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A POLY-CONNEXIVE LOGIC

Abstract. The paper introduces a variant of connexive logic in which con-

nexivity is extended from the interaction of negation with implication to

the interaction of negation also with conjunction and disjunction. The logic

is presented by two deductively equivalent methods: an axiomatic one and

a natural-deduction one. Both are shown to be complete for a four-valued

model theory.
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1. Introduction

As is well known, characteristics of Connexive Logics (see [14] for a
general survey; see also [10]) are the following (formal) theorems, which
are not theorems of classical logic. Let ‘→’ denote implication and ‘¬’ –
negation. The following theorems:

¬(ϕ → ¬ϕ) (A1)

¬(¬ϕ → ϕ) (A2)

are jointly known as Aristotle’s thesis.
In [5], the other characteristic relationships:

(ϕ → ψ) → ¬(ϕ → ¬ψ) (B1)

(ϕ → ¬ψ) → ¬(ϕ → ψ) (B2)

are attributed to the ancient philosopher and logician Boethius. For the
history of connexive logics see [6]. It is generally agreed that connexive
logics are not truth-functional, and arise from an attempt to capture
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some connection between the antecedent and the consequent of a condi-
tional.

In [8, 13, 15], a general method is proposed for obtaining connexive
logics: modifying the falsity conditions of the conditional, leading to the
interaction of the conditional and the negation generating the connexiv-
ity characteristics above.

In this paper, I apply the proposed methodology to other connectives,
conjunction and disjunction too, endowing them too with the interaction
with negation different than the classical (boolean) one. Such an inter-
action also captures connections between the arguments of the other
binary connectives, transcending their truth. By this move, I expand
the scope of connexivity from the conditional only to a more extensive
signature of connectives. Therefore, I coin the resulting logic PCON 
a poly-connexive logic.

Let me just mention that another family of logics, Relevance logics
[1], also base their conditional on a connection (“relevance”) between the
antecedent and consequent. Those logics were also expanded to include
other connectives, in this case employing sub-structurality to capture
the intended intensionality.

I leave the philosophical argument justifying such an extension of
connexivity, as well as the motivation for the specific interactions em-
bodied in PCON, to a separate discussion. Here, I only present and
study the logic itself. PCON has an axiomatisation sound and complete
for a relational model theory, as well as a deductively equivalent natural-
deduction proof system NPCON .

The following are the characteristic interactions of the binary con-
nectives with the negation:

(negi) ⊢PCON ¬(ϕ → ψ) ↔ [(ϕ → ¬ψ) ∨ (¬ϕ → ψ)]
(negc) ⊢PCON ¬(ϕ ∧ ψ) ↔ [(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)]
(negd) ⊢PCON ¬(ϕ ∨ ψ) ↔ ¬ϕ ∨ ¬ψ

Clearly, none of the above is a thesis of classical logic.
The presentation of the axiomatic definition of PCON, its relational

model theory and the soundness and completeness proofs are based on
[8], with a certain change in notation and, of course, with the required
modifications to fit the proposed logic.
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2. Axiomatic definition of PCON

The object language LPCON consists of the usual closure of a countable
set Prop of atomic propositions w.r.t. the traditional operators {¬,→,
∧,∨}. The meta-variables p and q range over atomic propositions, and
ϕ, ψ – over arbitrary propositions. Also, meta-variables Σ and ∆ denote
multi-sets of object-language formulas. As usual, ϕ ↔ ψ is defined by
(ϕ → ψ) ∧ (ψ → ϕ).

