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CONNEXIVE CONDITIONAL LOGIC. Part I

Abstract. In this paper, first some propositional conditional logics based
on Belnap and Dunn’s useful four-valued logic of first-degree entailment are
introduced semantically, which are then turned into systems of weakly and
unrestrictedly connexive conditional logic. The general frame semantics for
these logics makes use of a set of allowable (or admissible) extension/anti-
extension pairs. Next, sound and complete tableau calculi for these logics
are presented. Moreover, an expansion of the basic conditional connexive
logics by a constructive implication is considered, which gives an oppor-
tunity to discuss recent related work, motivated by the combination of
indicative and counterfactual conditionals. Tableau calculi for the basic
constructive connexive conditional logics are defined and shown to be sound
and complete with respect to their semantics. This semantics has to ensure
a persistence property with respect to the preorder that is used to interpret
the constructive implication.
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1. Introduction

In this paper we consider a weak conditional, �, that satisfies un-
restrictedly Aristotle’s Theses and Boethius’ Theses if a very natural
condition is imposed on suitable semantical models (see below):

(AT) ∼(∼A� A),
(AT)′ ∼(A� ∼A),
(BT) (A� B)� ∼(A� ∼B), and
(BT)′ (A� ∼B)� ∼(A� B).
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Logics validating these theses are called “connexive logics” and turn out
to be contra-classical in the sense that some classically invalid formulas
can be proven.1 One can construct a connexive logic from scratch or
obtain one by expanding a given non-connexive logic, such as classical
logic, by a connexive implication. We take first-degree entailment logic
as our starting point for obtaining a connexive logic and then expand
our language by a further constructive conditional.2

There are several ways of defining systems of connexive logic by mak-
ing use of various semantical constructions and proof-theoretical frame-
works, for surveys and some recent contributions see [McCall, 2012;
Wansing, 2014; Wansing et al., 2016]. A straightforward and concep-
tually clear road to connexivity consists of requiring suitable falsity
conditions for implications. This approach is particularly natural for
expansions of first-degree entailment logic, FDE, because FDE is a ba-
sic and simple four-valued logic which clearly separates truth and falsity
from each other as two independent semantical dimensions. The connex-
ive logic C from [Wansing, 2005] imposes such falsity conditions on the
constructive implication in a certain expansion of FDE, namely David
Nelson’s paraconsistent logic N4 [Almukdad and Nelson, 1984; Kamide
and Wansing, 2015; Odintsov, 2008]. In this paper we consider weakly
and unrestrictedly connexive expansions of FDE starting from a different
and very weak implication. The perspective for this endeavor is that of
conditional logic, see, for example, [Nute, 1984], a setting in which the
conditional is usually denoted by ‘�’. Another starting point has been
taken by Hitoshi Omori [2016], who considers a connexive variant of im-
plication in relevance logic. One could also apply the modification that
leads from N4 to C to the substructural subsystems of N4 introduced in
[Wansing, 1993a,b]. We, however, do not pursue these approaches here.

Our point of departure for obtaining systems of connexive conditional
logic is the logic CK introduced by Brian Chellas [1975] as a basic system
of conditional logic. The semantics in [Chellas, 1975] employs what are
now called “Chellas frames” ([Unterhuber, 2013, Ch. 4.3]; see Section 2).
In addition to a non-empty set W of indices (“possible worlds”), a Chel-

1 Note that there are some conditional logics [e.g., Adams, 1975] which validate
versions of Aristotle’s and Boethius’ Theses by using a restriction that ensures that
these logics do not conflict with classical logic [cf. Unterhuber, 2016]. These logics are
in our terminology not connexive.

2 Whereas it is possible to expand classical logic by a connexive conditional, this
strategy may lead to counter-intuitive properties [Unterhuber, 2016].
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las frame contains a ternary relation R ⊆ W × W × Pow(W ), where
Pow(W ) is the powerset of W . A conditional A� B is then treated as
a necessity statement [A]B for a normal necessity operator [A] indexed
by A. In a model based on a Chellas frame, the relation R can be seen
as comprising a collection of binary accessibility relations RJAK on W ,
indexed by the truth set JAK of A in that model, for every formula A.
Later Krister Segerberg [1989] considered general Chellas frames  which
we call Segerberg frames [see also Unterhuber, 2013, Ch. 4.3; Unterhuber
and Schurz, 2014].3

Since our base logic is the paraconsistent and paracomplete logic
FDE, the set W is now to be understood as a set of states that may fail
to support the truth or the falsity of a formula or support both the truth
and the falsity of a formula. In order to obtain correspondences between
schematic formulas and conditions on frames, we consider a suitable
modification of Segerberg frames (i.e., a modification of general Chellas
frames). A modified Segerberg frame is a triple 〈W, R, P 〉, where 〈W, R〉
is a Chellas frame and P ⊆ Pow(W )× Pow(W ). The set P may be seen
as a set of allowable (or admissible) extension/anti-extension pairs.4

In Section 2, after introducing the syntax and semantics for the basic
FDE-based conditional logic CKFDE, we define a variant of it, the system
cCL, which is obtained from CKFDE by changing the falsity conditions
of implications. The system cCL validates Boethius’ theses in rule form:

(A� B) ⊢ ∼(A� ∼B), (A� ∼B) ⊢ ∼(A� B),

and in this sense system cCL is a weakly connexive conditional logic,
where the lower-case ‘c’ stands for “weakly connexive.”

In Section 3 we shall first define a sound and complete tableau cal-
culus for CKFDE and then modify this calculus to obtain a tableau cal-
culus for cCL. Whereas in the constructive connexive logic C the falsity

3 The semantics for conditional logics in [Priest, 2008, Chapter 5] uses binary rela-
tions RA on W , for every formula A instead of relations RX for sets of worlds X. This
version of the semantics can be equipped with sound and complete tableau calculi,
but the formula-annotated relations make the semantics dependent on the language,
so that it is not suitable for developing a purely structural correspondence theory.

4 Extensions and anti-extensions are nothing but truth sets and falsity sets,
where the latter are sets of possible worlds that support the falsity of some formula.
Extension/anti-extension pairs can be considered intensions in the sense that they
determine for each possible world whether a certain formula is true, false, both, or
neither.
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conditions for the connexive implication lead to the validation of both
Aristotle’s and Boethius’ theses, in cCL, Aristotle’s and Boethius’ theses
are true in a model for cCL iff for all w, w′ ∈ W and all X ⊆ W , wRXw′

implies w′ ∈ X , which corresponds to A � A. The connexive logic
characterized by the class of all models for cCL satisfying this natural
condition will be referred to as CCL. Some properties of cCL and CCL

are pointed out in Section 4.

It is not uncommon to consider logical systems with more than one
implication, integrating different types of implication in one system. In
conditional logic, the connective � is usually added to a language of
classical logic containing material implication, ⊃. Moreover, there are,
for example, the Lambek Calculus [Lambek, 1958] with its two direc-
tional implications and the systems of consequential implication [Pizzi
and Williamson, 1997], which comprise, in addition to Boolean implica-
tion, a conditional that, notation adjusted, satisfies a “weak” Boethius’
thesis, namely (A� B) ⊃ ∼(A� ∼B). Andreas Kapsner and Hitoshi
Omori [2017] define a logic with two implications, to be seen as repre-
senting an indicative and a counterfactual natural language conditional,
respectively. Whereas their counterfactual conditional satisfies a weak
version of Boethius’ thesis, the indicative one is constructive (see Sec-
tion 5).5 Mathieu Vidal [2017b] takes a different approach to validating
restrictedly connexive principles, based on a conditional logic. To this
effect, he uses the composition of two functions  so-called neutralization
and expansion functions (see Section 5).

We shall discuss Kapsner and Omori’s system as well as a semantics
due to Vidal [2017b] in Section 5 before defining two constructive con-
ditional logics, cCCL and CCCL, in Section 6. Whilst cCCL is weakly
connexive, CCCL is connexive. Our semantics expands the systems cCL

and CCL by adding support of truth and support of falsity conditions
for a constructive conditional, mirroring the approach of Kaspner and
Omori. However, with respect to�, cCCL and CCCL do not go beyond
the postulates validated in systems cCL and CCL. This contrasts with
Kaspner and Omori’s setting, who take the much stronger semantics of
Lewis [1973] as a starting point for obtaining restrictedly connexive con-
ditionals. The logics cCCL and CCCL satisfy the persistence properties
from Nelson’s constructive logics with strong negation. We shall define

5 Note that a conditional can be both, constructive and connexive. For example,
the conditional of the system C of Wansing [2005] satisfies both properties.
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From the literature FDE first-degree entailment logic [Belnap, 1977;
Dunn, 1976]

N4 David Nelson’s paraconsistent constructive
logic [Almukdad and Nelson, 1984]

C paraconsistent constructive connexive logic
[Wansing, 2005]

CK basic conditional logic [Chellas, 1975;
Segerberg, 1989; Unterhuber, 2013; Unter-
huber and Schurz, 2014]

CKR conditional logic CK extended by A � A

(reflexivity) ([Unterhuber, 2013, Ch. 7.1];
see also [Chellas, 1975; Segerberg, 1989;
Unterhuber and Schurz, 2014])

This paper CKFDE basic conditional logic CK based on FDE 6

CKRFDE conditional logic CKR based on FDE

cCL basic weakly connexive conditional logic
CCL basic connexive conditional logic, cCL ex-

tended by A� A

cCCL basic weakly connexive constructive condi-
tional logic

CCCL basic connexive constructive conditional
logic, cCCL extended by A� A

Table 1. Overview of the systems investigated in the paper and relevant systems
in the literature

tableau proof systems for cCCL and CCCL and show these calculi to
be sound and complete. In Section 7, we conclude the paper with some
brief remarks on future work.

Since we will refer to and introduce a number of logical systems,
Table 1 may be helpful. The central logics of the present paper are
cCL and CCL and their expansion by a second constructive implication,
cCCL and CCCL.

2. CKFDE, CKRFDE, cCL, and CCL: syntax and semantics

The language L of connexive conditional logic is based on a denumerable
set PV of propositional variables p1, p2, p3, . . . . We use lower case letter

6 Priest [2008, Ch. 8] describes a system that is a fragment of our system CKFDE.
It lacks the rules that correspond to Left Logical Equivalence in system CK (see
Section 3).
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p, q, r etc. to stand for propositional variables and upper-case letters A,
B, C, etc. to stand for formulas. The formulas of L are given by the
following grammar:

A := p | ∼A | (A ∧ A) | (A ∨ A) | (A� A) | (A� A)

We shall sometimes omit outermost brackets of formulas.7

As in [Unterhuber, 2013; Unterhuber and Schurz, 2014], in addition
to L we shall use a language LFC for talking about (general) frame con-
ditions. The language LFC is a two-sorted, set-theoretic language which
contains (i) variables w, w′, w′′, . . . for states and X , Y , X ′, Y ′, X1,
X2, . . . for sets of states, (ii) the connectives ¬ (“negation”), f (“con-
junction”), g (“disjunction”), and ⇒ (“material implication”), (iii) the
quantifiers ∀ (“the universal quantifier”), and ∃ (“the existential quan-
tifier”), (iv) the non-logical ternary predicate R (denoting “the acces-
sibility relation”), (v) the non-logical binary predicate P (denoting the
set of “admissible extension/anti-extension pairs”), and (vi) the constant
W . We shall abbreviate ‘R(w, w′, X)’ by ‘wRXw′’, instead of ‘¬ x∈X ’,
we shall write ‘x 6∈ X ’, and later we shall introduce another binary
predicate, ≤, (denoting the set of state pairs 〈w, w′〉 such that w′ is a
“possible expansion of” w). Moreover, we shall also sometimes use the
connectives and quantifiers of LFC in our metalanguage (and sometimes
will not pay attention to the use-mention distinction).

Definition 1. A pair 〈W, R〉 is a Chellas frame (or just a frame) iff

• W is a non-empty set, intuitively understood as a set of information
states, and

• R ⊆ W × W × Pow(W ), where Pow(W ) is the power set of W .

