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TOWARDS A BRIDGE OVER

TWO APPROACHES IN CONNEXIVE LOGIC

Abstract. The present note aims at bridging two approaches to connexive
logic: one approach suggested by Heinrich Wansing, and another approach
suggested by Paul Egré and Guy Politzer. To this end, a variant of FDE-
based modal logic, developed by Sergei Odintsov and Heinrich Wansing, is
introduced and some basic results including soundness and completeness
results are established.
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1. Introduction

Connexive logics are characterized by having so-called Aristotle’s theses
and Boethius’ theses as derivable/valid formulas:
Aristotle’s theses ∼(A → ∼ A), ∼(∼ A → A)
Boethius’ theses (A → B) → ∼(A → ∼ B), (A → ∼ B) → ∼(A → B)
More recently, there are some discussions casting some doubts on the
very notion of connexivity [e.g., 5, 6], but in this note I will stick to the
more conservative account of connexive logic.

In what follows, I will briefly revisit two approaches in connexive
logics discussed in this note.

1.1. Background I

One of the traditions in connexive logic founded by Heinrich Wansing
captures connexivity through a nonstandard falsity condition for the
conditional. More specifically, Wansing suggests to take the condition
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of the form “if A is true then B is false” rather than the condition
of the form “A is true and B is false” as the falsity condition for the
conditional of the form “if A then B”, where truth and falsity are not
necessarily exclusive. This simple idea was first suggested in [19] in which
the connexive logic C was formulated as a variant of Nelson’s logic N4

[cf. 4, 18].1 Some later developments observed that the central idea
of Wansing does not rely on N4. Indeed, Wansing’s idea works in the
context of a four-valued logic [cf. 20], a three-valued logic [cf. 14], and
even in the context of weak relevant logics, namely the basic relevant
logic BD of Graham Priest and Richard Sylvan [cf. 13], as well as in the
context of conditional logics [cf. 7, 22].

It should be noted that as a byproduct, connexive logics formulated
à la Wansing will include the converse direction of Boethius’ theses as
valid/derivable theses. Of course, these formulas are not required for
connexive logics in general. In fact, these formulas are sometimes crit-
icized.2 However, as Priest claims in [16, p. 178], Wansing’s system is
most likely to be “one of the simplest and most natural.”

1.2. Background II

Another approach to connexivity in the literature is the one through ex-
perimental philosophy. In [15], Niki Pfeifer marked the first contribution
towards this direction with a more general aim to “extend the domain
of experimental philosophy to conditionals” [15, p. 223].3 The particular
focus is on Aristotle’s theses, and Pfeifer proposes an interpretation of
Aristotle’s theses based on coherence based probability logic and offers
a justification for Aristotle’s theses.

The present note focuses on another paper [3] by Paul Egré and Guy
Politzer who carried out an experiment related to the negation of in-
dicative conditionals.4 In particular, they consider weak conjunctive and

1 Note that in [19], not only the propositional logic C, but also the first-order
logic QC (quantified C) and the propositional modal logic CK (connexive analogue of
the modal logic K) are introduced.

2 See, e.g., [8, p. 446]. For a counter-argument by Wansing and Skurt, see [21].
3 It deserves to be highlighted that the focus in [15] is on indicative conditionals,

not subjunctive conditionals which collected the attention of the modern founder of
connexive logic, namely Richard Angell, in [1].

4 It is noted in [3] that there will be an extended version, but to the best of my
knowledge, it is not in print yet.
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conditional formulas of the form A ∧♦∼ B and A → ♦∼ B respectively,
beside the more well-discussed strong conjunctive and conditional formu-
las of the form A∧∼ B and A → ∼ B respectively, as formulas equivalent
to ∼(A → B). Many of the debates on the negation of conditionals fo-
cused on the strong forms and discussed whether the conjunctive formula
is appropriate or the conditional formula is appropriate. However, Egré
and Politzer challenge the debate by suggesting that we should also take
into account of the weak forms, not only the strong forms.