Definition 2.1 (Axiomatic definition of PCON ). The Hilbert-style ax-
iomatic definition of PCON is given by the following axiom schemes,
divided into two groups, positive axioms (as for positive propositional
intuitionistic logic), and negative axioms:

Positive axioms:

ϕ → (ψ → ϕ) (Ax1)

(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) (Ax2)

ϕ ∧ ψ → ϕ (Ax3)

ϕ ∧ ψ → ψ (Ax4)

ϕ → (ψ → ϕ ∧ ψ) (Ax5)

ϕ → ϕ ∨ ψ (Ax6)

ψ → ϕ ∨ ψ (Ax7)

((ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ) → χ)) (Ax8)

Negative axioms:

¬¬ϕ ↔ ϕ (Ax9)

¬(ϕ ∧ ψ) ↔ [(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)] (Ax10)

¬(ϕ ∨ ψ) ↔ (¬ϕ ∨ ¬ψ) (Ax11)

¬(ϕ → ψ) ↔ [(ϕ → ¬ψ) ∨ (¬ϕ → ψ)] (Ax12)

The single inference rule:

ϕ ϕ → ψ

ψ
(MP)

Notably, closure under uniform substitution is not a rule in PCON.
For a finite set Γ of formulas, derivability in PCON of ϕ from Γ ,

denote by Γ ⊢PCON ϕ, is defined as usual. The proof of the following
proposition is standard and omitted.

Proposition 2.1 (deduction theorem). Γ, ϕ ⊢PCON ψ iff Γ ⊢PCON ϕ → ψ.
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3. Models for PCON

The following relational models for PCON are obtained by suitable mod-
ifications of those in Nelson’s logic N4 [see, e.g., 4]. The formulation
follows [8].

Definition 3.1 (models for PCON ). A model for PCON is a triple
〈W,≤, V 〉, where:

• W is a non-empty set (of states),
• ≤ is a partial-order on W ,
• V : W ×Prop −→ {∅, {0}, {1}, {0, 1}} is an assignment of truth values

to pairs of states and atomic propositions with the condition that
i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for all p ∈ Prop,
w1, w2 ∈ W and i ∈ {0, 1}.

Valuations V are then extended to interpretations I to state-formula
pairs by the following conditions:

• I(w, p) = V (w, p),
• 1 ∈ I(w,¬ϕ) iff 0 ∈ I(w,ϕ),
• 0 ∈ I(w,¬ϕ) iff 1 ∈ I(w,ϕ),
• 1 ∈ I(w,ϕ ∧ ψ) iff 1 ∈ I(w,ϕ) and 1 ∈ I(w, ψ),
• 0 ∈ I(w,ϕ ∧ ψ) iff either both 1 ∈ I(w,ϕ) and 0 ∈ I(w, ψ) or both

0 ∈ I(w,ϕ) and 1 ∈ I(w, ψ).
• 1 ∈ I(w,ϕ ∨ ψ) iff 1 ∈ I(w,ϕ) or 1 ∈ I(w, ψ),
• 0 ∈ I(w,ϕ ∨ ψ) iff 0 ∈ I(w,ϕ) or 0 ∈ I(w, ψ),
• 1 ∈ I(w,ϕ → ψ) iff for all x ∈ W : if w ≤ x and 1 ∈ I(x, ϕ) then 1 ∈
I(x, ψ),

• 0 ∈ I(ϕ → ψ) iff either for all x ∈ W such that w ≤ x: if 1 ∈ I(x, ϕ)
then 0 ∈ I(x, ψ), or for all x ∈ W such that w ≤ x: if 0 ∈ I(x, ϕ) than
1 ∈ I(x, ψ).

Definition 3.2 (consequence). Σ |=PCON ϕ iff for all models 〈W,≤, I〉,
and for all w ∈ W : 1 ∈ I(w,ϕ) if 1 ∈ I(w, ψ) for all ψ ∈ Σ.

Example 3.1 (counter model to de Morgan’s laws). PCON invalidates
de Morgan’s laws. For example,

6|=PCON ¬(ϕ ∧ ψ) ↔ ¬ϕ ∨ ¬ψ

A counter-model has one w, with 0 ∈ I(w,ϕ) and 0 ∈ I(w, ψ). Therefore,
1 ∈ I(w,¬ϕ) and 1 ∈ I(w,¬ψ), implying 1 ∈ I(w,¬ϕ ∨ ¬ψ). On the
other hand, 1 /∈ I(w,¬(ϕ ∧ ψ)), since 0 ∈ I(w,¬(ϕ ∧ ψ)).



