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JERZY ŁOŚ POSITIONAL CALCULUS
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Abstract. Most accounts, including leading textbooks, credit Arthur Nor-
man Prior with the invention of temporal (tense logic). However, (i) Jerzy
Łoś delivered his version of temporal logic in 1947, several years before
Prior; (ii) Henrk Hiż’s review of Łoś’s system in Journal of Symbolic Logic

was published as early as 1951; (iii) there is evidence to the effect that, when
constructing his tense calculi, Prior was aware of Łoś’s system. Therefore,
although Prior is certainly a key figure in the history tense logic, as well
as modal logic in general, it should be accepted both in the literature that
temporal logic was invented by Jerzy Łoś.
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A significant number of books and papers, concerning the origin of
temporal logic, have been published by prominent publishing houses and
prestigious journals for twenty five years. In the vast majority of those
works Arthur Norman Prior has been considered the inventor or the dis-
coverer of temporal logic, whereas Jerzy Łoś is not even mentioned [cf.,
e.g., Øhrstrøm and Hasle, 1993, 1995, 2006a,b]. However, having rec-
ognized Prior’s contribution to be crucial and irreplaceable, one should
admit fairly that it is Łoś who invented the logic of time. That means
particularly that (i) Łoś constructed, described and examined the first
mature calculus of temporal logic and (ii) Prior was aware of and inspired
by Łoś’s ideas when beginning his own work in the field. The objective
of this paper is to justify those claims.
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1. Łoś’s master’s thesis

Jerzy Łoś, a Polish philosopher, was born on March 22 in Lwów (today
Lviv in Ukraine) and died of a cerebral stroke on June 1 1998 in Warsaw
(he was baptized as Jerzy Maria Michał which is the Polish equivalent
of George Mary Michael, and his surname ‘Łoś’ should be pronounced
as something between ‘wos’ and ‘wosh’, because Polish ‘ś’ sounds similar
to the opening ‘s’ in English ‘sure’, while ‘ł’ is always equal to the ‘w’ in
‘water’).

Before the World War II he studied in Lwów: first medicine and then
philosophy and chemistry. During the war he was an office worker in a
sugar factory in Lublin (Poland). Straight after the war he completed
his courses and took a master’s degree in philosophy from the newly-
established Maria Curie-Skłodowska University in Lublin.

Łoś’s master’s thesis was entitled “Analiza metodologiczna kanonów
Milla” (A methodological analysis of Mill’s canons) and was supervised
by Jerzy Słupecki, an eminent disciple of Jan Łukasiewicz. An improved
version of the thesis was entitled “Podstawy analizy metodologicznej ka-
nonów Milla” [Łoś, 1947] (English version: “Foundations of the method-
ological analysis of Mill’s canons” [Łoś, 1977]) and published in Polish (in
1948) in a predated volume of a local university journal. It should be em-
phasised that it is this very master’s thesis which contains Łoś’s temporal
calculus and marks the origin of temporal logic. As early as 1951 Henryk
Hiż published an English review of Łoś’s work, thereby familiarising the
global logical community with the newly-invented logic of time.

Having graduated in philosophy, Łoś became an assistant to Słupecki,
however, as early as the end of 1947 Słupecki left Lublin for Wrocław
(now situated in the west of Poland after the post-war redrawing of land
boundaries) where he accepted the position of Chair of Mathematical
Logic in the Institute of Mathematics, in the newly-established Univer-
sity of Wrocław. Together with Słupecki, Łoś moved to Wrocław as
well. Having moved to Wrocław (and then to Toruń and Warsaw), Łoś
abandoned his former interests and concentrated on metamathematics,
algebra, and then applications of mathematics in economy and computer
science. He was never to return to either temporal logic or philosophy
of natural sciences. Logic owes many outstanding contributions to his
move, such as Łoś’s ultraproducts theorem, but the deserted logic of time
became likely to shortly forget its inventor.
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2. Łoś’s language

The underlying logic of Łoś’s calculus is Standard Logic with quantifiers
ranging over any kind of variables (including propositional). It must be
said that Łoś is not perfectly clear about the language and the logic he
applies. He clearly uses all classical theorems and rules with respect to
Boolean connectives and to quantifiers ranging over individual variables
as well as propositional variables. However, it is not always clear in
what context those operations are allowed. In what follows we attempt
to reconstruct the exact, precise logic Łoś involves. The calculus Łoś uses
as his underlying logic for his system seems intermediate between Clas-
sical Propositional Logic (shortly: CPL) and Leśniewski’s full-blooded
protothetics [cf. Słupecki, 1953]. Although Łoś speaks literally of the
term variables without quantifying [cf. Łoś, 1947, p. 280 (303)],1 the full
theory of quantification is actually to be found here.