If 〈W, R〉 is a frame, then M = 〈W, R, v+, v−〉 is a model iff v+ and v− are
valuation functions v+ : PV −→ Pow(W ) and v− : PV −→ Pow(W ).

Since we want to define expansions of the paraconsistent logic FDE,
we shall draw a distinction between the support of truth and the support
of falsity in models.

Definition 2. A model M = 〈W, R, v+, v−〉 is a model for CKFDE iff
support of truth and support of falsity relations |=+ and |=− between M,
states w ∈ W , and formulas from L are inductively defined as follows:

7 The connective � is sometimes called a “might conditional”.
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M, w |=+ p iff w ∈ v+(p) for p ∈ PV
M, w |=− p iff w ∈ v−(p) for p ∈ PV

M, w |=+ ∼A iff M, w |=− A

M, w |=− ∼A iff M, w |=+ A

M, w |=+ A ∧ B iff M, w |=+ A and M, w |=+ B

M, w |=− A ∧ B iff M, w |=− A or M, w |=− B

M, w |=+ A ∨ B iff M, w |=+ A or M, w |=+ B

M, w |=− A ∨ B iff M, w |=− A and M, w |=− B

M, w |=+ A� B iff for all w′ ∈ W such that wRJAKMw′ it holds
that M, w′ |=+ B

M, w |=− A� B iff there is a w′ ∈ W such that wRJAKMw′ and
M, w′ |=− B

M, w |=+ A� B iff there is a w′ ∈ W such that wRJAKMw′ and
M, w′ |=+ B

M, w |=− A� B iff for all w′ ∈ W such that wRJAKMw′ it holds
that M, w′ |=− B

where the set JAKM is defined as {w | M, w |=+ A}, i.e., as the set of all
states supporting the truth of A in M. When the context is clear, we
sometimes write JAK instead of JAKM.

Remark 1. The support of truth and support of falsity conditions for
formulas A� B and A� B privilege the set {w | M, w |=+ A} over
the set {w | M, w |=− A}, i.e. over J∼AK. We may think of {w | M, w |=+

A} as the extension of A in M and of {w | M, w |=− A} as the anti-
extension of A in M. If one wants to simultaneously impose conditions on
the relation R related to both extensions and anti-extensions, one would
have to use a four-place relation R ⊆ W × W × Pow(W ) × Pow(W ).
This will give us the following conditions:

M, w |=+ A� B iff for all w′ ∈ W such that wR〈JAKM,J∼AKM〉w
′

it holds that M, w′ |=+ B

M, w |=− A� B iff there is a w′ ∈ W such that
wR〈JAKM,J∼AKM〉w

′ and M, w′ |=− B

M, w |=+ A� B iff there is a w′ ∈ W such that
wR〈JAKM,J∼AKM〉w

′ and M, w′ |=+ B

M, w |=− A� B iff for all w′ ∈ W such that wR〈JAKM,J∼AKM〉w
′

it holds that M, w′ |=− B.
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This modification is especially reasonable if one wants to expand the
object language by a constructive implication, →, and a constructive
equivalence connective, ↔, i.e, if one wants to add the conditional� not
to FDE, but to Nelson’s constructive paraconsistent logic N4. Whereas
in N4 provable equivalence fails to be a congruence relation, provable
strong equivalence is a congruence relation, where the strong equivalence
of A and B, A ⇔ B, is defined as (A ↔ B)∧(∼A ↔ ∼B). This provides
a strong reason for identifying a proposition not just with a set of states,
understood as an extension, but as a pair of sets of states, understood as
an extension/anti-extension pair. In this paper, however, we shall follow
the standard approach that makes use of a ternary accessibility relation,
i.e., a binary relation between worlds, indexed by a set of states (see,
however, Remark 3).

Definition 3. A triple 〈W, R, P 〉 is a general frame (or Segerberg frame)
for CKFDE iff

• 〈W, R〉 is a frame,
• R ⊆ W × W × l(P ), where l(P ) = {X | 〈X, Y 〉 ∈ P} and
• P ⊆ ( Pow(W )× Pow(W )), where P satisfies the following conditions:

1. if 〈X, Y 〉 ∈ P , then 〈Y, X〉 ∈ P ,8

2. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈X ∩X ′, Y ∪Y ′〉 ∈ P and 〈X ∪X ′, Y ∩
Y ′〉 ∈ P ,

3. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈{w ∈ W | ∀w′ ∈ W (wRXw′ ⇒ w′ ∈
X ′)} ∈ P and {w ∈ W | ∃w′ ∈ W (wRXw′ f w′ ∈ Y ′)} ∈ P ,

4. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈{w ∈ W | ∃w′ ∈ W (wRXw′ f w′ ∈
X ′)} ∈ P and {w ∈ W | ∀w′ ∈ W (wRXw′ ⇒ w′ ∈ Y ′)} ∈ P .

The set P is a set of pairs of sets of states; intuitively P contains the
admissible extension/anti-extension pairs.

Definition 4. Let 〈W, R, P 〉 be a general frame for CKFDE. The tuple
〈W, R, P, v+, v−〉 is a general model for CKFDE iff 〈W, R, v+, v−〉 is a
model and 〈JpK, J∼pK〉 ∈ P for every p ∈ PV. Support of truth and
support of falsity relations |=+ and |=− are defined as in the case of
models for CKFDE.

8 In view of 1, instead of l(P ) we could have used r(P ) := {Y | 〈X, Y 〉 ∈ P}.
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Lemma 1. Let 〈W, R, P, v+, v−〉 be a general model for CKFDE. Then
for every L-formula A, 〈JAK, J∼AK〉 ∈ P .

Proof. By induction on the complexity of A. If A is a propositional
variable, the claim holds by definition. Let A be a formula ∼B and
assume that 〈JBK, J∼BK〉 ∈ P . Then, by 1, 〈J∼BK, JBK〉 ∈ P and by the
support of truth and support of falsity conditions for negated formulas,
〈J∼BK, J∼∼BK〉 ∈ P . Let A be a conjunction B ∧ C and assume that
〈JBK, J∼BK〉 ∈ P and 〈JCK, J∼CK〉 ∈ P . By 2, 〈JBK ∩ JCK, J∼BK ∪ J∼CK〉
∈ P and by Definition 2, 〈JB ∧ CK, J∼(B ∧ C)K〉 ∈ P . The case that A

is a disjunction B ∨ C is dual. Let A be a formula B � C and assume
that 〈JBK, J∼BK〉 ∈ P and 〈JCK, J∼CK〉 ∈ P . Then, by 3,

〈{w ∈ W | ∀w′ ∈ W (wRJBKw
′ ⇒ w′ ∈ JCK)} ∈ P,

{w ∈ W | ∃w′ ∈ W (wRJBKw
′ f w′ ∈ J∼CK)}〉 ∈ P.

By Definition 2, 〈JB � CK, J∼(B � C)K〉 ∈ P . The case that A is a
formula B � C is analogous and makes use of condition 4.

We now modify the support of falsity conditions for conditionals
A� B in analogy to the modification that leads from N4 to C, and we
modify the support of falsity conditions for strongly negated formulas
A � B accordingly, so as to obtain models for a weakly connexive
variant of CKFDE, system cCL.

Definition 5. A model M = 〈W, R, v+, v−〉 is a model for cCL iff
support of truth and support of falsity relations |=+ and |=− between
M, states w ∈ W , and formulas from L are inductively defined as in
Definition 2 except that:

M, w |=+ A� B iff for all w′ ∈ W such that wRJAKw
′ it holds

that M, w′ |=+ B

M, w |=− A� B iff for all w′ ∈ W such that wRJAKw
′ it holds

that M, w′ |=− B

M, w |=+ A� B iff there is a w′ ∈ W such that wRJAKw
′ and

M, w′ |=+ B

M, w |=− A� B iff there is a w′ ∈ W such that wRJAKw
′ and

M, w′ |=− B.

Remark 2. The falsity conditions for A� B in models for cCL coincide
with the falsity conditions for A� B in models for CKFDE. Whereas
in CKFDE the connectives� and� are dual to each other in the sense
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that (i) a state supports the truth (falsity) of A � B if and only if it
supports the falsity (truth) of A � ∼B and (ii) a state supports the
truth (falsity) of A� B if and only if it supports the falsity (truth) of
A� ∼B, this kind of duality fails in cCL.

Definition 6. A triple 〈W, R, P 〉 is a general frame (or Segerberg frame)
for cCL iff

• 〈W, R〉 is a frame,
• R ⊆ W × W × l(P ), where l(P ) = {X | 〈X, Y 〉 ∈ P} and
• P ⊆ ( Pow(W )× Pow(W )), where P satisfies the following conditions:

1. if 〈X, Y 〉 ∈ P , then 〈Y, X〉 ∈ P ,
2. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈X ∩X ′, Y ∪Y ′〉 ∈ P and 〈X ∪X ′, Y ∩

Y ′〉 ∈ P ,
3. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈{w ∈ W | ∀w′ ∈ W (wRXw′ ⇒ w′ ∈

X ′)} ∈ P and {w ∈ W | ∀w′ ∈ W (wRXw′ ⇒ w′ ∈ Y ′)} ∈ P ,
4. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈{w ∈ W | ∃w′ ∈ W (wRXw′ f w′ ∈

X ′)} ∈ P and {w ∈ W | ∃w′ ∈ W (wRXw′ f w′ ∈ Y ′)} ∈ P .

Definition 7. Let 〈W, R, P 〉 be a general frame for cCL. The tuple
〈W, R, P, v+, v−〉 is a general model for cCL iff 〈W, R, v+, v−〉 is a model
and 〈JpK, J∼pK〉 ∈ P for every p ∈ PV. Support of truth and support of
falsity relations |=+ and |=− are defined as in the case of models for cCL.

Lemma 2. Let 〈W, R, P, v+, v−〉 be a general model for cCL. Then for
every L-formula A, 〈JAK, J∼AK〉 ∈ P .

Proof. By induction on the complexity of A.

Definition 8. We say that a formula A is valid in a model M =
〈W, R, v+, v−〉 or a general model M = 〈W, R, P, v+, v−〉 iff M, w |=+ A

for all w ∈ W . If A is valid in M, we write M |= A. We say that A

is valid on a frame F = 〈W, R〉 or a general frame F = 〈W, R, P 〉, and
write F |= A, iff M |= A for all models M = 〈W, R, v+, v−〉, respectively
general models M = 〈W, R, P, v+, v−〉, based on F. A formula is valid
with respect to a class of (general) models or (general) frames iff it is
valid in every (general) model, respectively on every (general) frame from
that class.

It is very natural to require that if wRJAKw
′, then w′ ∈ JAK, or, in

purely structural terms, that if wRXw′, then w′ ∈ X . We now semanti-
cally define four basic conditional logics.
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Definition 9. The logic CKFDE (cCL) is the set of all L-formulas valid
with respect to the class of all models for CKFDE (cCL).

The logic CKRFDE (CCL) is the set of all L-formulas valid with
respect to the class of all models for CKFDE (cCL) satisfying the following
condition on frames:

CA�A (∀X ⊆ W )(∀w, w′ ∈ W )wRXw′ ⇒ w′ ∈ X .

If a model, general frame, or general model for CKFDE (cCL) satisfies
CA�A it will be called a model, general frame, or general model, respec-
tively, for CKRFDE (CCL).

Definition 10. Let Γ ∪{A} be a set of L-formulas, and let L be a logic.
We say that Γ entails A in L (Γ |=L A) iff for every model M for L

and state w of M it holds that if M, w |=+ B for every B ∈ Γ, then
M, w |=+ A.

Definition 11. A formula A C-corresponds to a frame condition C (and
vice versa) iff for all frames F it holds that F satisfies C iff F |= A. A
formula A S-corresponds to a frame condition C (and vice versa) iff for
all general frames F it holds that F satisfies C iff F |= A.