A poly-connexive logic 147

4. Soundness and completeness

Theorem 4.1 (soundness). For all Γ, ϕ: if Γ ⊢PCON ϕ then Γ |=PCON ϕ.

The proof is standard, by induction on the length of the derivation
in PCON.

For the completeness proof, first the following standard notions are
introduced [cf. 8].

Definition 4.1. LetΣ be a collection of formulas in the object language.

• Σ is deductively closed iff either Σ 0 ϕ or ϕ ∈ Σ.
• Σ is prime iff ϕ ∨ ψ ∈ Σ implies ϕ ∈ Σ or ψ ∈ Σ.
• Σ is prime deductively closed (pdc) iff Σ is both.
• Finally, Σ is non-trivial iff ϕ /∈ Σ for some ϕ.

The following two lemmas are well-known, and thus their proofs for
PCON are omitted.

Lemma 4.2. If Σ 0 ϕ then there is a non-trivial pdc ∆ such that Σ ⊆ ∆
and ∆ 0 ϕ.

Lemma 4.3. If Σ is pdc and ϕ → ψ /∈ Σ, there is a non-trivial pdc Θ
such that Σ ⊆ Θ, ϕ ∈ Θ and ψ /∈ Θ.

Theorem 4.4 (Completeness). For all Γ, ϕ:

if Σ |=PCON ϕ then Σ ⊢PCON ϕ.

Proof. The proof for the positive clauses is identical to that for the
completeness proof in [8], but thereof for the negative clauses is modified
to fit the new axioms (Ax10)–(Ax12).

One proves the contra-positive claim. Suppose that Σ 0PCON ϕ. By
Lemma 4.2, there is a pdc Π such that Γ ⊆ Π and ϕ /∈ Π. Define the
model M = 〈X,≤, I〉, where X = {∆ : ∆ is a non-trivial pdc}, ∆ ≤ Σ
iff ∆ ⊆ Σ and I is defined as follows: For every state, Σ and atomic
proposition, p

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ¬p ∈ Σ.

It is now shown that this condition extends to any formula ϕ:

1 ∈ I(Σ,ϕ) iff ϕ ∈ Σ and 0 ∈ I(Σ,ϕ) iff ¬ϕ ∈ Σ. (∗)

The modified parts in the proof of (∗) are those pertaining the negative
clauses, that now goes as follows.
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Conjunction: Assume 0 ∈ I(Σ,χ ∧ ξ), and distinguish between two
cases, in accordance with (Ax10).

(∗1): 1 ∈ I(w,ϕ) and 0 ∈ I(w, ψ). By the induction hypothesis, (∗1)
holds iff χ ∈ ∆ and ¬ξ ∈ ∆. Because ∆ is deductively closed, χ∧¬ξ ∈ ∆.
By (Ax10), ¬(χ ∧ ξ) ∈ ∆.

(∗2): 0 ∈ I(w,ϕ) and 1 ∈ I(w, ψ). Similar.
Disjunction: similar to conjunction (using (Ax11)) and omitted.
Implication: Assume 0 ∈ I(Σ,χ → ξ), and distinguish between two

cases, in accordance with (Ax12).
(∗1): For all ∆ such that Σ ⊆ ∆, if 1 ∈ I(∆,χ), then 0 ∈ I(∆, ξ).

By the induction hypothesis, (∗1) holds iff For all ∆ such that Σ ⊆ ∆,
if χ ∈ ∆, then ¬ξ ∈ ∆. The latter holds iff χ → ¬ξ ∈ ∆, and by (Ax12),
iff ¬(χ → ξ) ∈ ∆.

