(A → B) = 0 or I ′(A → B) = 1, contradicting the M-validity
of A → B.

Next, I will prove that Lti-logics are paraconsistent and paracomplete
in the sense of the following definitions.

Definition 9.5 (Paraconsistent logics). Let  represent a consequence
relation (may it be defined either semantically or proof-theoretically).
Then, a logic L is paraconsistent if, for any wffs A, B, the rule Ecq (E
contradictione quodlibet) A, ¬A  B does not hold in L.

In other words, a logic is paraconsistent if theories built upon L are
not necessarily trivial when a contradiction arises.

Proposition 9.6. Every Lti-logic (1 ¬ i ¬ 8) is paraconsistent.

Proof. Let M be the matrix determining the logic L and let p and q
be distinct propositional variables. There is an M-interpretation I such
that I(p) = 2 and I(q) = 0. Therefore, {p, ¬p} 2M q, this is, Ecq does
not hold in any Lti-logic.
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Definition 9.7 (Paracomplete logics). A logic L is paracomplete if, for
some wff A, the PEM (principle of excluded middle) A ∨ ¬A does not
hold in L.

In other words, a logic is paracomplete if there are prime, fully regular
L-theories that are not complete in the sense that they lack at least both
a formula and its negation.

Proposition 9.8. Every Lti-logic (1 ¬ i ¬ 8) is paracomplete.

Proof. Let M be the matrix determining the logic L, then for any
propositional variable p there is an M-interpretation I such that I(p) = 1.
Therefore, I(p ∨ ¬p) = 1 given Definition 2.6, i.e., PEM does not hold
in any Lti-logic.

Next, I define the natural implicative expansions of Belnap and Dunn’s
logic B4 and prove that Lti-logics (1 ¬ i ¬ 8) are indeed natural im-
plicative expansions of it. First, following Robles and Méndez [19] (who
likewise follow Tomova [23]), I introduce the notion of “natural condi-
tionals” and then I will examine the case of 4-valued matrices.

Definition 9.9 (Natural conditionals). Let L be a propositional lan-
guage with → among its connectives and M be a matrix for L where the
values x and y represent the maximun and the infimum in V. Then, an
f→-function on V defines a natural conditional if the following conditions
are satisfied:

1. f→ coincides with the classical conditional when restricted to the
subset {x, y} of V;

2. f→ satisfies Modus Ponens, that is, for any a, b ∈ V, if a → b ∈ D
and a ∈ D, then b ∈ D;

3. For any a, b ∈ V, a → b ∈ D if a ¬ b.

Proposition 9.10 (Natural conditionals in 4-valued matrices). Let L
be a propositional language and M a 4-valued matrix for L, where V and
D are defined exactly as in B4 (cf. Definition 2.6). Consider the 32.768
f→-functions defined in the following general table:

→ 0 1 2 3
0 3 b1 b2 3

TI 1 c1 b3 c2 b4

2 a1 a2 b5 b6

3 0 a3 c3 3
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where ai ∈ {0, 1} (1 ¬ i ¬ 3), bj ∈ D (1 ¬ j ¬ 6) and cm ∈ V
(1 ¬ m ¬ 3). The set of functions (contained) in TI is the set of all
natural conditionals definable in M .

Proof. (1) The following cases are needed in order to fulfill clause 1 in
Definition 9.9: f→(0, 0) = 3, f→(0, 3) = 3, f→(3, 3) = 3 and f→(3, 0) =
0. (2) Regarding clause 2 in the same definition, a non-designated value
(i.e., either 0 or 1) needs to be assigned to the subsequent cases: f→(2, 0),
f→(2, 1), f→(3, 0), f→(3, 1). (3) Finally, we also need f→(0, 0) ∈ D,
f→(0, 1) ∈ D, f→(0, 2) ∈ D, f→(0, 3) ∈ D, f→(1, 1) ∈ D, f→(1, 3) ∈ D,
f→(2, 2) ∈ D, f→(2, 3) ∈ D and f→(3, 3) ∈ D for the last condition in
Definition 9.9 to be guaranteed.