Definition 12. Let A, B1, . . . , Bn be L-formulas. A derivability state-
ment {B1, . . . , Bn} ⊢ A C-corresponds to a frame condition C (and vice
versa) iff for all frames F it holds that F satisfies C iff (for every model
M based on F and every state w of M, if M, w |=+ B1, . . . ,M, w |=+ Bn,
then M, w |=+ A). A statement {B1, . . . , Bn} ⊢ A S-corresponds to a
frame condition C (and vice versa) iff for all general frames F it holds
that F satisfies C iff (for every general model M based on F and every
state w of M, if M, w |=+ B1, . . . ,M, w |=+ Bn, then M, w |=+ A).

The condition CA�A is not only a very natural condition in view of
the familiar understanding of the set {w′ ∈ W | wRJAKw

′}. It can easily
be seen that CA�A C-corresponds to the schematic formula A� A (in
CKFDE, cCL , CKRFDE, and CCL).

Let us now focus on the parameter P . In [Unterhuber, 2013, p. 199],
essential use is made of Segerberg frames in the Henkin-style complete-
ness proof for a number of conditional logics from a lattice of extensions
of CK. The impact of the parameter P is in a way minimized due to the
fact that a conditional logic from that lattice is complete with respect to
a class of Segerberg frames just in case it complete with respect to some
class of Chellas models. Moreover, it can be shown that any conditional
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logic whatsoever from the mentioned lattice of systems is complete with
respect to some class of Chellas models. To avoid such a triviality result
for Segerberg frames, trivial and non-trivial frame conditions are distin-
guished, where only the former make use of use of inessential expressions
as defined in [Unterhuber and Schurz, 2014] and can be characterized in
terms of a standardized translation from logical principles into frame
conditions. For example, the principle (A � B) ⊃ B corresponds to
the trivial frame condition (∀X ⊆ W )(∀w ∈ W )(∀w′(wRXw′ ⇒ w′ ∈
Y ) ⇒ w ∈ Y ) as well as the non-trivial frame condition (∀X ⊆ W )(∀w ∈
W )(wRXw), where the trivial frame condition uses inessential expres-
sions, such as Y and w′, and results from a standard translation of
(A � B) ⊃ B (cf. [Unterhuber and Schurz, 2014]).9 Note that none
of the frame conditions employ the parameter P , although the para-
meter P plays an integral role in the completeness proof. The resulting
completeness proofs are then non-trivial by requiring that extensions of
Segerberg frames are restricted to non-trivial frame conditions.

However, with FDE as our base logic and general frames as in-
troduced in Definitions 3 and 6, the situation is different.We have to
explicitly use the parameter P for an adequate formulation of frame
conditions. In extensions of CK, with classical logic as its base logic,
the formula (∼A ∧ A) � ∼A, for example, is valid on a frame iff the
frame satisfies the following condition, where X is the complement of
X : (∀X ⊆ W )(∀w, w′ ∈ W )(xR

X∩X
w′ ⇒ w′ ∈ X). In the semantics

for CKFDE and cCL, the evaluation of a strongly negated propositional
variable ∼p in a model is completely independent of the evaluation of p,
and it is not clear how to capture the formula (∼A ∧ A) � ∼A by an
LFC-formula that does not exhibit the binary predicate P . The following
general frame condition, however, corresponds to (∼A ∧ A)� ∼A:10

(∀X, Y ⊆ W )(∀w, w′ ∈ W )(〈X, Y 〉 ∈ P ⇒ (wRY ∩Xw′ ⇒ w′ ∈ Y )).

If M = 〈W, R, P, v+, v−〉 is a general model, then 〈JAK, J∼AK〉 ∈ P .
Moreover, J∼AK ∩ JAK = J∼A ∧ AK. The condition thus ensures the

9 We chose this example due to its simplicity and not because it is plausible as a
conditional logic principle.

10 Observe that a genuine frame correspondence result can be established for
(∼A ∧ A)� ∼A only for systems CKFDE and cCL. This is not possible for systems
CKRFDE and CCL, where (∼A ∧ A) � ∼A is validated already due to assuming
condition CA�A.
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validity of (∼A ∧ A)� ∼A in M. If a general frame F does not satisfy
the condition, then

(∃X, Y ⊆ W )(∃w, w′ ∈ W )(〈X, Y 〉 ∈ P f (wRY ∩Xw′ f w′ 6∈ Y )),

and there is a general model based on F and an instance of (∼A∧A)�
∼A the truth of which is not supported at w. Consider (∼p ∧ p)� ∼p

and set Y := J∼pK, X := JpK.
Similarly, (∼A ∧ B)� ∼A corresponds to

(*) (∀X, Y, X ′, Y ′ ⊆ W )(∀w, w′ ∈ W )(〈X, Y 〉 ∈ P ⇒ (〈X ′, Y ′〉 ∈ P ⇒
(wRY ∩X′w′ ⇒ w′ ∈ Y ))).

If M = 〈W, R, P, v+, v−〉 is a general model, then 〈JAK, J∼AK〉, 〈JBK,
J∼BK〉 ∈ P . Moreover, J∼AK ∩ JBK = J∼A ∧ BK. The condition thus
ensures the validity of (∼A ∧ B)� ∼A in M. If a general frame F does
not satisfy the condition, then

(∃X, Y, X ′, Y ′ ⊆ W )(∃w, w′ ∈ W )(〈X, Y 〉 ∈ P f

(〈X ′, Y ′〉 ∈ P f (wRY ∩X′w′ f w′ 6∈ Y )))

and there is a general model based on F and an instance of (∼A∧B)�
∼A the truth of which is not supported at w. Consider (∼p ∧ q)� ∼p

and set Y := J∼pK, X ′ := JqK. The condition (*) above is trivial in the
sense that it involves quantification over the set variables X and Y ′ that
do not occur at argument places of ‘R’, but at argument places of ‘P ’.

Remark 3. The four-place accessibility relation R ⊆ W ×W × Pow(W )×
Pow(W ) introduced in Remark 1 would bring us back to pure frame
correspondence instead of general frame correspondence. The formulas
(∼A ∧ A)� ∼A and (∼A ∧ B)� ∼A, for example, correspond to

(∀X, Y ⊆ W )(∀w, w′ ∈ W )(wR〈Y ∩X,X∪Y 〉w
′ ⇒ w′ ∈ Y )

and

(**) (∀X, Y, X ′, Y ′ ⊆ W )(∀w, w′ ∈ W )(wR〈Y ∩X′,X∪Y ′〉w
′ ⇒ w′ ∈ Y )),

respectively. The latter condition is non-trivial in the sense that all set
variables involved do occur at argument places of ‘R’ [cf. Unterhuber
and Schurz, 2014, Definition 5.3]. For (∼A ∧ B) � ∼A, let M =
〈W, R, v+, v−〉 be a model. Since , J∼AK∩JBK = J∼A∧BK and JAK∪J∼BK
= J∼(∼A ∧ B)K, the condition guarantees the validity of (∼A ∧ B) �
∼A in M. If a frame F does not satisfy the condition, then (∃X, Y ⊆
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W )(∃w, w′ ∈ W )(wR〈Y ∩X,X∪Y 〉w
′ f w′ 6∈ Y ), and there is a model

based on F and an instance of (∼A ∧ B) � ∼A the truth of which is
not supported at w. Consider again (∼p ∧ q)� ∼p and set Y := J∼pK,
X ′ := JqK.

3. Tableaux

We shall extend the tableau calculus for FDE presented in [Priest, 2008,
Ch. 8] by tableau rules for � that suitably modify the rules for �
from [Priest, 2008, Ch. 5] and by tableau rules for�, in order to obtain
a tableau calculus for CKFDE in the language L. We will assume some
familiarity with the tableau method as applied by Priest.

In tableaux for CKFDE, tableau nodes consist of expressions of the
form A, +i, or A, −i, or irAj, where A is an L-formula, i and j are
natural numbers representing information states, + indicates support
of truth (|=+), − indicates failure of support of truth (6|=+), and rA

represents the accessibility relation RJAK in the countermodel one tries
to construct by unfolding a tableau. Tableau for a single conclusion
derivability statement ∆ ⊢ B start with nodes of the form A, +0 for
every premise A from the finite premise set ∆ and a node of the form
B, −0. Then tableau rules are applied (if that is possible) to tableau
nodes leading to a more complex tableau. A branch of the tableau closes
iff it contains a pair of nodes A, +i and A, −i. The tableau closes iff all
of its branches close. If a tableau (tableau branch) is not closed, it is
called open. A tableau branch is said to be complete iff no more rules
can be applied to expand it. A tableau is said to be complete iff each of
its branches is complete. Closed branches will be marked by ‘×’.

The tableau rules for the connectives of FDE can be stated as follows:

A ∧ B, +i
↓

A, +i
B, +i

A ∧ B, −i
ւ ց

A, −i B, −i

A ∨ B, +i
ւ ց

A, +i B, +i

A ∨ B, −i
↓

A, −i
B, −i

∼∼A, +i
↓

A, +i

∼(A ∧ B), +i
↓

∼A ∨ ∼B, +i

∼(A ∨ B), +i
↓

∼A ∧ ∼B, +i

where the symbol + is to be read uniformly either as + or as −. The
tableau rules for the conditional� and� in CKFDE then are as follows
(“CP” for “Conditional Logic Principle”):
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CP1 CP2 CP3 CP4

A� B, +i
irAj

↓
B, +j

A� B, −i
irAj

↓
B, −j

∼(A� B), +i
↓

A� ∼B, +i

∼(A� B), +i
↓

A� ∼B, +i

CP5 CP6

A� B, −i
↓

irAj
B, −j

A� B, +i
↓

irAj
B, +j

The leftmost two rules are applied whenever a node irAj occurs on the
branch; the rules CP5 and CP6 require the introduction of a new natural
number j not already occurring in the tableau. We need, however, two
more rules to account for what is known as “Left Logical Equivalence”,
LLE, namely the validity of the rules

A� C

B � C

A� C

B � C

for logically equivalent formulas A and B.11 To account for LLE, the
following two rules (reg �) and (reg �), respectively, are added, where
k and l have to be new numerals:

B � C, ±i
irAj

ւ ↓ ց
A, +k B, +l irBj
B, −k A, −l

B � C, ±i
irAj

ւ ↓ ց
A, +k B, +l irBj
B, −k A, −l

The rules can be read as saying that if state j is accessible from state i

via RJAK and if A and B are logically equivalent (if there is no state that
supports the truth of one formula but fails to support the truth of the
other), then state j is accessible from state i via RJBK. The requirement
that B � C, respectively B � C, occurs on the branch is imposed for
(reg �) and (reg �), respectively, because otherwise, for any expres-
sion irAj on a branch, an infinite number of new expressions irBj could
be introduced  each due to a new formula B. A complete tableau could

11 They are not valid in the basic conditional logic in [Priest, 2008, Ch. 5], which
lacks corresponding rules. Note that Priest uses only formula-annotated accessibility
relations in his semantics (cf. Section 5).
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thus contain infinite branches, rendering the notion of a complete branch
effectively inapplicable if no blocking techniques are used. The above set
of tableau rules for the connectives from L constitutes a tableau calculus
TCKFDE for CKFDE.

To obtain a tableau calculus for cCL, the weakly connexive variant
of CKFDE, we replace CP3 and CP4 by the following rules, respectively:

CP3∗ CP4∗

∼(A� B), +i
↓

A� ∼B, +i

∼(A� B), +i
↓

A� ∼B, +i

We shall refer to this modification of TCKFDE as TcCL.
To obtain the tableau calculi TCKRFDE and TCCL for CKRFDE and

CCL, we add the following tableau rule to TCKFDE and TcCL:

RA�A irAj

↓
A, +j

Definition 13. Let L be a logic and let TL be a tableau calculus for L. If
∆ = {B1, . . . , Bn, A} is a finite set of L-formulas, then A is derivable from
∆ in TL (in symbols: ∆ ⊢TL A) iff there exists a closed and complete
tableau for B1, +0, . . ., Bn, +0, A, −0 in TL.