(∗2): For all ∆ such that Σ ⊆ ∆, if 0 ∈ I(∆,χ) then 1 ∈ I(∆, ξ). By
the induction hypothesis, (∗2) holds iff For all ∆ such that Σ ⊆ ∆, if
¬χ ∈ ∆, then ξ ∈ ∆. The latter holds iff ¬χ → ξ ∈ ∆, and by (Ax12),
iff ¬(χ → ξ) ∈ ∆.

5. A natural-deduction system for PCON

In this section, I introduce a natural-deduction proof-system NPCON for
PCON and show its deductive equivalence to the axiomatic presentation
of PCON. This establishes the soundness and completeness of NPCON .

5.1. The rules of NPCON

The system draws on ideas from [2], where negation was split. NPCON

is presented in figures 1 and 2. The first figure presents the standard
positive rules. The novel part, the negative rules (corresponding to fal-
sification) are presented in Figure 2.

Remark (on the rules). Conjunction: The rules express the following
equivalence, induced by the falsification condition of ¬(ϕ ∧ ψ):

¬(ϕ ∧ ψ) ≡ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)

Disjunction: Here the equivalence induced by the falsification condition
of ¬(ϕ ∨ ψ), reflected by the rules, is:

¬(ϕ ∨ ψ) ≡ ¬ϕ ∨ ¬ψ
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[ϕ]i
...
ψ

ϕ → ψ
(→ Ii)

ϕ → ψ ϕ

ψ
(→E)

ϕ ψ

ϕ ∧ ψ
(∧I) ϕ ∧ ψ

ϕ (∧E1)
ϕ ∧ ψ

ψ
(∧E2)

ϕ

ϕ ∨ ψ
(∨I1)

ψ

ϕ ∨ ψ
(∨I2) ϕ ∨ ψ

[ϕ]i
...
χ

[ψ]j
...
χ

χ (∨Ei,j)

Figure 1. The positive fragment of NPCON

ϕ ¬ψ

¬(ϕ ∧ ψ)
(¬∧I1)

¬ϕ ψ

¬(ϕ ∧ ψ)
(¬∧I2) ¬(ϕ ∧ ψ)

[ϕ,¬ψ]i
...
χ

[¬ϕ, ψ]j
...
χ

χ (¬∧Ei,j)

¬ϕ

¬(ϕ ∨ ψ)
(¬∨I1)

¬ψ

¬(ϕ ∨ ψ)
(¬∨I2) ¬(ϕ ∨ ψ)

[¬ϕ]i
...
χ

[¬ψ]j
...
χ

χ (¬∨Ei,j)

[ϕ]i
...

¬ψ

¬(ϕ → ψ)
(¬→Ii

1)

[¬ϕ]i
...
ψ

¬(ϕ → ψ)
(¬→Ii

2)

¬(ϕ → ψ)







ϕ
...

¬ψ







i

...
χ







¬ϕ
...
ψ







j

...
χ

χ (¬→Ei,j)
¬¬ϕ
ϕ (dne)

ϕ
¬¬ϕ (dni)

Figure 2. The negative fragment of NPCON
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Implication: The equivalence induced by the falsification condition of
¬(ϕ → ψ) is

¬(ϕ → ψ) ≡ (ϕ → ¬ψ) ∨ (¬ϕ → ψ)

There is a certain complication in the structure of the (E)-rule, that has
premises of the form discharged sub-derivations (that can be thought of
as discharged rules). This complication arises due to the fact that there
are two (I)-rules, both of which discharge assumptions. See [7, 11, 12]
for the need of such rules and the circumstances leading to them.

Tree-shaped derivations are defined recursively, almost as usual. The
only difference is that an assumed rule may be applied, and discharged
immediately after application, in addition to the applications of primi-
tive rules. Examples of derivations are presented below, in the proof of
deductive equivalence of the axiomatic presentation of PCON and its
ND-presentation, NPCON .

Example 5.1 (Aristotle’s theses).