Begin with the language of CPL, containing propositional variables,
parentheses and the connectives of negation ‘¬’, conjunction ‘∧’, dis-
junction ‘∨’, conditional ‘→’ and equivalence ‘≡’ (this is also the order
of connectives in absence of parentheses, and any other one-place con-
nectives will go first).

Enrich the language with the quantifiers, universal ‘∀’ and particular
‘∃’. The quantifiers are classical with the qualification that they range
over variables of any kind. It is a similar qualification to that which
applies to second-order logic, but the propositional variables are also
included. Well-known examples of theorems of the propositional calculus
with quantifiers are the formulas ‘∃p p’ and ‘∀p∃q(p ≡ q)’. Actually,
Leśniewski allows also connective variables. This would constitute the
system E of elementary protothetics, but Łoś makes no use of them.

Such a language is to be further enriched with the full variety of
first-order terms, including functions. As it has been already mentioned
quantifiers range over term variables as well. The terms may designate
instants of time as well as time intervals, so the first-order part of the
language is actually many sorted [cf. Łoś, 1947, p. 279 (303)].

Finally, specific connectives are to be added: ‘R’ and ‘δ’. The symbol
‘R’ is the connective of temporal realization. Using Łukasiewicz’s Pol-
ish notation, Łoś was using the uppercase letter ‘U’ as a connective of

1 We use the original version of Łoś’s paper and translate it where required,
but we also provide in parentheses all the page references to the published English
translation.
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temporal realization, to the effect that pUαϕq means that a formula ϕ
occurs at the instant α (where α being a term). Following the common
habit, initiated by Rescher, we use the sign ‘R’ instead. For example,
we write ‘Rx(p ∧ q) ≡ (Rxp ∧ Rxq)’ instead Łoś’s ‘EUxKpqKUxpUxq’.

The translation seems to be obvious. Aside from the connective ‘R’
an operator ‘δ’ is to be involved to the effect that pδ(α, ε)q refers to
the instant following the instant α after an interval ε. For example,
something like ‘δ(September 12th 1683, 3 days)’ would be September
15th 1683. Hence ‘Rδ(x,y)p’ (or ‘Rδxyp’ for short) means that it occurs
that p at an instant succeeding the instant x after a period y.

The symbols ‘R’ (originally ‘U’) and ‘δ’ are primitives of Łoś’s calcu-
lus. There are also four predicates defined by the following abbreviations:

pϕ ∼= ψq
df
= p∀x(Rxϕ ≡ Rxψ)q,

pα ≃ βq
df
= p∀p(Rαp ≡ Rβp)q,

pα 4ε βq
df
= pδ(α, ε) ≃ βq,

pα 4 βq
df
= p∃ε α 4ε βq,

where ‘ε’ is any time interval term. Originally Łoś used the symbol ‘I’
instead of ‘∼=’, the symbol ‘ρ’ instead of ‘≃’, the symbol ‘π’ instead of
‘4’ and the symbol ‘ν’ instead of the indexed ‘4ε’ [cf. Łoś, 1947, p. 281
(304)]. It is obvious that pϕ ∼= ψq means that ϕ and ψ occur at exactly
the same instants, pα ≃ βq means that at the instants α and β there
occur exactly the same formulas, pα 4ε βq means that the instant α is
earlier than the instant β at the distance of the length ε, and pα 4 βq
means that the instant α is not later than the instant β.

Łoś allows formulas free of the connective ‘R’, but no nested tokens
of ‘R’. For example, expressions ‘p ∨ q and ‘Rx(p ∨ q)’ are formulas,
unlike the expression ‘RxRx(p ∨ q)’. However, all formulas may be freely
transformed by means of classical connectives.