1.3. Aim

Based on these backgrounds, the general aim behind this note is to see if
we can bridge the above traditions in connexive logics. The more specific
aim of this note is to observe that the formulas considered by Egré and
Politzer can be formalized in a rather natural manner by following the
idea of Wansing to consider falsity conditions of the conditional. To this
end, we make use of a modal logic that expands the four-valued logic
N4⊥

p
(or B→

4 in the terminology of [9])5, developed by Sergei Odintsov
and Heinrich Wansing in [10].6

2. Semantics and proof theory

The languages L and Lm consist of finite sets {⊥, ∼, ∧, ∨, →} and {⊥, ∼,

∧, ∨, →,�,♦} of propositional connectives respectively and a countable
set Prop of propositional variables which we denote by p, q, etc. Further-
more, we denote by Form and Formm the set of formulas defined as usual
in L and Lm respectively. We denote a formula of both languages by A,
B, C, etc. and a set of formulas of both languages by Γ , ∆, Σ, etc.

2.1. Semantics

The following semantics is obtained by making a simple change to the
semantics for the modal logic BK of Odintsov and Wansing.

Definition 1. A WBK-model7 for the language Lm is a triple 〈W, R, V 〉,
where W is a non-empty set (of states); R is a binary relation on W ; and

5 The bottom element free fragment is known as HBe since [2].
6 See [11] for an overview of modal logics based on Belnap-Dunn logic that may

also serve well for our purposes.
7 WBK stands for weak BK.
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V : W ×Prop −→ {∅, {0}, {1}, {0, 1}} is an assignment of truth values to
state-variable pairs. Valuations V are then extended to interpretations
I to state-formula pairs by the following conditions:

• I(w, p) = V (w, p),
• 1 6∈ I(w, ⊥),
• 0 ∈ I(w, ⊥),
• 1 ∈ I(w, ∼ A) iff 0 ∈ I(w, A),
• 0 ∈ I(w, ∼ A) iff 1 ∈ I(w, A),
• 1 ∈ I(w, A ∧ B) iff 1 ∈ I(w, A) and 1 ∈ I(w, B),
• 0 ∈ I(w, A ∧ B) iff 0 ∈ I(w, A) or 0 ∈ I(w, B),
• 1 ∈ I(w, A ∨ B) iff 1 ∈ I(w, A) or 1 ∈ I(w, B),
• 0 ∈ I(w, A ∨ B) iff 0 ∈ I(w, A) and 0 ∈ I(w, B),
• 1 ∈ I(w, A → B) iff 1 6∈ I(w, A) or 1 ∈ I(w, B),
• 0 ∈ I(w, A → B) iff 1 6∈ I(w, A) or for some x ∈ W : (wRx and

0 ∈ I(x, B)),
• 1 ∈ I(w,�A) iff for all x ∈ W : (wRx only if 1 ∈ I(x, A)),
• 0 ∈ I(w,�A) iff for some x ∈ W : (wRx and 0 ∈ I(x, A)),
• 1 ∈ I(w,♦A) iff for some x ∈ W : (wRx and 1 ∈ I(x, A)),
• 0 ∈ I(w,♦A) iff for all x ∈ W : (wRx only if 0 ∈ I(x, A)).

Finally, the semantic consequence is now defined as follows: Σ |= A

iff for all WBK-models 〈W, R, I〉, and for all w ∈ W : 1 ∈ I(w, A) if
1 ∈ I(w, B) for all B ∈ Σ.

Remark 1. Consider the language L. Then, note that the extension N4⊥
p

of Nelson’s logic N4⊥ by Peirce’s law is obtained by replacing the falsity
condition for implication by the following condition.

0 ∈ I(w, A → B) iff 1 ∈ I(w, A) and 0 ∈ I(w, B).

This reflects the strong conjunctive formula in Egré and Politzer’s ter-
minology.

Moreover, Wansing’s four-valued connexive logic MC is obtained by
replacing the falsity condition for implication by the following condition.

0 ∈ I(w, A → B) iff 1 6∈ I(w, A) or 0 ∈ I(w, B).

This reflects the strong conditional formula in Egré and Politzer’s ter-
minology.
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2.2. Proof Theory

We now turn to the proof theory. Since the modal logic BK is presented
in terms of a Hilbert-style calculus, we follow the same strategy.