[ϕ]1
¬¬ϕ (dni)

¬(ϕ → ¬ϕ)
(¬→I1

1)

[¬¬ϕ]1
ϕ (dne)

¬(¬ϕ → ϕ)
(¬→I1

2)

Example 5.2 (Boethius’ theses).

[ϕ → ψ]1 [ϕ]2
ψ

(→E)

¬¬ψ
(dni)

¬(ϕ → ¬ψ)
(¬→I2

1)

(ϕ → ψ) → ¬(ϕ → ¬ψ)
(→I1)

[ϕ → ¬ψ]1 [ϕ]2
¬ψ

(→E)

¬(ϕ → ψ)
(¬→I2

1)

(ϕ → ¬ψ) → ¬(ϕ → ψ)
(→I1)

(1)

Note that those are not theses in N .

5.2. Deductive equivalence of PCON and NPCON

Theorem 5.1. Γ ⊢PCON ϕ iff Γ ⊢NPCON
ϕ.

Proof. The part of the proof concerning the positive fragment is stan-
dard and omitted. I show the proof for the negative fragment.

Assume Γ ⊢NPCON
ϕ. To show that Γ ⊢PCON ϕ, it suffices to show the

derivability in NPCON of the negative axioms.
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For (Ax9): The derivations are:

[ϕ]1
¬¬ϕ (dni)

ϕ → ¬¬ϕ (¬→I1
1)

[¬¬ϕ]1
ϕ (dne)

¬¬ϕ → ϕ (¬→I1
2)

For (Ax10): The derivations are in Figure 3.
For (Ax11): The derivations are

[¬ϕ ∨ ¬ψ]1

[¬ϕ]2

¬(ϕ ∨ ψ)
(¬∨I1)

[¬ψ]3

¬(ϕ ∨ ψ)
(¬∨I2)

¬(ϕ ∨ ψ)
(∨E2,3)

(¬ϕ ∨ ¬ψ) → ¬(ϕ ∨ ψ)
(→I1)

and

[¬(ϕ ∨ ψ)]1

[¬ϕ]2
¬ϕ ∨ ¬ψ

(∨I1)
[¬ψ]3

¬ϕ ∨ ¬ψ
(∨I2)

(¬ϕ ∨ ¬ψ)
(¬∨E2,3)

¬(ϕ ∨ ψ) → (¬ϕ ∨ ¬ψ)
(→I1)

For (Ax12): The derivations are in Figure 4.
Assume Γ ⊢NPCON

ϕ. The proof that Γ ⊢PCON ϕ proceeds by in-
duction on the NPCON -derivation, analysing the last NPCON-rule applied.
Again, only the cases of negative rules are shown.

For (¬∧I1): The premises for this last application (¬∧I) are (1)
Γ ⊢PCON ϕ and (2) Γ ⊢PCON ¬ψ. By the induction hypothesis, (3)
Γ ⊢PCON ϕ and (4) Γ ⊢PCON ψ. By (Ax5) and twice (MP) we get
(6) Γ ⊢PCON ϕ ∧ ¬ψ. By applying (∨I1) to (6), we get (7) Γ ⊢PCON

(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ). By applying (MP) to (7) and (Ax10) we get the
required Γ ⊢PCON ¬(ϕ ∧ ψ).

For (¬∧I2): Similar.
For (¬∧E): The premises of the rule are ¬(ϕ ∧ ψ), and two sub-

derivations of χ, one from ϕ and ¬ψ and the other from ¬ϕ, ψ. By the
induction hypothesis, (1) Γ ⊢PCON ¬(ϕ ∧ ψ), (2) Γ, ϕ,¬ψ ⊢PCON χ and
(3) Γ,¬ϕ, ψ ⊢PCON χ. By applying (MP) to (1) and (Ax10), we get (4)
Γ ⊢PCON (ϕ∧¬ψ)∨(¬ϕ∧ψ). From (2) and (3) we get, using the deduction
theorem, (5) Γ ⊢PCON ϕ ∧ ¬ψ → χ and (6) Γ ⊢PCON ¬ϕ ∧ ψ → χ. Using
(Ax8), we get Γ ⊢PCON ((ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)) → χ. By applying (MP)
to (4) and (8), we get the required Γ ⊢PCON χ.