The following definition of the set of formulas may be reconstructed
from Łoś’s work given that he himself did not actually provide a defini-
tion:

(a) if ϕ is a formula of the Propositional Calculus with quantifiers, than
it is also an atomic formula of temporal logic,

(b) if ϕ is a formula of the Propositional Calculus with quantifiers and τ
is an instant term, than pRτϕq is an atomic formula of temporal
logic,
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(c) if τ is an instant term and ε is an interval variable, than δ(τ, ε) is
an instant term of temporal logic,

and the set of all formulas of the temporal logic is the smallest collec-
tion containing all the atomic formulas and closed the usual expression-
forming operations of ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘≡’, ‘∀’ and ‘∃’, provided the
quantifiers range over all kinds of variables. The phrase ‘with quanti-
fiers’ in the parentheses in point (b) should be probably deleted, because
quantifiers never appear in the scope of the connective ‘R’ and nor are
there axioms introducing them in such contexts. So, in the scope of
the connective ‘R’ there appear only the formulas of pure CPL without
quantifiers. However, Łoś never clearly makes these claims himself.

Now we introduce precise definitions of terms and formulas, which
may be reconstructed from the above remarks. Firstly, we will use three
sorts of variables::

• propositional variables: ‘p’, ‘q’, ‘r’, ‘p1’, ‘p2’, . . . ,
• instant variables: ‘x’, ‘y’, ‘x1’, ‘x2’, . . . ,
• interval variables: ‘e’, ‘e1’, ‘e2’, . . . .

The set of instant terms is the smallest set S satisfying the following
conditions:

• all instant variables belong to S,
• if τ ∈ S and ε is an interval variable, then pδ(τ, ε)q ∈ S.

Let ForCPL be the set of all formulas of CPL (which we build in a standard
way). Temporal atomic formulas are all expressions of the form pRτϕq,
where τ is an instant term and ϕ ∈ ForCPL. Finally, the set of formulas

For is the smallest set satisfying the following conditions:

• ForCPL ⊆ For,
• all temporal atomic formulas belong to For,
• if ϕ ∈ For, then p¬ϕq ∈ For,
• if ϕ, ψ ∈ For and ◦ ∈ {∧,∨,→,≡}, then p(ϕ ◦ ψ)q ∈ For,
• if ϕ ∈ For, Q ∈ {∀, ∃} and υ is a propositional, instant or interval

variable, then pQυ ϕq ∈ For.

Hence, it seems to be permissible to use the formulas of CPL inside
the scope of the connective ‘R’. Outside of the scope of this connective
standard logic with quantifiers ranging over the three sorts of variables
is allowed.
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3. Axiomatics of Łoś’s calculus

Łoś’s calculus (ŁC) has been presented as an axiomatic system of the
finite number  namely nine  of specific object-language axioms [cf. Łoś,
1947, pp. 280–281 (303–304)]. Of course, we also require classical theo-
rems and inference rules concerning both the connectives and the quan-
tifiers binding variables of all three sorts, i.e., propositional variables,
instant variables and interval variables.

The first two axioms are well-known distribution laws and make the
connective ‘R’ transparent to the connectives of CPL, provided we have
other axioms as well as classical tautologies and rules of inference [see
Theorem 2 and Jarmużek and Pietruszczak, 2004]:

Rx¬p ≡ ¬Rxp, (ax1)

Rx(p → q) → (Rxp → Rxq), (ax2)

Three other axioms are counterparts of the well-known Gödelian rule of
modal generalization, qualified to CPL analogously to the modal logic
S0.5. As the formulas to appear in the scope of ‘R’ they are axioms of
Łukasiewicz’s version of CPL:

Rx((p → q) → ((q → r) → (p → r))), (ax3)

Rx(p → (¬p → q)), (ax4)

Rx((¬p → p) → p), (ax5)

Axioms (ax2)–(ax5) allow us to derive all formulas of the form pRτϕq,
where τ is an instant term and ϕ is an instance of a theorem of CPL
(see Theorem 1).

The next axiom says simply that any formula ϕ is a theorem, pro-
vided it holds at every instant: [cf. Łoś, 1947, p. 280 (304)].

∀xRxp → p. (ax6)

The last three axioms are slightly more complicated:

∀x∀e∃y∀p(Rδ(x,e)p ≡ Ryp), (ax7)

∀x∀e∃y∀p(Rδ(y,e)p ≡ Rxp), (ax8)

∀x∃p∀y(Ryp ≡ ∀q(Rxq ≡ Ryq)). (ax9)

They get clearer once one has transformed them by means of the defini-
tions to the form:

∀x∀e∃y(δ(x, e) ≃ y), (ax7′)
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∀x∀e∃y(δ(y, e) ≃ x), (ax8′)

∀x∃p∀y(Ryp ≡ x ≃ y). (ax9′)