As a first example of a tableau proof, we present a proof of a very
simple instance of LLE. We show that {(p ∧ q)� r} ⊢ (q ∧ p)� r in
TCKFDE:12

(p ∧ q)� s, +0
(q ∧ p)� s, −0

↓
0r(q∧p)1

s, −1
ւ ↓ ց

(p ∧ q), +2 (q ∧ p), +3 0r(p∧q)1

(q ∧ p), −2 (p ∧ q), −3 s, +1
p, +2 q, +3 ×
q, +2 p, +3

ւ ց ւ ց
q, −2 p, −2 p, −3 q, −3

× × × ×

12 To save space, we sometimes omit arrows.
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Also the following example makes use of the rule (reg �). We show
that {(p ∧ q)� s, (q ∧ p)� t} ⊢ (p ∧ q)� (s ∧ t) in TCKFDE:

(p ∧ q)� s, +0
(q ∧ p)� t, +0

(p ∧ q)� (s ∧ t), −0
↓

0r(p∧q)1

(s ∧ t), −1
s, +1

ւ ↓ ց
(q ∧ p), +2 (p ∧ q), +3 0r(q∧p)1

(p ∧ q), −2 (q ∧ p), −3 t, +1
q, +2 p, +3 ւ ց

p, +2 q, +3 s, −1 t, −1
ւ ց ւ ց × ×

p, −2 q, −2 q, −3 p, −3
× × × ×

Rule CP3∗ seems to suggest that System TcCL validates the principle
of conditional excluded middle (CEM), a principle which is specific to
Stalnaker’s conditional logic [Stalnaker, 1968, 1980], but is not valid in a
number of standard conditional logics, including Lewis’ [1973] preferred
system for counterfactuals. This becomes more evident if we use CEM∗,
∼(A � B) ⊃ (A � ∼B), which is  in the referenced systems  log-
ically equivalent to CEM, i.e., (A � B) ∨ (A �∼ B). However, the
effect of using rule CP3∗ differs from adopting CEM∗: In the referenced
systems we can infer A� B from A� B (by either CEM or CEM∗),
whereas this inference is not valid in system TcCL.

Definition 14. Let M = 〈W, R, v+, v−〉 (M = 〈W, R, P, v+, v−〉) be
any model (general model) for CKFDE or cCL and let br be a tableau
branch. The model M is said to be faithful to br iff there is a function
f from the set of all natural numbers to W such that:

1. for every node A, +i on br, M, f(i) |=+ A;
2. for every node A, −i on br, M, f(i) 6|=+ A;
3. for every node jrAk on br, f(j)RJAKf(k).

The function f is said to show that M is faithful to branch br.

Lemma 3 (Soundness lemma). Let M be any model (general model) for
CKFDE or cCL and br be any tableau branch of a tableau in TCKFDE or
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TcCL, respectively. If M is faithful to br and a tableau rule is applied
to br, then the application produces at least one extension br′ of br, such
that M is faithful to br′.

Proof. By induction on the construction of tableaux. The rules for
FDE are treated in [Priest, 2008, Ch. 8]. Here we consider the remaining
rules and start with the rules shared by CKFDE and cCL. (1) Consider
the rule for (A� B), +i. Suppose that the function f shows M to be
faithful to a branch br containing (A� B), +i and irAj occurs on br.
Then f(i)RJAKf(j) and M, f(i) |=+ (A� B). Therefore M, f(j) |=+ B

and the function f shows M to be faithful to the extended branch. (2)
The case of the rule for (A � B), −i is similar. (3) Consider the rule
for (A� B), −i and assume that M, f(i) 6|=+ (A� B). Then in M’s
set of states W , there is a state w′ with f(i)RJAKMw′ and M, w′ 6|=+ B.
The function f ′ that is exactly like f except that f ′(j) = w′ shows
M to be faithful to the extended branch. (4) The case of the rule for
(A� B), +i is similar. The reasoning for the tableau rules with respect
to which CKFDE and cCL differ is straightforward. (5) Consider the rule
for ∼(A� B), +i in CKFDE. Suppose that the function f shows M to
be faithful to a branch br containing ∼(A� B), +i. Then M, f(i) |=+

∼(A � B) iff M, f(i) |=− (A � B) iff [there is a w′ ∈ W such that
f(i)RJAKw

′ and M, w′ |=− B] iff [there is a w′ ∈ W such that f(i)RJAKw
′

and M, w′ |=+ ∼B]. The function f thus shows M to be faithful to
the extended branch. The rules for ∼(A� B), −i and ∼(A� B), +i

are also not difficult. Suppose, e.g., ∼(A � B), −i occurs on br and
f shows M to be faithful to br so that M, f(i) 6|=+ ∼(A � B). Then
M, f(i) 6|=− (A � B) iff [there is a state w′ ∈ W with f(i)RJAKMw′

and M, w′ 6|=− B] iff [there is a state w′ ∈ W with f(i)RJAKMw′ and
M, w′ 6|=+ ∼B] iff M, f(i) 6|=+ (A � ∼B). (6) The corresponding
rules for cCL are dealt with in a similar way. We consider just the
rule for ∼(A � B), −i. Assume then that ∼(A � B), −i occurs
on br and that M is shown to be faithful to br by function f . Then
M, f(i) 6|=+ ∼(A � B) iff M, f(i) 6|=− (A � B) iff [for all w′ ∈ W ,
f(i)RJAKw

′ implies M, w′ 6|=− B)] iff [for all w′ ∈ W , f(i)RJAKw
′ implies

M, w′ 6|=+ ∼B)] iff M, f(i) 6|=+ (A � ∼B). (7) The claim remains to
be shown for (reg �) and (reg �). Here we consider (reg �); the
case of (reg �) is analogous. Assume that (B � C), +i and irAj

occur on br and that f shows M to be faithful to br. Then f(i)RJAKf(j).
Suppose that neither of the following cases holds: (a) M, w1 |=+ A and
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M, w1 6|=+ B, for some w1 ∈ W , (b) M, w2 |=+ B and M, w2 6|=+ A,
for some w2 ∈ W , and (c) f(i)RJBKf(j). Thus, JAK = JBK and not
f(i)RJBKf(j). Then f(i)RJAKf(j) and not f(i)RJBKf(j), a contradiction,
by the definition of the models. So either f already shows M to be
faithful to br extended by irBj, or one of the following two cases holds:
(i) there is a w1 ∈ W with M, w1 |=+ A and M, w1 6|=+ B or (ii) there
is a w2 ∈ W with M, w2 |=+ B and M, w1 6|=+ A. Then the function
f ′ that is exactly like f except that f ′(k) = w1 or the function f ′′ that
is exactly like f except that f ′′(l) = w2 shows M to be faithful to the
extended branch. The case that (B � C), −i and irAj occur on br is
dealt with in the same way.

Definition 15. Let br be a complete open tableau branch. Then the
structure Mbr = 〈Wbr, Rbr, v+

br, v−
br〉 is defined as follows:

• Wbr := {wj | j occurs on br},
• wjRbrXwk iff there is an A with X = JAK and jrAk occurs on br

(for X ⊆ Wbr, wj, wk ∈ Wbr),
• wj ∈ v+

br(p) iff p, +j occurs on br (for any propositional variable p),
• wj ∈ v−

br(p) if ∼ p, +j occurs on br (for any propositional variable p).

We call Mbr the model for CKFDE (cCL) induced by br and assume that
JAK is defined as in models for CKFDE (cCL).

The model Mbr for CKFDE (cCL) induced by br is well-defined, i.e.,
is indeed a model for CKFDE (cCL). For formulas A that contain � or
� it is maybe not obvious that the relation RbrX is well-defined. To see
this, we can define the depth of modal nesting of a formula A, dm(A).
If A contains no operator� or�, then dm(A) = 0. If A has the form
∼B, then dm(A) = dm(B). If A is a conjunction (B∧C) or a disjunction
(B ∨C), then dm(A) is max(dm(B), dm(C)). If A has the form B � C

or B � C, then dm(A) = max(dm(B), dm(C)) + 1. We can show that
RbrX is well-defined for any A such that X = JAK by a double induction
first on the depth of modal nesting and then on the construction of A.
If dm(A) = 0, then the truth set JAK is well-defined because it is defined
independently of the ternary relation, and thus RbrX is well-defined.
Suppose that dm(A) = n + 1, and RbrX is well-defined for formulas B

with dm(B) ≤ n, i.e., JBK is well-defined. Then (i) A has the shape
B � C or B � C or (ii) A has the form (B ∧ C) or (B ∨ C) with
dm(B) ≤ n + 1 and dm(C) ≤ n + 1 or (iii) A has the form ∼B. In case
(i), we may use the first induction hypothesis to conclude that JBK is
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well-defined and thus also JAK and RbrJAK. In case (ii), we may note, for
example, that J(B ∨C)K = JBK ∪ JCK. By induction on the construction
of A, JBK and JCK are well-defined, and hence their union is well-defined.
In case (iii), dm(A) = dm(B). We show by induction on B that if RJBK

is well-defined, then so is RJ∼BK. If B is a propositional variable, then
JBK and J∼BK and henceRJBK and RJ∼BK are well-defined. If B has
the form ∼C, then, by the induction hypothesis, if RJCK is well-defined,
then so is RJ∼CK, and since JCK = J∼∼CK, if RJ∼CK is well-defined, then
so is RJ∼BK. If B is a disjunction (D ∨ E), JDK ∪ JEK and thus also
JDK and JEK are well-defined. Therefore, by the induction hypothesis,
J∼DK and J∼EK are well-defined. Hence J∼DK ∪ J∼EK = J∼(D ∧ E)K
and thus also RJ∼(D∧E)K are well-defined. The case in which B is a
conjunction is similar. If B has the form (C � D), then, if RJ(C�D)K

is well defined, then so is RJCK; but then RJBK is also well-defined. The
case that B has the form (C � D) is analogous. Thus, the relations
RbrX are well-defined for every formula A. That Mbr satisfies

[wjRbrJAKwk iff wjRbrJBKwk] if JAK = JBK

follows from the definition of Rbr due to fact the rules (reg �) and
(reg �) have been applied in the complete open branch br.

Definition 16. Let Mbr = 〈Wbr, Rbr, v+
br, v−

br〉 be defined as in Defini-
tion 15. Then the structure Mbr = 〈Wbr, Rbr, Pbr, v+

br, v−
br〉 is defined

by the requirement that Pbr is the smallest subset of ( Pow(Wbr) ×
Pow(Wbr)) such that 〈JqK, J∼qK〉 ∈ Pbr for every q ∈ PV and such that
Pbr satisfies the following conditions:

1. if 〈X, Y 〉 ∈ Pbr, then 〈Y, X〉 ∈ Pbr,
2. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈X ∩ X ′, Y ∪ Y ′〉 ∈ Pbr, 〈X ∪ X ′, Y ∩

Y ′〉 ∈ Pbr,
3. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈{w ∈ Wbr | ∀w′ ∈ Wbr(wRXw′ ⇒

w′ ∈ X ′)}, {w ∈ Wbr | ∃w′ ∈ Wbr(wRXw′ f w′ ∈ Y ′)} ∈ Pbr,
4. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈{w ∈ Wbr | ∃w′ ∈ Wbr(wRXw′ fw′ ∈

X ′)}, {w ∈ Wbr | ∀w′ ∈ Wbr(wRXw′ ⇒ w′ ∈ Y ′)} ∈ Pbr.

(1 and 2 above as well as

3′. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈{w ∈ Wbr | ∀w′ ∈ Wbr(wRXw′ ⇒
w′ ∈ X ′)}, {w ∈ Wbr | ∀w′ ∈ Wbr(wRXw′ ⇒ w′ ∈ Y ′)} ∈ Pbr,

4′. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈{w ∈ Wbr | ∃w′ ∈ Wbr(wRXw′fw′ ∈
X ′)}, {w ∈ Wbr | ∃w′ ∈ Wbr(wRXw′ f w′ ∈ Y ′)} ∈ Pbr).
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Clearly, Mbr is a general model for CKFDE (cCL); we call it the
general model CKFDE (cCL) induced by br.