Definition 2. Consider the following axioms and rules, where:

• ¬A, A ↔ B and A ⇔ B

abbreviate, respectively:

• A → ⊥, (A → B) ∧ (B → A) and (A ↔ B) ∧ (∼ A ↔ ∼ B):

A → (B → A) (Ax1)

(A → (B → C)) → ((A → B) → (A → C)) (Ax2)

((A → B) → A) → A (Ax3)

(A ∧ B) → A (Ax4)

(A ∧ B) → B (Ax5)

(C → A) → ((C → B) → (C → (A ∧ B))) (Ax6)

A → (A ∨ B) (Ax7)

B → (A ∨ B) (Ax8)

(A → C) → ((B → C) → ((A ∨ B) → C)) (Ax9)

⊥ → A (Ax10)

A → ∼ ⊥ (Ax11)

∼ ∼ A ↔ A (Ax12)

∼(A ∧ B) ↔ (∼ A ∨ ∼ B) (Ax13)

∼(A ∨ B) ↔ (∼ A ∧ ∼ B) (Ax14)

∼(A → B) ↔ (A → ♦∼ B) (Ax15)

(�A ∧ �B) → �(A ∧ B) (Ax16)

�(A → A) (Ax17)

♦A ↔ ¬�¬A (Ax18)

∼�A ⇔ ♦∼ A (Ax19)

∼♦A ⇔ �∼ A (Ax20)

A A → B

B
(MP)

A → B

�A → �B
(M�)
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A → B

♦A → ♦B
(M♦)

The logic WBK is defined as the deductive closure of axioms (Ax1)–
(Ax20) under the rules (MP), (M�) and (M♦). We write Γ ⊢ A iff A

belongs to the closure of WBK ∪ Γ under (MP).

Remark 2. Consider again the language L. Then, if we eliminate ax-
ioms (Ax16)–(Ax20) together with rules (M�) and (M♦), and replace
(Ax15) by the following formula, then we obtain an axiomatization of
the extension of Nelson’s logic known as N4⊥

p
:

∼(A → B) ↔ (A ∧ ∼ B),

Moreover, if we replace (Ax15) by the following formula, then we obtain
an axiomatization of the system MC of Wansing:

∼(A → B) ↔ (A → ∼ B).

Remark 3. As one of the referees correctly pointed out, note that the
presence of � is simply for the sake of presentation, especially the ax-
iomatic proof system.

3. Soundness and completeness

As usual, the soundness part is rather straightforward. By induction on
the length of the proof we obtain:

Theorem 1 (Soundness). For Γ ∪ {A} ⊆ Form, if Γ ⊢ A then Γ |= A.

For the completeness proof, we first introduce some standard notions.

Definition 3. A set of formulas, Σ, is a prime WBK-theory iff (i)
WBK ⊆ Σ, (ii) it is closed under (MP), (iii) A ∨ B ∈ Σ implies A ∈ Σ

or B ∈ Σ and (iv) it is non-trivial, namely if A 6∈ Σ for some A.

The following lemmas are well-known, and thus the proofs are omitted.

Lemma 1. If Σ 0 A then there is a prime WBK-theory, ∆, such that

Σ ⊆ ∆ and ∆ 0 A.

Lemma 2. If Σ 0 �A then there is a prime WBK-theory, ∆, such that

Σ� ⊆ ∆ and ∆ 0 A where Σ� = {A : �A ∈ Σ}.
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Now, we are ready to prove the completeness.

Theorem 2 (Completeness). For Γ ∪{A} ⊆ Form, if Γ |= A then Γ ⊢ A.

Proof. Suppose that Γ 0 A. Then by Lemma 1, there is a Π ⊇ Γ

such that Π is a prime WBK-theory and A 6∈ Π. Define the model A =
〈X, R, I〉, where X = {∆ : ∆ is a prime WBK-theory}, ∆RΣ iff ∆� ⊆
Σ (recall that ∆� = {A : �A ∈ ∆}) and I is defined thus. For every
state, Σ and propositional parameter, p:

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ∼ p ∈ Σ

We show that this condition holds for any arbitrary formula, B:

1 ∈ I(Σ, B) iff B ∈ Σ and 0 ∈ I(Σ, B) iff ∼ B ∈ Σ (∗)

It then follows that A is a counter-model for the inference, and hence
that Γ 6|= A. The proof of (∗) is by a simultaneous induction on the
complexity of B with respect to the positive and the negative clause.