Definition 9.11 (Natural implicative expansions of MB4). Consider
the matrix MB4 and let M be the result of adding any f→-function to
it. It is said that M is an implicative expansion of MB4 (cf. Defini-
tion 2.3). Then, M is a natural implicative expansion of MB4 if f→

is any of the f→-functions (defining one of the conditionals) in TI (see
Proposition 9.10).

Corollary 9.12. Each Mti (1 ¬ i ¬ 8) is a natural implicative expan-
sion of MB4.

Proof. It is obvious given that each Mti (1 ¬ i ¬ 8; cf. Section 3) is
one of the 32.768 f→-functions defined in Proposition 9.10 and therefore
all of them fulfill the requirements mentioned in Definition 9.9.

10. Conclusion

By way of conclusion, I shall make five remarks.

1. In the present paper, the class of all implicative expansions of MB4
verifying B while maintaining the conditional structure of MBN4 or ME4
was presented. This class is formed by all the Lti-logics displayed in §5,
most of which (with the obvious exception of BN4 and E4) had not been
deeply studied before13 (to the best of my knowledge) and could be seen

13 It has to be mentioned that Petrukhin and Shangin defined natural deduc-
tion systems for binary extensions of FDE from the point of view of correspondence
analysis in a recent paper [16]. More specifically, in Section 2 of that paper they
refer to the eight matrices discussed in the conclusions of [18], which are the same
ones employed to develop the Lti-logics in the present paper. Additionally, it is also
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as implicative alternatives to BN4 for situations with incomplete and
inconsistent information (in the sense explained in the introduction of
the paper). Furthermore, this work also serves as a contribution to the
previous research on possible expansions of FDE.14

2. Since the main guideline followed to axiomatize Eb4-extensions is
to maintain a common base as wide as possible, there is the chance to de-
fine all Lti-logics more conspicuously and economically than in Definition
5.1. For instance, disjunctive rules are not mandatory for all Lti-logics
to be axiomatized. As a matter of fact, the system E4 (Lt5) can be
axiomatized without any disjunctive rule (cf. [17, 18]). On their part,
BN4 (Lt1) and Lt8 only need the rule dMP (cf. [7, 17], regarding some
alternative axiomatizations of BN4). As for systems Lt2 and Lt6, just
the rules dCTE and dCON will be required, respectively. Lastly, Lt4 can
be axiomatized with both dCON and dCTE as the only disjunctive rules.

3. Let us now consider the properties proved in §9. On the one hand,
all Lti-logics are clearly related to the family of relevant logics since they
are natural implicative expansions of Routley and Meyer’s system B and
they hold the qrp (cf. Proposition 9.4). On the other hand, Lti-logics
could also be of interest among many-valued logics since they are also
implicative expansions of MB4 (which is the smallest bilattice, according
to Ginsberg; cf. [11]). Moreover, all Lti-logics are natural implicative
expansions (in the sense of Tomova) of both the logics just mentioned
[cf. 23, Corollary 9.12 of this paper].

4. Given the position of Lti-logics in the family of relevant logics,
I believe that a ternary relational semantics developed for them could
also be a useful tool to compare them to many other different logics of
said family. As a matter of fact, the systems BN4 and E4 were already
provided with such a semantics [cf. 17]. Furthermore, Brady endowed
BN4 with a 2-set-up semantics when he first develop the system in [7].
As for E4, a 2-set-up semantics was developed in [20]. It is worth men-
tioning that a reduced Routley-Meyer semantics could be more difficult
to develop for some Lti-logics due to the apparent ineliminability of
disjunctive rules [cf. 8].

worth mentioning here that J. M. Blanco has been working on the logic built upon
Mt2 (an equivalent axiomatization to Lt2) in his doctoral dissertation (written under
G. Robles’ supervision).

14 In this case, on implicative expansions of FDE which are also endowed with
a Belnap-Dunn semantics, as Omori and Wansing suggested in Section 7 and the
conclusion of [15].
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5. There are, of course, other conditional structures different from
those investigated in this paper that could also be a source of similar
interest and another line for further research.15

Acknowledgements. Work supported by the Spanish Ministry of Ed-
ucation (FPU15/02651). I would like to sincerely thank José Manuel
Méndez for useful comments on a draft version of this paper. Thanks
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