Lemma 4 (Completeness lemma). Suppose that br is a complete open
tableau branch of a tableau in TCKFDE (TcCL), and let 〈Wbr, Rbr, Pbr,

v+
br, v−

br〉 = Mbr be the general model induced by br. Then

• if A, +i occurs on br, then Mbr, wi |=+ A,
• if A, −i occurs on br, then Mbr, wi 6|=+ A,
• if ∼ A, +i occurs on br, then Mbr, wi |=− A,
• if ∼ A, −i occurs on br, then Mbr, wi 6|=− A.

Proof. By induction on the complexity of A. Let A be a propositional
variable, p. If p, +i occurs on br, then Mbr, wi |=+ p, by definition.
If p, −i occurs on br, then p, +i does not occur on br because br is an
open branch. By definition, Mbr, wi 6|=+ p. Similarly, if ∼p, +i occurs
on br, then Mbr, wi |=− p, by definition. If ∼p, −i occurs on br, then
∼p, +i does not occur on br because br is an open branch. By definition,
Mbr, wi 6|=− p. The remaining cases are straightforward and make use
of the fact that br is complete. Here we present only the case that A

has the form B � C and that we are working in TcCL. Thus, suppose
B � C, +i occurs on branch br. By completeness of br, iRBj and C, +j

are on br for some j. By the induction hypothesis, Mbr, wj |=+ C and
wiRbrJBKwj. But then Mbr, wi |=+ B � C. If B � C, −i occurs on
br, then for all j with irBj on br, the node C, −j is on br as well. By the
construction of Mbr and the induction hypothesis, for all wj such that
wiRbrJBKwj, Mbr, wj 6|=+ C. Thus, Mbr, wi 6|=+ B � C. Next, assume
that ∼(B � C), +i occurs on br. By completeness of br, (B � ∼C), +i

is on br and for some j, also irBj and ∼C, +j are on br. By the induction
hypothesis, wiRbrJBKwj and Mbr, wj |=+ ∼C, i.e., Mbr, wj |=− C. Thus,
Mbr, wi |=− (B � C), i.e., Mbr, wi |=+ ∼(B � C). If ∼(B � C), −i

occurs on br, then, by completeness of br, (B � ∼C), −i is on br and for
all wj such that irBj is on br, also ∼C, −j is on br. By the construction
of Mbr and the induction hypothesis, for all wj such that wiRbrJBKwj,
Mbr, wj 6|=+ ∼C, i.e., Mbr, wj 6|=− C. Thus, Mbr, wi 6|=− (B � C), i.e.,
Mbr, wi 6|=+ ∼(B � C).

Remark 4. Note that if M = 〈W, R, P, v+, v−〉 is a general model for
CKFDE (cCL), then M′ = 〈W, R, v+, v−〉 is a model for CKFDE (cCL),
and for every L-formula A and every w ∈ W , M, w |=+ A iff M′, w |=+ A.
The first claim is immediate, and the second follows from the fact that
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the support of truth and support of falsity conditions for M and M′

coincide.

From the previous two lemmas, it follows by familiar reasoning that
for finite premise sets, TCKFDE (TcCL) is sound and complete with
respect to CKFDE (cCL).

Theorem 1. Let ∆∪{A} be a finite set of L-formulas. Then ∆ |=CKFDE

A iff ∆ ⊢TCKFDE
A and ∆ |=cCL A iff ∆ ⊢TcCL A.

Proof. Let ∆ = {B1, . . . , Bn}. If ∆ 6|=CKFDE
A (∆ 6|=cCL A), then there

is a model for CKFDE (cCL) M = 〈W, R, v+, v−〉 and w ∈ W such that
M, w |=+ B for every B ∈ ∆ and M, w 6|=+ A. Any map f from the
set of all natural numbers to W with f(w) = 0 shows M to be faithful
to the list B1, +0, . . . , Bn, +0, A, −0. By the soundness lemma, there
exists at least one branch, br, such that M is faithful to every initial
segment of it. The branch br cannot be closed because otherwise there
is an initial segment of br containing a pair C, +j and C, −j, which con-
tradicts the faithfulness of M. Hence br is open, and thus ∆ 6⊢TCKFDE

A

(∆ 6⊢TcCL A). Conversely, if ∆ 6⊢TCKFDE
A (∆ 6⊢TcCL A), then there

is an open branch, br, of a tableau for B1, +0, . . . , Bn, +0, A, −0. By
the completeness lemma, the induced general model, Mbr, has it that
Mbr, w0 |=+ B for every B ∈ ∆ and Mbr, w0 6|=+ A. By Remark 4, there
is a countermodel to ∆ ⊢TCKFDE

A (∆ ⊢TcCL A).

The proof of the completeness lemma, Lemma 4, did not make use
of the induced set Pbr of admissible extension/anti-extension pairs. To
verify that for finite premise sets, TCKRFDE (TCCL) is not only sound
but also complete with respect to CKRFDE (CCL), we have to make use
of Pbr, which means that we must consider a model based on a general
frame for CKRFDE (CCL).

Theorem 2. ∆ |=CKRFDE
A iff ∆ ⊢TCKRFDE

A and ∆ |=CCL A iff
∆ ⊢TCCL A.

Proof. For soundness it suffices to show that Lemma 3 can be ex-
tended to the logics CKRFDE and CCL, so consider rule RA�A. Sup-
pose that irAj occurs on a tableau branch br and that the function
f shows the model M to be faithful to br. Then f(i)RJAKf(j) and by
condition CA�A, M, f(j) |=+ A, so that f shows M to be faithful
to the extended branch. To prove completeness, it is enough to show
that the frame of the induced general model, Mbr, satisfies CA�A:
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(∀X ⊆ Wbr)(∀wi, wj ∈ Wbr)(wiRbrXwj ⇒ wj ∈ X). By Lemmas 1 and
2 and the definition of Pbr in the general model Mbr, it follows that
Pow(Wbr) = {JAKMbr | A is an L-formula}. Thus, it is enough to show
that for every L-formula A and every wi, wj ∈ Wbr, wiRbrJAKMbr

wj im-

plies wj ∈ JAKMbr . Suppose, wi, wj ∈ Wbr and wiRbrJAKMbr
wj . Then irAj

occurs on br and by completeness of br and rule RA�A, A, +j occurs
on br. Therefore, by Lemma 4, Mbr, wj |=+ A, i.e., wj ∈ JAKMbr .

We have made use of the fact that every general model gives rise
to an equivalent model (Remark 4). There is another tight relationship
between models and general models.

Lemma 5. Let M = 〈W, R, v+, v−〉 by a model for CKFDE (cCL). Then
(1) M′ = 〈W, R, P, v+, v−〉 with P = {〈JAKM, J∼AKM〉 | A is an L-
formula} is a general model for CKFDE (cCL), and (2) for every L-
formula A and every w ∈ W , M, w |=+ A iff M′, w |=+ A.

Proof. To establish (1), it must be shown that P satisfies the con-
ditions 1–4 (1, 2, 3′, 4′) from Definition 3 (Definition 6). 1: Suppose
〈JAK, J∼AK〉 ∈ P . By Lemmas 1 and 2, 〈J∼AK, JAK〉 ∈ P . 2: Sup-
pose 〈JAK, J∼AK〉, 〈JBK, J∼BK〉 ∈ P . Then 〈JAK ∩ JBK, J∼AK ∪ J∼BK〉 =
〈JA ∧ BK, J∼A ∨ ∼BK〉 = 〈JA ∧ BK, J∼(A ∧ B)K〉 ∈ P . The proof of the
second part of 2 is dual. 3 and 4: We consider the case of cCL; the case
of CKFDE is analogous. Assume that 〈JAK, J∼AK〉, 〈JBK, J∼BK〉 ∈ P .
Then 〈{w ∈ W | ∀w′ ∈ W (wRJAKw

′ ⇒ w′ ∈ JBK)}, {w ∈ W | ∀w′ ∈
W (wRJAKw

′ ⇒ w′ ∈ J∼BK)}〉 = 〈JA� BK, J∼(A� B)K〉 ∈ P .
Moreover, 〈{w ∈ W | ∃w′ ∈ W (wRJAKw

′ f w′ ∈ JBK)}, {w ∈ W |
∃w′ ∈ W (wRJAKw

′ f w′ ∈ J∼BK)}〉 = 〈JA� BK, J∼(A� B)K〉 ∈ P .
Claim (2) follows from the fact that the support of truth and support

of falsity conditions for M and M′ coincide.

Note that the properties stated in Lemma 5 generalize facts from
classical Chellas-Segerberg semantics [Unterhuber, 2013, Section 4.3].

The preceding lemma establishes the following observation.

Corollary 1. Let C be a class of frames for CKFDE (cCL) and C′ be
the class of all general frames 〈W, R, P 〉 such that 〈W, R〉 belongs to C.
An L-formula A is valid with respect to C iff A is valid with respect to C′.

Proof. Suppose that A is not valid with respect to C. Then there is a
frame F ∈ C, a model M = 〈W, R, v+, v−〉 based on F, and a w ∈ W with
M, w 6|=+ A. By Lemma 5, for M′ = 〈W, R, P, v+, v−〉, M′, w 6|=+ A.



590 Heinrich Wansing, Matthias Unterhuber

Conversely, suppose that A is not valid with respect to C′. Then there
is a frame F ∈ C′, a general model M = 〈W, R, P, v+, v−〉 based on F,
and a w ∈ W with M, w 6|=+ A. By Remark 4, for M′ = 〈W, R, v+, v−〉,
M′, w 6|=+ A.

Corollary 2. The logic CKFDE (cCL) is the set of all L-formulas valid
with respect to the class of all general models for CKFDE (cCL). The
logic CKRFDE (CCL) is the set of all L-formulas valid with respect to
the class of all general models for CKFDE (cCL) satisfying CA�A.

4. Some properties of the systems cCL and CCL

The system cCL validates Boethius’ theses in rule form:

(A� B) ⊢ ∼(A� ∼B), (A� ∼B) ⊢ ∼(A� B).

Observe that the first principle is not equivalent to (A� B) ⊢ (A�
B), where the latter might be considered a generalization of principle D
from classical modal logic in the following sense: conditionals A � B

and A � B can be interpreted as necessity and possibility statements
of the form [A]B and 〈A〉B, where for each antecedent A a different type
of necessity and possibility is described, respectively.

The soundness of both principles can be shown by the following
tableau proofs in TcCL:

A� B, +0
∼(A� ∼B), −0
A� ∼∼B, −0

0rA1
∼∼B, −1

B, −1
B, +1

×

A� ∼B, +0
∼(A� B), −0
A� ∼B, −0

×

Figure 1 shows that in TCCL Aristotle’s and Boethius’ theses are prov-
able by making use of rule RA�A. Note that Boethius’ theses are nested
conditionals. It is valid despite the fact that system TcCL does not in-
clude principles that specifically allow for inferences between formulas
with different levels of nestings. An example of the latter type of prin-
ciple is the following: conclude A � (A � B) from A � B. The
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∼(A� ∼A), −0
(A� ∼∼A), −0

0rA1
∼∼A, −1

A, −1
A, +1

×

∼(∼A� A), −0
(∼A� ∼A), −0

0r∼A1
∼A, −1
∼A, +1

×

(A� B)� ∼(A� ∼B), −0
0rA�B1

∼(A� ∼B), −1
(A� ∼∼B), −1

1rA2
∼∼B, −2

B, −2
A� B, +1

B, +2
×

(A� ∼B)� ∼(A� B), −0
0rA�∼B1

∼(A� B), −1
(A� ∼B), −1

1rA2
∼B, −2

A� ∼B, +1
∼B, +2

×

Figure 1. Proofs of Aristotle’s and Boethius’ theses in TCCL

latter principle can be rendered valid in TcCL if we require RA to be
transitive, i.e., if iRAj and jRAk then iRAk.