For bottom. For the positive clause, note that the semantic clause is
1 6∈ I(Σ, ⊥) and that (Ax10) together with the non-triviality of Σ gives
us ⊥ 6∈ Σ. Therefore, we obviously have 1 6∈ I(Σ, ⊥) iff ⊥ 6∈ Σ, and
so, by contraposition, the desired result is proved. For the negative
clause, we have the semantic clause 0 ∈ I(Σ, ⊥). Moreover, since Σ

is nonempty, let D be an element of Σ. In view of (Ax11), we have
⊢ D → ∼ ⊥, and this together with D ∈ Σ implies ∼ ⊥ ∈ Σ since Σ is
a prime WBK-theory. Therefore, we obtain 0 ∈ I(Σ, ⊥) iff ∼ ⊥ ∈ Σ.

For negation. We begin with the positive clause: 1 ∈ I(Σ, ∼ C) iff
0 ∈ I(Σ, C) iff ∼ C ∈ Σ (IH). The negative clause is also straightforward:
0 ∈ I(Σ, ∼ C) iff 1 ∈ I(Σ, C) iff C ∈ Σ (IH) iff ∼ ∼ C ∈ Σ (Ax12).

For necessity. We begin with the positive clause: 1 ∈ I(Σ,�C) iff for
all ∆ ∈ X : ΣR∆ only if 1 ∈ I(∆, C) iff for all ∆ ∈ X : Σ� ⊆ ∆ only if
C ∈ ∆ (IH) iff �C ∈ Σ (∗). For the last equivalence, assume �C ∈ Σ,
and that for all ∆ ∈ X : Σ� ⊆ ∆. Then, �C ∈ Σ is equivalent to
C ∈ Σ�, so we obtain C ∈ ∆, as desired. For the other direction, we use
Lemma 2. The negative clause is also straightforward: 0 ∈ I(Σ,�C) iff
for some ∆ ∈ X : (ΣR∆ and 0 ∈ I(∆, C)) iff for some ∆ ∈ X : (Σ� ⊆ ∆

and ∼ C ∈ ∆) (IH) iff ♦∼ C ∈ Σ (∗∗) iff ∼�C ∈ Σ (Ax19).
For the equivalence (∗∗), the proof runs exactly the same with the

equivalence (∗∗∗) in the positive case for possibility.
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For possibility. We begin with the positive clause: 1 ∈ I(Σ,♦C) iff for
some ∆ ∈ X : ΣR∆ and 1 ∈ I(∆, C) iff for some ∆ ∈ X : Σ� ⊆ ∆ and
C ∈ ∆ (IH) iff ♦C ∈ Σ (∗∗∗).

For the equivalence (∗∗∗), note first that we obtain the following by
the same argument for (∗) above.

�¬C ∈ Σ iff for all ∆ ∈ X := Σ� ⊆ ∆ only if C 6∈ ∆.

By taking the contraposition, and noting that Σ is a prime WBK-theory,
we obtain:

¬�¬C ∈ Σ iff for some ∆ ∈ X := Σ� ⊆ ∆ and C ∈ ∆.

Therefore, in view of (Ax18), the desired equivalence is established.
The negative clause is also straightforward: 0 ∈ I(Σ,♦C) iff for all

∆ ∈ X : ΣR∆ only if 0 ∈ I(∆, C) iff for all ∆ ∈ X : Σ� ⊆ ∆ only if
∼ C ∈ ∆ (IH) iff �∼ C ∈ Σ (∗∗∗∗) iff ∼♦C ∈ Σ (Ax20).

For the equivalence (∗∗∗∗), the proof runs exactly the same with the
equivalence (∗) in the positive case for necessity.