For (¬→I1): The premise of this rule is a sub-derivation of ¬ψ from
ϕ. By the induction hypothesis, (1) Γ, ϕ ⊢PCON ¬ψ. By the deduction
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[ϕ ∧ ¬ψ]1
ϕ (∧E1)
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¬ψ
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(¬∨I1)

[¬ϕ ∧ ψ]1
¬ϕ (∧E1)
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ψ
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¬(ϕ ∧ ψ)
(¬∨I2)

¬(ϕ ∧ ψ)
(∨E1,2)
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[(ϕ → ¬ψ) ∨ (¬ϕ → ψ)]1

[ϕ → ¬ψ]2 [ϕ]3
¬ψ

(→ E)

¬(ϕ → ψ)
(¬ → I3

1 )

[¬ϕ → ψ]4 [¬ϕ]5
ψ

(→ E)

¬(ϕ → ψ)
(¬ → I5

2 )

¬(ϕ → ψ)
(∨E2,4)

[(ϕ → ¬ψ) ∨ (¬ϕ → ψ)] → ¬(ϕ → ψ)
(→ I1)

For the second derivation, note the applications of assumed rules, denoted as ∗1 and ∗2.

[¬(ϕ → ψ)]1

[ϕ]2

¬ψ
(∗1)

ϕ → ¬ψ
(→I2)

(ϕ → ¬ψ) ∨ (¬ϕ → ψ)
(∨I1)

[¬ϕ]3

ψ
(∗2)

¬ϕ → ψ
(→I3)

(ϕ → ¬ψ) ∨ (¬ϕ → ψ)
(∨I2)

[(ϕ → ¬ψ) ∨ (¬ϕ → ψ)]
(¬→E∗1,∗2)

¬(ϕ → ψ) → [(ϕ → ¬ψ) ∨ (¬ϕ → ψ)]
(→I1)

F
ig

u
re

4
.

T
h
e

d
eriva

tio
n
s

fo
r

(A
x
1
0
)



154 Nissim Francez

theorem, (2) Γ ⊢PCON ϕ → ¬ψ. By (Ax6), we get (3) Γ ⊢PCON (ϕ →
¬ψ) ∨ (¬ϕ → ψ). By applying (MP) to (3) and (Ax12), we get the
desired Γ ⊢PCON ¬(ϕ → ψ).

For (¬→I2): Similar.
For (¬→E): The premises of the rule are ¬(ϕ → ψ), and two

sub-derivations of χ from the assumption-rules Γ, ϕ ⊢NPCON
¬ψ and

Γ,¬ϕ ⊢NPCON
ψ. By the induction hypothesis, (1) Γ ⊢PCON ¬(ϕ → ψ),

(2) Γ ⊢PCON (ϕ → ¬ψ) → χ and (3) Γ ⊢PCON (¬ϕ → ψ) → χ. By apply-
ing (MP) to (1) and (Ax12), we get (4) Γ ⊢PCON (ϕ → ¬ψ) ∨ (¬ϕ → ψ).
By applying (MP) twice to (Ax8), (2) and (3), we get (5) Γ ⊢PCON ((ϕ →
¬ψ) ∨ (¬ϕ → ψ)) → χ. By applying (MP) to (4) and (5) we get the
required Γ ⊢PCON χ.

For (dni) and (dne): Obvious, by (Ax9).

6. Some additional properties of PCON

In this section I discuss properties of PCON that may look “strange”
when viewed through the traditional bivalent view.