Rather, Boethius’ thesis is valid due to a principle called “supraclas-
sicality” [see, e.g., Schurz, 1998, p. 84; Unterhuber, 2013, p. 278]: infer
A� B if A logically implies B. It is easy to see why Boethius’ theses
can be rendered valid in TcCL by this principle, given that A � B

logically implies ∼(A� ∼B).

Storrs McCall [2012] classifies the principles which he calls “Abelard’s
first principle” and “Aristotle’s second thesis” as connexive principles:

• Abelard’s First Principle: ∼((A → B) ∧ (A → ∼B)),
• Aristotle’s Second Thesis: ∼((A → B) ∧ (∼A → B)).
His classification of both principles as connexive hinges on the idea of
negation as cancellation. In [Wansing and Skurt, 2018] it is argued that
one should not consider these schematic formulas as connexive principles
because the idea of negation as cancelation is conceptually unclear and
should therefore not be used as a basis for any validity claims. In the
connexive logic C, Abelard’s first principle and Aristotle’s second the-
sis fail to be valid, and similarly in CCL, Abelard’s first principle and
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Aristotle’s second thesis fail to be valid for the conditional�. Figure 2
specifies open tableaux for substitution instances of these principles and
thus provides countermodels.

∼((p� q) ∧ (p� ∼q)), −0
∼(p� q) ∨ ∼(p� ∼q), −0

∼(p� q), −0
∼(p� ∼q), −0
(p� ∼q), −0

(p� ∼∼q), −0
0rp1

∼q, −1
p, +1
0rp2

∼∼q, −2
q, −2
p, +2

∼q, −2
∼∼q, −1

q, −1

∼((p� q) ∧ (∼p� q)), −0
∼(p� q) ∨ ∼(∼p� q), −0

∼(p� q), −0
∼(∼p� q), −0
(p� ∼q), −0

(∼p� ∼q), −0
0rp1

∼q, −1
p, +1
0r∼p2
∼q, −2
∼p, +2

Figure 2. Examples of open tableaux

As to Figure 2, a model 〈{0, 1, 2}, R, v+, v−〉 for CCL is a coun-
termodel for ∼((p � q) ∧ (p � ∼q)) if 0RJpK1, 0RJpK2, v+(p) =
{1, 2}, 1 6∈ v+(q), 2 6∈ v+(q), 1 6∈ v−(q), and 2 6∈ v−(q). A model
〈{0, 1, 2}, R, v+, v−〉 for CCL is a countermodel for ∼((p� q) ∧ (∼p�

q)) if 0RJpK1, 0RJ∼pK2, v+(p) = {1}, v−(p) = {2}, 1 6∈ v−(q), 2 6∈ v−(q).

Although the conditional � in CCL is reflexive, it is still a very
weak conditional. It does not, for example, validate Modus Ponens if we
add to cCL the following tableau rule:

RMP A, +i

(A� B), +i

↓
irAi
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we can prove the derivability statement {A, A� B} ⊢ B:

A, +0
A� B, +0

B, −0
0rA0
B, +0

×

The statement {A, A� B} ⊢ B C-corresponds to

CMP (∀X ⊆ W )(∀w ∈ W ) w ∈ X ⇒ wRXw.13

Suppose that M = 〈W, R, v+, v−〉 is a model and that w ∈ W with
M, w |=+ A and M, w |=+ A � B. If CMP holds, then wRJAKw

and thus M, w |=+ B. If CMP is not satisfied, then there is a frame F =
〈W, R〉, X ⊆ W , and w ∈ W such that it is not the case that wRXw. But
there is a model M = 〈W, R, v+, v−〉 with M, w |=+ p, M, w |=+ p� q,

and M, w 6|=+ q for JpK
M

= {w}, and JqK
M

= {w′ | wRJpKMw′} = ∅.

The logic defined as the set of all L-formulas that are valid in the
class of all (Chellas) models satisfying CMP validates Modus Ponens ([cf.
Unterhuber, 2013, Ch. 5] and [Unterhuber and Schurz, 2014]). But even
if we assume both CA�A and CMP and add the rules RA�A and RMP

to TcCL, the conditional � still is much weaker than intuitionistic
implication. We have the following open tableaux in Figure 3.

A� (B � A), −0
0rA1

(B � A), −1
1rB2
A, −2
A, +1
B, +2
1rA1
2rB2

Figure 3. Another open tableau

13 We use here the fact that for the support of truth and support of falsity
conditions of conditionals in models for cCL and CCL (Definition 2), the accessibility
relation R is only relativized to extensions and not to anti-extensions (cf. Remark 1).
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Like the connexive logic C, the system CCL is a non-trivial but in-
consistent logic. Both (A ∧ ∼A) � A and ∼((A ∧ ∼A) � A), for
example, are provable in TCCL.

5. Extension by a constructive conditional  formula-annotated

Lewis-Nelson models  and neutralization-extension logics

In this section, we aim to contrast our approach with two recent alter-
natives. This comparison serves then as a motivation for constructive
versions cCCL and CCCL (Section 6) of the logics cCL and CCL, re-
spectively (Sections 2–4). We will first focus on the constructive con-
ditional logic by Kapsner and Omori [2017] in terms of what we shall
call “formula-annotated Lewis-Nelson models” and then turn to a recent
alternative approach concerning restrictedly connexive conditional logics
by Vidal [2017b], who presents a semantics of conditionals in terms of
so-called neutralization and extension functions.

The logic FDE lacks a conditional that satisfies Modus Ponens. This
may be seen as a defect, which is overcome in David Nelson’s four-
valued constructive logic with strong negation N4, which results from
FDE by adding a constructive implication, →. The system N4 is both
paracomplete (in the sense that A∨∼A is not valid) and paraconsistent.
If we add → to our language L, we obtain the language L→, which is
given by the following grammar:14

A := p | ∼A | (A ∧ A) | (A ∨ A) | (A → A) | (A� A) | (A� A).

14 The language L adds two binary connectives to the vocabulary of FDE: �
and�. Insofar as constructive implication, →, is a kind of strict Boolean implication
with respect to support of truth, interpreted by restricted universal quantification over
information states, one might think of adding another binary connective  that is
interpreted with respect to support of truth and support of falsity as follows:

M, w |=+ A B iff for some w′ ∈ W such that w ≤ w′ it holds that M, w 6|=+

A or M, w |=+ B

M, w |=− A B iff M, w |=+ A and M, w |=− B.

But the support of truth and the support of falsity conditions for → in N4 exhibit
a certain asymmetry. The support of truth conditions are “dynamic” and refer to
states different from the state of evaluation, whereas the support of falsity conditions
are “static” and evaluate an implication “on the spot”. So maybe it is not clear how
to formulate the support of falsity conditions for formulas A → B. A discussion of
various such conditions can be found in [Wansing, 2008].



Connexive conditional logic. Part I 595

Recently, Kapsner and Omori [2017] suggested to add a restrictedly
connexive conditional, � (written as ⊐), to Nelson’s three-valued logic
N3, which is paracomplete but not paraconsistent.15 It is well-known
that if the modification of the support of falsity-conditions for the con-
structive implication that leads from N4 to the connexive logic C is
applied to N3, the result is the trivial system in the language of N3. In
order to avoid triviality, Kapsner and Omori impose a consistency con-
straint on both the support of truth and the support of falsity conditions
for�. The following definition presents their formula-annotated Lewis-
Nelson models in a way that facilitates comparison with the models based
on Chellas frames for CCL. With notational adjustment, Kapsner and
Omori thus consider the language L−

→, given by the following grammar:

A := p | ∼A | (A ∧ A) | (A ∨ A) | (A → A) | (A� A).

Definition 17. A formula-annotated Lewis-Nelson model is a structure
M = 〈W, ≤, {RA | A is an L−

→-formula}, v+, v−〉, where W is a non-
empty set (of states), ≤ is a partial order on W , {RA | A is an L−

→-
formula} is a collection of binary relations on W , and v+ and v− are
valuation functions v+ : PV −→ Pow(W ) and v− : PV −→ Pow(W ).
For all p ∈ PV and for all w, w′ ∈ W , (i) v+(p) ∩ v−(p) = ∅, and (ii) if
w ∈ v∗(p) and w ≤ w′, then w′ ∈ v∗(p), for ∗ ∈ {+, −}, and the relations
RA satisfy the following conditions, where fA(w) := {w′ ∈ W | wRAw′}:

1. fA(w) ⊆ JAK (i.e., (∀w, w′ ∈ W )wRAw′ ⇒ w′ ∈ JAK).
2. If w ∈ JAK, then w ∈ fA(w) (i.e., (∀w ∈ W )w ∈ JAK ⇒ wRAw).
3. If JAK 6= ∅, then fA(w) 6= ∅.
4. If fA(w) ⊆ JBK and fB(w) ⊆ JAK, thenfA(w) = fB(w).
5. If fA(w) ∩ JBK = ∅, then fA∧B(w) ⊆ fB(w).
6. If w ∈ JAK and w′ ∈ fA(w), then w = w′.

The support of truth and support of falsity conditions in formula-anno-
tated Lewis-Nelson models coincide with those from Definition 2, except
that

M, w |=+ A → B iff for all w′ ∈ W such that w ≤ w′ it holds that
M, w′ 6|=+ A or M, w′ |=+ B

M, w |=− A → B iff M, w |=+ A and M, w |=− B

15 For the Lewis part of their semantics, Kapsner and Omori refer to Priest [2008].
However, a definition of Lewis-type models based on a set selection function rather
than a formula-annotated selection function (see below) can be found in [Delgrande,
1987, 1988]; for a critical discussion of Delgrande’s approach see [Schurz, 1998].
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M, w |=+ A� B iff for some w′ ∈ W , wRAw′ and for all w′ ∈ W

such that wRAw′ it holds that M, w′ |=+ B

M, w |=− A� B iff for some w′ ∈ W , wRAw′ and for all w′ ∈ W

such that wRAw′ it holds that M, w′ |=− B.

Moreover, if M = 〈W, ≤, {RA | A is an L−
→-formula}, v+, v−〉 is a for-

mula-annotated Lewis-Nelson model, then the structure F = 〈W, ≤, {RA|
A is an L−

→-formula}〉 is said to be a formula-annotated Lewis-Nelson
frame, and M is said to be based on F.

We refer to Kapsner and Omori’s Lewis-Nelson models as “formula-
annotated Lewis-Nelson models” for the following reason: The set se-
lection function version of Lewis’ [1973] semantics for counterfactuals is
based on a set selection function that assigns sets of possible worlds to
ordered pairs of worlds and sets of worlds (i.e., propositions, cf. Sec-
tion 2.3) rather than pairs of worlds and formulas (formula-annotated),
where Kapsner and Omori use the latter approach. In addition, Lewis’
preferred semantics is not based on a set selection function. Rather, in his
semantics different semantic structures are used that allows for infinite
descending chains of possible worlds, thereby rejecting Stalnaker’s limit
assumption which is implicit in set selection functions (Section 1.4; cf.
[Unterhuber, 2013, p. 75]). The fact that Lewis’ semantics admits such
infinite descending chains makes it also misleading to characterize Lewis’
semantics in terms of closest possible worlds, insofar it is not guaranteed
that such a set of possible worlds always exists. Lewis specifies a set
selection variant of his semantics just to contrast his preferred semantics
with alternatives. We only use the modifier “formula-annotated” though,
since the use of this modifier should suffice to indicate that the semantics
above differs in essential ways from Lewis’ semantics.

Note that the conditions 1–6 are not purely structural insofar as they
exhibit L−

→-formulas. Due to condition (i), the semantics gives rise to a
system that fails to be paraconsistent. Moreover, for no formula A is it
the case that a state supports both the truth and the falsity of A. Since
condition (1) is assumed, which is similar to CA�A, the constraint in
the support of truth and the support of falsity conditions for formulas
A� B that for some w′ ∈ W , wRAw′ restricts the support of truth and
the support of falsity conditions of conditionals A � B to consistent
antecedents A for which JAK 6= ∅. Validity is defined as support of
truth at any state of any formula-annotated Lewis-Nelson model, and
the entailment relation, |=, between sets of formulas and single formulas
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is defined in terms of preservation of support of truth: ∆ |= A iff for
all models M = 〈W, ≤, {RA | A is a formula}, v+, v−〉 and all w ∈ W , it
holds that M, w |=+ A if M, w |=+ B for all B ∈ ∆.