For disjunction. We begin with the positive clause: 1 ∈ I(Σ, C ∨ D) iff
1 ∈ I(Σ, C) or 1 ∈ I(Σ, D) iff C ∈ Σ or D ∈ Σ (IH) iff C ∨ D ∈ Σ

(since Σ is a prime theory). The negative clause is also straightforward:
0 ∈ I(Σ, C ∨ D) iff 0 ∈ I(Σ, C) and 0 ∈ I(Σ, D) iff ∼ C ∈ Σ and
∼ D ∈ Σ (IH) iff ∼ C ∧ ∼ D ∈ Σ (since Σ is a theory) iff ∼(C ∨ D) ∈ Σ

(Ax14).

For conjunction. Similar to the case for disjunction.

For implication. We begin with the positive clause: 1 ∈ I(Σ, C → D) iff
1 6∈ I(Σ, C) or 1 ∈ I(Σ, D) iff C 6∈ Σ or D ∈ Σ (IH) iff C → D ∈ Σ (⋆).

For the last equivalence (⋆), assume C → D ∈ Σ and, for reductio,
that C ∈ Σ and D 6∈ Σ. Then since Σ is a prime WBK-theory, Σ is
closed under (MP). Therefore, we have D ∈ Σ but this contradicts to
D 6∈ Σ. For the other way around, just again note that Σ is a prime
WBK-theory, and that C ∨ (C → D) ∈ Σ and D → (C → D) ∈ Σ.

As for the negative clause, it is similar to the positive case: 0 ∈
I(Σ, C → D) iff 1 6∈ I(Σ, C) or for some ∆ ∈ X : ΣR∆ and 0 ∈ I(∆, D)
iff C 6∈ Σ or for some ∆ ∈ X : Σ� ⊆ ∆ and ∼ D ∈ ∆ (IH) iff C 6∈ Σ or
♦∼ D ∈ ∆ (†) iff C → ♦∼ D ∈ Σ (‡) iff ∼(C → D) ∈ Σ (Ax15).

For the equivalences (†) and (‡), the proof runs exactly the same
with the equivalences (∗∗∗) and (⋆) in the positive cases for possibility
and implication. Thus, we obtain the desired result. ⊣
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Remark 4. Note that we may also formulate a semantics along the weak
conjunctive formula in Egré and Politzer’s terminology, and establish
soundness and completeness results. More specifically, we may replace
the falsity condition by the following condition for the semantics:

0 ∈ I(w, A → B) iff 1 ∈ I(x, A) and for some x ∈ W : 0 ∈ I(x, B).

For the proof theory, we replace the axiom (Ax15) by the following for-
mula:

∼(A → B) ↔ (A ∧ ♦∼ B).

Once these changes are made, soundness and completeness results can
be established by some obvious modifications. The details are safely left
for the interested readers.

4. Basic observations

We now turn to observe a few basic results on WBK. First, we observe
that WBK is not connexive.

Proposition 1. The following holds for WBK:

• ⊢ ∼(A → ∼ A) ↔ (A → ♦A)
• ⊢ (A → B) → ∼(A → ∼ B) iff ⊢ B → ♦B

Proof. For the first item, the proof runs as follows.

1. ∼(A → ∼ A) ↔ (A → ♦∼ ∼ A) (Ax15)
2. (A → ♦∼ ∼ A) ↔ (A → ♦A) (Ax12), (M♦)
3. ∼(A → ∼ A) ↔ (A → ♦A) 1, 2

For the second item, it suffices to prove ⊢ (A → B) → (A → ♦B) iff
⊢ B → ♦B in view of (Ax12), (Ax15) and (M♦). For the left-to-right
direction, we only need to consider the special case ⊢ (B → B) → (B →
♦B) and make use of ⊢ B → B. For the right-to-left direction, we only
need to use ⊢ (B → C) → ((A → B) → (A → C)), a thesis of classical
positive calculus. This completes the proof. ⊣

Corollary 1. WBK is not connexive.

Proof. Just take a model with one element in which the accessibility
relation is not reflexive. ⊣



562 Hitoshi Omori

However, connexivity can be characterized in a very simple manner
in view of the above proposition.