6.1. Inconsistency

Recall that a logic L is inconsistent iff for some ϕ: ⊢L ϕ and ⊢L ¬ϕ.

Proposition 6.1 (inconsistency of PCON ). PCON is inconsistent.

Thus, PCON shares inconsistency with Wansing’s C and Omori’s N ,
a byproduct of Wansing’s falsity condition for the conditional, together
with some other properties. I will consider several proofs of Proposi-
tion 6.1, each pointing to a different source of this inconsistency.

The first proof of Proposition 6.1.

⊢PCON ϕ → (ϕ → ϕ) and ⊢PCON ¬(ϕ → (ϕ → ϕ))

The derivations are:

[ϕ]1
ϕ → ϕ (→I1)

ϕ → (ϕ → ϕ)
(→I2)

[ϕ]1
ϕ → ϕ (→I1)

¬(ϕ → (ϕ → ϕ))
(¬→I2

1)

Note that both derivations vacuously discharge assumptions (indexed by
2): ϕ in the first, ¬ϕ in the second.
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I have no firm opinion about the need to avoid inconsistency alto-
gether in connexive logics. Still, a way to avoid these derivations is to
abandon vacuous discharge in NPCON , in parallel of omitting (Ax1) in the
axiomatic presentation. This is tantamount of taking as the base logic a
variant of relevant logic instead of intuitionistic logic. This makes a lot
of sense as far as the natural-language-driven motivation is concerned.
I have not taken this move here merely to stay compatible (and com-
parable) to Wansing’s C and Omori’s N . Indeed, there is a connexive
extension of the relevance logic BD in [9]. For a connexive extension of
a stronger relevance logic R [see, e.g., 1, 3].

The second proof of Proposition 6.1. ⊢NPCON
ϕ ∧ ¬ϕ → ϕ and

⊢NPCON
¬(ϕ ∧ ¬ϕ → ϕ). The derivations are:

[ϕ ∧ ¬ϕ]1
ϕ (∧E1)

ϕ ∧ ¬ϕ → ϕ (→I1)

[ϕ ∧ ¬ϕ]1
¬ϕ (∧E2)

¬(ϕ ∧ ¬ϕ → ϕ)
(¬→I1

2)

The third proof of Proposition 6.1. Notice that ⊢PCON ϕ → ϕ ∨
¬ϕ and ⊢PCON ¬(ϕ → ϕ ∨ ¬ϕ). The derivations are:

[ϕ]1
ϕ ∨ ¬ϕ (∨I)

ϕ → ϕ ∨ ¬ϕ (→I1)

[¬ϕ]1
ϕ ∨ ¬ϕ (∨I)

¬(ϕ → ϕ ∨ ¬ϕ)
(¬→I2)

6.2. Conclusion

In this paper, I have presented a variant, PCON, of connexive logic that
extends the notion of connexive logic from its traditional confinement to
implication (as related to negation) to other connectives, also relating
them to negation is a non-traditional way. The presentation is in terms of
two equivalent proof-systems: an axiomatic one; and a natural-deduction
one, sound and complete w.r.t. a 4-valued model theory.

The issue of inconsistency, seemingly occurring in a variety of con-
nexive logics, is still not fully understood. It certainly does not play a
deductive role similar to its role in bivalent logics such as classical logic
or intuitionistic logic. Some general strategies for avoiding inconsistency
in connexive logics, if considered undesirable, are still lacking.

Acknowledgements. I thank Hitoshi Omori for several insightful discus-
sion regarding PCON and related issues.



156 Nissim Francez

References

[1] Anderson, A. R., and N. Belnap Jr., Entailment, vol. 1, Princeton Univer-
sity Press, N.J., 1975.

[2] Francez, N., “Natural-deduction for two connexive logics”, IfCoLog Jour-

nal of Logics and their Application 3, 3 (2016): 479–504. Special issue on
Connexive Logic.