Since formula-annotated Lewis-Nelson frames 〈W, ≤, {RA | A is an
L−

→-formula}〉 as defined by Kapsner and Omori use binary relations RA

on W , the semantics does not, however, allow for a purely structural
correspondence theory based on frames (or general frames), making use
of conditions that do not refer to formulas A.

Kapsner and Omori’s semantically defined system has a number of
noteworthy properties:

• The conditional � is not reflexive: (A ∧ ∼A) � (A ∧ ∼A) is not
valid.

• Simplification fails for� as neither (A∧∼A)� A nor (A∧∼A)�
∼A is valid. Actually, for no formula B, (A ∧ ∼A) � B is valid;
contradictio nihil implicat.

• Moreover, for no formula B, ((A ∧ ∼A)� (A ∧ ∼A))� B is valid.
• Weakening fails for � as p� p is valid, but (p ∧ ∼p)� p is not,

and the logic is not closed under substitution because p� p is valid,
but (p ∧ ∼p)� (p ∧ ∼p) is not.

• The constant U, the truth of which is never supported and the falsity
of which is never supported, can be defined, for example, by (p ∧
∼p)� (p ∧ ∼p) for some p ∈ PV. Aristotle’s theses and Boethius’
theses ∼(A � ∼A), ∼(∼A � A), (A � B) � ∼(A � ∼B),
and (A � ∼B) � ∼(A � B) fail to be valid in Kapsner and
Omori’s system if A is instantiated by U or by a formula of the shape
A ∧ ∼A.16

In addition to the lack of a purely structural correspondence theory,
the semantics in terms of formula-annotated Lewis-Nelson models may
be seen to have at least two other drawbacks. Kapsner and Omori [2017,
p. 504] motivate adding their restrictedly connexive conditional to N3 in-
stead of N4 by remarking that “the move to the N4-based logic works well
technically, but philosophically is a doubtful one”. This may be clearly
criticized. There is no convincing reason to prefer truth value gaps over
truth value gluts, and to prefer paracompleteness over paraconsistency
in principle when it comes to information processing, and it is not with-
out reason that FDE, Belnap and Dunn’s useful four-valued logic, and

16 Weak versions of Boethius’ theses, however, are valid: (A � B) → ∼(A �
∼B), and (A� ∼B) → ∼(A� B).
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Nelson’s N4 treat verification and falsification on a par. On the contrary,
the four-valued semantics is well-motivated and natural not only from
the point of view of information processing but also from the point of
view of proof-theoretic semantics [cf. Wansing, 2016, 2017]. Moreover,
the property contradictio nihil implicat echoes the idea of negation as
cancellation. If the cancellation model of negation is meant to justify
contradictio nihil implicat, this is a very problematic justificatory base
[see Wansing and Skurt, 2018].

Let us now focus on Vidal’s [2017b] alternative approach. Vidal
defines a restrictedly connexive logic by building on [Vidal, 2017a] and
uses a type of formula-annotated selection function.17 Due to that, sev-
eral points of criticism of Kapsner and Omori [2017] hold also for Vidal’s
logic, such as the lack of a purely structural correspondence theory. Vidal
constructs his variant of a formula-annotated selection function by the
use of two functions, where the image of the first function serves as one
of two arguments for the second function. The first function maps worlds
and sets of formulas to sets of worlds (neutralization function) and the
second function assigns sets of worlds to pairs of sets of worlds and sets
of formulas (expansion function). Although the general semantics allows
for a third truth value, its application concerning conditionals assumes
only the two classical truth values. Moreover, no nested conditionals are
allowed, i.e., for A � B to be a formula, A and B are not allowed to
contain the conditional connective �.

The core idea of the neutralization function is to abstract from the
truth values of formulas at the given world. In that respect, Vidal fol-
lows Gärdenfors’ [1988] treatment of counterfactuals in the framework of
AGM belief revision. Gärdenfors argues that for determining the truth
conditions of counterfactuals we have to abstract from the truth values as
given in our world first. For the evaluation of conditionals, Vidal requires
the image of the neutralization function only to be determined by the set
of atomic proposition occurring in the antecedent of a conditional.18 The
resulting set is then mapped by the extension function to a set of possible
worlds, relative to sets of formulas which only contain the antecedent.

17 In contrast to formula-annotated selection functions as described above, this
type of selection function takes worlds and sets of formulas as arguments rather than
worlds and formulas.

18 For the formal details we rely here on Vidal’s [2017a] rather than his [2017b].
Vidal [2017a] also puts additional restrictions on the neutralization and expansion
function, which we do not discuss here.
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The conditional is true iff the image of the neutralization function is not
empty and the set assigned by the extension function is a subset of the
set of worlds in which the consequent is true. Vidal [2017b] describes
then two ways in which a restrictedly connexive system can be achieved,
based on this system. The first strategy requires for a conditional to be
true that the set of worlds assigned to the antecedent and consequent by
a model are neither allowed to be empty nor the whole set of possible
worlds (restricted to the bivalent case). The second strategy is to in-
troduce a contingency operator. The result of applying the contingency
operator to a formula is true only if the respective formula is neither
true at all worlds nor false at all worlds. Connexive principles hold then
only if the antecedent and consequent are contingent as specified by the
contingency operator. This strategy follows the treatment of connexive
logics by Lewis [1973] and Priest [1999], who restrict connexive principles
to cases in which the antecedent is possible.

Vidal’s strategy is, however, unsatisfactory from a logical standpoint.
In the latter two approaches, connexive principles are logically valid
only if the antecedent is logically true, since for any other formula we
can construct a model in which it is false, thus in a sense trivializing
connexive principles from a logical point of view [see Unterhuber, 2016].
Note that Vidal fares actually worse since he requires the antecedent to
be contingent rather than merely possible. Thus, no connexive principle
seems to be logically valid in his semantics, although they can be valid
in particular models.

In sum, both approaches  Kapsner and Omori’s on the one hand
and Vidal’s on the other  do not yield a fully adequate connexive logic.
In fact, in our terminology Vidal’s system is not a connexive logic since it
does not validate Aristotle’s and Boethius’ theses in full generality. Also,
Kapsner and Omori’s logic is only weakly connexive since it validates
the rule form of Boethius’ theses but fails to validate the unrestricted
versions.

6. Extension by a constructive conditional: the constructive

weakly connexive, respectively connexive logics cCCL and CCCL

Having introduced the weakly connexive, respectively, connexive logics
cCL and CCL in Sections 2–4, we now aim to expand these logics by
including a constructive conditional. In this regard, we follow Kapser
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and Omori insofar as they employ two conditionals, a (weakly) connexive
one and a constructive one (see Section 5). The resulting constructive
(weakly) connexive logics are named “cCCL” and “CCCL”, respectively,
and are formulated in the expanded language L→ (see Section 5). We
do not strive to expand these systems, as Kaspner and Omori do, by
making the respective proof theory for conditionals� and� stronger,
but build for our system on [Priest, 2008] and [Wansing, 2005].

The use of a binary relation, ≤, for interpreting the constructive
implication, and of relations RX for every set of states X , requires a
decision on how to extend the persistence (alias heredity, alias mono-
tonicity) requirement from N4, i.e., condition (ii) from Definition 17:
(∀w, w′ ∈ W ) if w ∈ v∗(p) and w ≤ w′, then w′ ∈ v∗(p), for ∗ ∈ {+, −},
to all L→-formulas. Various options for guaranteeing persistence in in-
tuitionistic modal logics are carefully discussed and compared with each
other in [Simpson, 1994, Section 3.3]. A choice must be made between
modifying the semantic evaluation clauses, imposing conditions on the
interaction between the relations that are part of the models, or a com-
bination of both approaches. Here we follow the first approach and use
the conditions employed in [Bošić and Došen, 1984; Došen, 1985].

Definition 18. A constructive frame is a structure 〈W, R, ≤〉, where
〈W, R〉 is a Chellas frame (Definition 1) and

1. ≤ is a reflexive and transitive binary relation on W ,
2. (∀X ⊆ W ) (≤ ◦RX) ⊆ (RX◦ ≤),
3. (∀X ⊆ W ) (≤−1 ◦RX) ⊆ (RX◦ ≤−1),

where ‘◦’ stands for the composition of binary relations. If 〈W, R, ≤〉
is a constructive frame, then M = 〈W, R, ≤, v+, v−〉 is a constructive
model iff v+ and v− are valuation functions v+ : PV −→ Pow(W ) and
v− : PV −→ Pow(W ) such that if w ∈ v∗(p) and w ≤ w′, then w′ ∈
v∗(p), for ∗ ∈ {+, −}.

Definition 19. A constructive model M = 〈W, R, ≤, v+, v−〉 is a model
for cCCL iff support of truth and support of falsity relations |=+ and
|=− between M, states w ∈ W , and formulas from L→ are inductively
defined as in Definition 5, and using Nelson’s clauses for the constructive
implication, i.e.:

M, w |=+ A → B iff for all w′ ∈ W such that w ≤ w′ it holds that
M, w′ 6|=+ A or M, w′ |=+ B

M, w |=− A → B iff M, w |=+ A and M, w |=− B.
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Lemma 6 (Persistence). Let M = 〈W, R, ≤, v+, v−〉 be a model for cCCL.
Then for every w, w′ ∈ W and every L→-formula A, it holds that if
w ≤ w′ and M, w |=∗ A, then M, w′ |=∗ A, for ∗ ∈ {+, −}.

Proof. Since persistence is known to hold for N4, it suffices to consider
formulas of the form A � B and of the form A � B. Consider a
formula of the form A � B and suppose that w ≤ w′ as well as (*)
M, w |=+ A � B. Let v be an arbitrary state from W such that
w′RJAKv. Then 〈w, v〉 ∈ ≤ ◦RJAK. By condition 2, 〈w, v〉 ∈ RJAK◦ ≤.
There thus exists u ∈ W such that wRJAKu and u ≤ v. By (*), M, u |=+

B, and by the induction hypothesis applied to B, M, v |=+ B. Therefore,
M, w′ |=+ A � B. Next, consider a formula of the form A � B and
suppose that w ≤ w′ as well as (**) M, w |=+ A� B. Then there exists
v ∈ W with wRJAKv and M, v |=+ B. Since 〈w′, v〉 ∈ ≤−1 ◦RJAK, by
condition 3, 〈w′, v〉 ∈ RJAK◦ ≤−1. There thus exists u ∈ W with w′RJAKu

and v ≤ u. By the induction hypothesis applied to B, M, u |=+ B.
Hence, there exists u ∈ W with w′RJAKu and M, u |=+ B. In other
words M, w′ |=+ A � B. The reasoning for M, w |=− A � B and
M, w |=− A� B is similar.

We next define general frames and general models for cCCL.

Definition 20. A quadruple 〈W, R, ≤, P 〉 is a general frame for cCCL

iff 〈W, R, ≤〉 is a constructive frame, 〈W, R, P 〉 is a general frame for cCL

(Definition 6) and P in addition satisfies the following condition:

5. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ P , then 〈{w ∈ W | ∀w′ ∈ W (w ≤ w′ ⇒ (w′ 6∈ X

or w′ ∈ X ′))}, {w ∈ W | w ∈ X f w ∈ Y ′)}〉 ∈ P .

Definition 21. Let 〈W, R, ≤, P 〉 be a general frame for cCCL. The tuple
〈W, R, ≤, P, v+, v−〉 is a general model for cCCL iff 〈W, R, ≤, v+, v−〉 is
a constructive model and 〈JpK, J∼pK〉 ∈ P for every p ∈ PV. Support of
truth and support of falsity relations |=+ and |=− are defined as in the
case of models for cCCL.