Corollary 2. The extensions of WBK are connexive iff ⊢ A → ♦A.

Note also that the following restricted form of Aristotle’s thesis is
derivable in WBK.

Corollary 3. ⊢ ♦A → ∼(A → ∼ A)

In other words, this shows that Egré-Politzer-style logics have a loose
connection to humble connexivity discussed by Kapsner in [6].

Second, even though WBK is not connexive, the system is contra-
dictory which is a general feature of connexive logics that implement
Wansing’s idea.

Proposition 2. WBK is contradictory. In particular ⊢ (A∧♦∼ A) → A

and ⊢ ∼((A ∧ ♦∼ A) → A).

Proof. The first item is obvious in view of (Ax4). For the second item,
just note that, by (Ax15), the formula is equivalent to (A ∧ ♦∼ A) →
♦∼ A which is derivable again in view of (Ax5). ⊣

Corollary 4. The paracomplete extension of WBK obtained by the

schema (A ∧ ∼ A) → B is trivial.

Remark 5. Note that the above result requires the following theses and
modus ponens:

• (A ∧ B) → A,
• (A ∧ B) → B,
• (A → ♦∼ B) → ∼(A → B).

Thus, if one is happy to defend these, then the consequence relation
needs to be paraconsistent. Of course, this is not an entirely new topic.
Indeed, in the discussion of connexive logics, there is a tradition in which
conjunction elimination is given up in pain of triviality.8

Third, we observe that one of the Wansing-style connexive logics can
be seen as a special case of Egré-Politzer-style logics.

Proposition 3. The following holds for WBK:

• ⊢ (A → ∼ B) → ∼(A → B) iff ⊢ B → ♦B

• ⊢ ∼(A → B) → (A → ∼ B) iff ⊢ ♦B → B

8 For a recent discussion, see [21].
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Proof. For the first item, the proof is very similar to the second item of
Proposition 1. For the second item, it suffices to prove ⊢ (A → ♦∼ B) →
(A → ∼ B) iff ⊢ ♦B → B in view of (Ax15), and moreover, in view of
(Ax12) and (M♦), it suffices to prove ⊢ (A → ♦B) → (A → B) iff
⊢ ♦B → B. For the left-to-right direction, we only need to consider the
special case ⊢ ((A → A) → ♦B) → ((A → A) → B) and make use of
⊢ ((A → A) → B) ↔ B. For the right-to-left direction, we only need to
use ⊢ (B → C) → ((A → B) → (A → C)), a thesis of classical positive
calculus. This completes the proof. ⊣

Corollary 5. ⊢ ∼(A → B) ↔ (A → ∼ B) iff ⊢ ♦B ↔ B. That is,

one of the Wansing-style connexive logics, namely the system MC, is

obtained iff the possibility operator is trivialized in WBK.

5. Concluding remarks

What I hope to have established in this note is that a variation of Wans-
ing’s idea, inspired by Egré and Politzer, can be smoothly formalized in
a simple setting almost for free in view of the formulation of the modal
logic BK of Odintsov and Wansing. Moreover, I observed that Egré-
Politzer-style systems can be seen as a generalization of the Wansing-
style connexive logic MC.

There are some future topics that seem to be interesting as well as
promising. I will only note two of them. First, it is interesting to see
if we can export some of the observations in this note and see if some
experiments will support connexivity or not, and if contradictoriness
gets supported or not along the suggestion made by Egré and Politzer.
Second, it is a challenging task to explore variants of WBK by having
different underlying modal logics such as those based on N4⊥, instead of
N4⊥

p
. Philosophically, this will be of some interest for those who prefer

indicative conditionals to be captured by the constructive conditional
rather than the classical material conditional. Technically, this will re-
quire some careful discussion on the relation between two accessibility
relations as in intuitionistic modal logics. I only note in relation to the
technical point that we can also think of introducing a modality on top of
the semantics of Nelson logics without any additional accessibility rela-
tion beside the one for the constructive conditional [cf. 12, 17]. This will
be more simple technically, but it remains to be discussed if the modality
so defined will be philosophically interesting in the present context.
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