[3] Francez, N., “Relevant connexive logic”, Logic and Logical Philosophy 28,
3 (2019): 409–425. DOI: 10.12775/LLP.2019.007

[4] Kamide, N., and H. Wansing, Proof Theory of N4-related Paraconsistent

Logics, College Publications, London, 2015. Studies in Logic, vol. 54.

[5] Kneale, W., and M. Kneale, The Development of Logic, Duckworth, Lon-
don, 1962.

[6] McCall, S., “A history of connexivity”, pages 415–449 in D. M. Gabbay,
J. F. Pelletier and J. Woods (eds.), Handbook of the History of Logic,
vol. 11, ‘Logic: a history of its central concepts”, Elsevier, Amsterdam,
2012. DOI: 10.1016/B978-0-444-52937-4.50008-3

[7] Olkhovikov, G. K., and P. Schroeder-Heister, “On flattening general elim-
ination rules”, Review of Symbolic Logic 7, 1 (2014). DOI: 10.1017/

S1755020313000385

[8] Omori, H., “A note on francez’ half-connexive formula”, IFCoLog Journal

of Logic and their Applications 3, 3 (2016): 505–512. Special issue on
Connexive Logic.

[9] Hitoshi., “A simple connexive extension of the basic relevant logic BD”,
IFCoLog Journal of Logic and their Applications 3, 3 (2016): 467–b78.
Special issue on Connexive Logic.

[10] Priest, G., “Negation as cancellation, and connexive logic”, Topoi 18, 2
(1999): 141–148. DOI: 10.1023/A:1006294205280

[11] Schroeder-Heister, P., “A natural extension of natural deduction”, Journal

of Symbolic Logic 49 (1984): 1284–1300. DOI: 10.2307/2274279

[12] Schroeder-Heister, P., “The calculus of higher-level rules, propositional
quantification, and the foundational approach to proof-theoretic har-
mony”, Studia Logica 102, 6 (2014): 1185–1216. Special issue: “Gentzen’s
and Jaśkowski’s heritage: 80 Years of natural deduction and sequent cal-
culi”, A. Indrzejczak (ed.). DOI: 10.1007/s11225-014-9562-3

[13] Wansing, H., “Connexive modal logic”, in R. Schmidt, I. Pratt-Hartmann,
M. Reynolds and H. Wansing (eds.), Advances in Modal Logic, vol. 5,
College Publications, King’s College, London, 2005.

http://dx.doi.org/10.12775/LLP.2019.007
http://dx.doi.org/10.1016/B978-0-444-52937-4.50008-3
https://doi.org/10.1017/S1755020313000385
https://doi.org/10.1017/S1755020313000385
http://dx.doi.org/10.1023/A:1006294205280
https://doi.org/10.2307/2274279
http://dx.doi.org/10.1007/s11225-014-9562-3


A poly-connexive logic 157

[14] Wansing, H., “Connexive logic”, in E. N. Zalta (ed.), The Stanford Ency-

clopedia of Philosophy. Fall 2014 edition, 2014. http://plato.stanford.

edu/archives/fall2014/entries/logic-connexive/

[15] Wansing, H., and M. Unterhuber, “Connexive conditional logic. Part I”,
Logic and Logical Philosophy 28, 3 (2019): 567–610. DOI: 10.12775/LLP.

2018.018

Nissim Francez

the Technion-IIT

Computer Science Department

Haifa, Israel

francez@cs.technion.ac.il

http://plato.stanford.edu/archives/fall2014/entries/logic-connexive/
http://plato.stanford.edu/archives/fall2014/entries/logic-connexive/
http://dx.doi.org/10.12775/LLP.2018.018
http://dx.doi.org/10.12775/LLP.2018.018

	Introduction
	Axiomatic definition of PCON
	Models for PCON
	Soundness and completeness
	A natural-deduction system for PCON
	The rules of NPCON
	Deductive equivalence of PCON and NPCON

	Some additional properties of PCON
	Inconsistency
	Conclusion
	References