Lemma 7. Let 〈W, R, ≤, P, v+, v−〉 be a general model for cCCL. Then
for every L→-formula A, 〈JAK, J∼AK〉 ∈ P .

Proof. By induction on the complexity of A. We consider the case not
already treated before. Let A be a formula B → C and assume that
〈JBK, J∼BK〉 ∈ P and 〈JCK, J∼CK〉 ∈ P . Then by 5, 〈{w ∈ W | ∀w′ ∈
W (w ≤ w′ ⇒ (w′ 6∈ JBK or w′ ∈ JCK))}, {w ∈ W | w ∈ JBK f w ∈
J∼CK)}〉 ∈ P . By Definition 19, 〈JB → CK, J∼(B→C)K〉 ∈ P .
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Eventually, we define our basic constructive conditional logics.

Definition 22. The logic cCCL (CCCL) is the set of all L→-formulas
valid with respect to the class of all models for cCCL (all models for
cCCL that satisfy CA�A). If a model, general frame, or general model
for cCCL satisfies CA�A it will be called a model, general frame, or
general model, respectively, for CCCL.

We define tableau calculi for cCCL and CCCL that generalize the
tableau calculi for cCL and CCL. Tableau nodes may now also consist
of expressions of the form iRj, to be understood as i ≤ j (“state j is
a possible expansion of state i”). We introduce certain non-operational
tableau rules and tableau rules for formulas (A → B). The latter rules
(notation adjusted) can also be found in [Priest, 2008, p. 176].

Definition 23. The tableau calculi TcCCL and TCCCL are obtained
from the tableau systems TcCL and TCCL, respectively, by adding the
following tableau rules:

(ref ) ·
↓

iRi

(tran) iRj

jRk

↓
iRk

(per+) p, +i

iRj

↓
p, +j

(per−) ∼p, +i

iRj

↓
∼p, +j

(per�) iRj

jrAk

↓
irAl

lRk

(per♦) jRi

jrAk

↓
irAl

kRl

(A → B), +i

iRj

ւց
A, −j B, +j

(A → B), −i

↓
iRj

A, +j

B, −j

∼(A → B), +i

↓
A, +i

∼B, +i

∼(A → B), −i

ւց
A, −i ∼B, −i

The rule (ref ) captures the reflexivity of ≤ and can be applied to any
natural number on the tableau. The rule (tran) captures the transitivity
of ≤, and it is well-known that the presence of this rule may lead to
infinite tableau branches (in tableaux for modal logics, and in tableaux
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for TcCL and TCCL as well). The rules (per+) and (per−) secure persis-
tence for propositional variables and their negations. The rules (per�)
and (per♦), where the number l must be new, reflect the conditions
that secure persistence for arbitrary formulas (by ensuring persistence
for formulas A� B and A� B), i.e., (∀X ⊆ W ) (≤ ◦RX) ⊆ (RX◦ ≤)
and (∀X ⊆ W ) (≤−1 ◦RX) ⊆ (RX◦ ≤−1), respectively. Also the number
j in the rule for (A → B), −i must be new.

Definition 24. Let M = 〈W, R, ≤, v+, v−〉 (M = 〈W, R, ≤, P, v+, v−〉)
be any model (general model) for cCCL and let br be a tableau branch.
The model M is said to be faithful to br iff there is a function f from
the set of all natural numbers to W such that the conditions 1–3 from
Definition 14 are satisfied and, moreover:

4. for every node jRk on br, f(j) ≤ f(k).

The function f is said to show that M is faithful to branch br.

Lemma 8 (Soundness lemma). Let M = 〈W, R, ≤, v+, v−〉 (resp. M =
〈W, R, ≤, P, v+, v−〉) be any model (resp. general model) for cCCL and
br be any tableau branch of a tableau in TcCCL. If M is faithful to
br and a tableau rule is applied to br, then the application produces at
least one extension br′ of br, such that M is faithful to br′.

Proof. By induction on the construction of tableaux. For applications
of the rules (ref ), (tran), (per+), and (per−) an appeal to the induction
hypothesis, the reflexivity, respectively transitivity of ≤, and the persis-
tence of propositional variables and their negations suffices to establish
the claim. The case of the tableau rules for formulas (A → B) is dealt
with in [Priest, 2008, p. 115]; the case of the tableau rules for formulas
∼(A → B) uses the induction hypothesis and the definition of support
of truth and support of falsity for such formulas. Consider the rules that
reflect the properties 2 and 3 from Definition 18. (per�): Suppose that
iRj and jrAk occur on br and that f shows M to be faithful to br. Then
f(i) ≤ f(j) and f(j)RJAKf(k). By condition 2, there exists u ∈ W with
f(i)RJAKu and u ≤ f(k). The function f ′ that is exactly like f except
that f ′(l) = u shows that M is faithful to the extension of br by irAl and
lRk. (per♦): Let jRi and jrAk occur on br and suppose hat f shows M

to be faithful to br. Then f(j) ≤ f(i) and f(j)RJAKf(k). By condition 3,
there exists u ∈ W with f(i)RJAKu and f(k) ≤ u. The function f ′ that
is exactly like f except that f ′(l) = u shows that M is faithful to the
extension of br by irAl and kRl.
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Since conditions referring to arbitrary subsets of the set of all states
are built into the definition of a constructive frame, we have to consider
admissible extension/anti-extension pairs already in the completeness
lemma for cCCL.

Definition 25. Let br be a complete open tableau branch, and let
〈Wbr, Rbr, Pbr, v+

br, v−
br〉 be the general model for cCL induced by br. Then

the structure Mbr = 〈Wbr, Rbr, ≤br, Pbr, v+
br, v−

br〉 induced by br is defined
by imposing the following conditions, in addition to conditions 1, 2, 3′,
and 4′ from Definition 16:

• wj ≤br wk iff jRk occurs on br,
5. if 〈X, Y 〉, 〈X ′, Y ′〉 ∈ Pbr, then 〈{w ∈ Wbr | ∀w′ ∈ Wbr(w ≤ w′ ⇒

(w′ 6∈ X or w′ ∈ X ′))}, {w ∈ Wbr | w ∈ X f w ∈ Y ′)}〉 ∈ Pbr.

That is, Pbr is the smallest subset of ( Pow(W ) × Pow(Wbr)) such that
the all of the above conditions are satisfied.

Lemma 9. The structure Mbr = 〈Wbr, Rbr, ≤br, Pbr, v+
br, v−

br〉 is a general
model for cCCL.

Proof. The rules (ref ) and (tran) guarantee that ≤br is a preorder,
and the rules (per+) and (per−) make sure that persistence holds for
propositional variables and their negations. It remains to show that
the conditions 2 and 3 from Definition 18 are satisfied. By Lemma
7 and the definition of Mbr, it follows that Pow(Wbr) = {JAKMbr |
A is an L→-formula}. 2: Suppose that 〈wi, wk〉 ∈ ≤br ◦RbrJAK. Then
there is a j ∈ N with iRj and jrAk on branch br. Therefore, for some
l ∈ N, wiRbrJAKwl and wl ≤br wk, and thus 〈wi, wk〉 ∈ RbrJAK◦ ≤br. The
case of condition 3 is analogous.

We call Mbr = 〈Wbr, Rbr, ≤br, Pbr, v+
br, v−

br〉 the general model induced
by br.

Lemma 10 (Completeness lemma). Suppose that br is a complete open
tableau branch of a tableau in TcCCL, and let Mbr = 〈Wbr, Rbr, ≤br,

Pbr, v+
br, v−

br〉 be the general model induced by br. Then

• If A, +i occurs on br, then Mbr, wi |=+ A.
• If A, −i occurs on br, then Mbr, wi 6|=+ A.
• If ∼ A, +i occurs on br, then Mbr, wi |=− A.
• If ∼ A, −i occurs on br, then Mbr, wi 6|=− A.
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Proof. By induction on the complexity of A. In view of the proof
of Lemma 4, it is enough to consider the case of formulas of the form
(B → C). This case is treated in [Priest, 2008, Chapter 9].

As in the case of Theorem 1, from the soundness and completeness
lemmas, it follows that for finite premise sets, TcCCL is sound and
complete with respect to cCCL.

Theorem 3. Let ∆∪{A} be a finite set of L-formulas. Then ∆ |=cCCL A

iff ∆ ⊢TcCCL A.

Remark 5. If M = 〈W, R, ≤, P, v+, v−〉 is a general model for cCCL,
then (i) M′ = 〈W, R, ≤, v+, v−〉 is a model for cCCL, and (ii) for every
L→-formula A and every w ∈ W , M, w |=+ A iff M′, w |=+ A.

In analogy to the proof of Theorem 2, we obtain a characterization
result for CCCL.

Theorem 4. ∆ |=CCCL A iff ∆ ⊢TCCCL A.

The relationship between models and general models stated in Lemma 5
extends to the case of CCCL.

Lemma 11. Let M = 〈W, R, ≤, v+, v−〉 by a model for CCCL. Then
(1) M′ = 〈W, R, ≤, P, v+, v−〉 with P = {〈JAKM, J∼AKM〉 | A is an
L→-formula} is a general model for CCCL, and (2) for every L→-formula
A and every w ∈ W , M, w |=+ A iff M′, w |=+ A.

Proof. To establish (1), it remains to be shown that P satisfies con-
dition 5 from Definition 20. Assume that 〈JBK, J∼BK〉 and 〈JCK, J∼CK〉
belong to P . Since 〈JB → CK, J∼(B → C)K〉 belongs to P and 〈JB → CK,
J∼(B → C)K〉 = 〈{w ∈ W | ∀w′ ∈ W (w ≤ w′ ⇒ (w′ 6∈ JBK or w′ ∈
JCK))}, {w ∈ W | w ∈ JBK f w ∈ J∼CK)}〉 ∈ P , condition 5 is satisfied.

Claim (2) follows from the fact that the support of truth and support
of falsity conditions for M and M′ coincide.

We obtain the following two corollaries.

Corollary 3. Let C be a class of frames for cCCL and C′ be the class
of all general frames 〈W, R, ≤, P 〉 such that 〈W, R ≤〉 belongs to C. An
L→-formula A is valid with respect to C iff A is valid with respect to C′.

Corollary 4. The logic cCCL (CCCL) is the set of all L→-formulas
valid with respect to the class of all general models for cCCL (CCCL).
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Remark 6. Simpson [1994] criticizes that Bošić and Došen’s [1984; 1985]
intuitionistic modal logics violate certain desiderata which truly intu-
itionistic systems of modal logic ought to satisfy. These are his Require-
ment 4, saying that if A∨B is a theorem of an intuitionistic modal logic,
then so is either A or B (that is, the disjunction property holds), and
Requirement 5, according to which �A (“it is necessary that A”) and ♦A

(“it is possible that A”) are independent and not mutually definable as in
normal modal logics based on classical propositional logic. In Bošić and
Došen’s systems, however, ♦A ∨ �∼A and ♦A ↔ ∼�∼A are theorems.
Note that in cCCL and CCCL, neither (A � B) ∨ (A � ∼B) nor
(A� B) ↔ ∼(A� ∼B) are theorems.

7. Future work

The present first part of this paper focuses on the basic weakly con-
nexive, respectively connexive conditional logics cCL and CCL and on
tableau calculi that translate the relational semantics of cCL and CCL

into tableau rules. We have seen that in extensions of cCL obtained
by imposing frame conditions, we have to consider general frames to
make the completeness lemma work. Moreover, it was noted that if we
follow the tradition in conditional logic and use accessibility relations
R ⊆ W × W × Pow(W ), which makes the present approach more eas-
ily comparable to earlier work in conditional logic, there are axiomatic
extensions of CKFDE and cCL that can be captured only by imposing
general frame conditions.

The logics cCL and CCL are weak, and one immediate task for further
investigations is to develop axiom systems for cCL and CCL as well as
axiomatic extensions of these calculi and to investigate correspondences
between additional axioms and frame conditions. An analogous devel-
opment can be carried out for the systems cCCL and CCCL with two
kinds of conditionals. These are topics that are left for a second part of
the paper.
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