The formulas (ax7) and (ax7′) say that for any time instant x and any
time interval e there exists a time instant y which is later than x by the
interval ε. The formulas (ax8) and (ax8′) say that for any time instant x
and any time interval e there exists a time instant y which is earlier than
x by the interval ε. Łoś make this claim explicitly, however, it is that it
is to be assumed that ε is always a non-zero interval. And this is indeed
the case, for the axioms in question are to establish time as infinite.
Finally, the formulas (ax9) and (ax9′) constitute the Clock Axiom to the
(intended) effect that any time instant may be uniquely described by a
temporal function [cf. Łoś, 1947, pp. 280–281 (304–305)]. The axiom is a
very interesting anticipation of hybrid logics with propositions uniquely
describing points.

Let us sketch proofs of some basic results we have mentioned, which
went unproven by Łoś. We begin with the restricted Gödelian rule of
modal generalization.

Theorem 1. If ϕ is an instance of a theorem of CPL, then pRτϕq is a

theorem of ŁC for any instant term τ .

Proof. Focusing on axioms (ax3)–(ax5) you can see that the formulas
within the scope of the connective ‘R’ constitute Łukasiewicz’s complete
axiomatization of CPL, provided we have the classical tautologies and
rules of inference. Consider any instance ϕ of a theorem of CPL and
let the sequence ψ1, ψ2, . . . , ψn be the proof of ϕ in Łukasiewicz’s
system, i.e., ϕ = ψn. If n = 1, then ϕ is an instance of an axiom of
Łukasiewicz’s system and so pRxϕq is an instance of (ax3), or (ax4), or
(ax5). Hence p∀x Rxϕq is a theorem of ŁC, by rules for ‘∀’ binding ‘x’.
Moreover, pRτϕq is a theorem of ŁC, since by p∀xRxϕ → Rτϕq we
have a substitution of τ for ‘x’.

Suppose the claim holds for any proof of the length of n− 1 rows. If
the row n is to be added by means of a tautology or a substitution (as in
the case for n = 1), then pRτψnq may be obtained from pRτψn−1q by
exactly the same tautology or substitution. Let the row n be added by
means of modus ponens to some rows i, j such that 1 ¬ i, j ¬ n− 1, i.e.,
ϕj = pψi → ψnq. Then (as in the case for n = 1) there are theorems of
ŁC: pRτ (ψi → ψn)q and pRτψiq. Hence, by Modus Ponens and (ax2),
the row pRτψi → Rτψnq may be added, and so also the row pRαψnq. ⊣
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Theorem 2 ([cf. Jarmużek and Pietruszczak, 2004]). The connective ‘R’

is distributive over all classical connectives, i.e., we obtain the following

theorems of ŁC:
Rx(p → q) ≡ (Rxp → Rxq), (⋆)

Rx(ϕ ∧ ψ) ≡ (Rxϕ ∧ Rxψ), (⋆⋆)

Rx(ϕ ∨ ψ) ≡ (Rxϕ ∨ Rxψ),

Rx(ϕ ≡ ψ) ≡ (Rxϕ ≡ Rxψ).

Proof. By Theorem 1 the following formulas are theorems of ŁC:

Rx(q → (p → q)),

Rx(¬p → (p → q))

So, by (ax1), (ax2) and CPL, we have the following theorems of ŁC:

Rxq → Rx(p → q),

Rx¬p → Rx(p → q),

¬Rxp → Rx(p → q),

(¬Rxp ∨ Rxq) → Rx(p → q).

So axiom (ax2) may be strengthened to (⋆). Other laws of distribution
are easily derivable from it. ⊣

Thus, as it has been already mentioned, the connective is transparent
with respect to the classical connectives. It means that the minimal
normal positional logic MR2 is a proper part of Łoś’s calculus ŁC, which
is to be considered normal itself.

4. Consistency of ŁC

Łoś gave two proofs of the consistency of his calculus. First, the calculus
has a simple model in the propositional calculus with quantifiers binding
any kinds of variables, and the calculus is known to be consistent. To
show this Łoś adds the formula:

Rxp ≡ p (†)

to the propositional calculus with the quantifiers binding any kind of
variables and first-order formulas. All axioms (ax1)–(ax9) are obviously
provable in such a theory [cf. Łoś, 1947, p. 282 (306)]. In other words, if

2 MR has been described and examined in [Jarmużek and Pietruszczak, 2004].
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all occurrences of any expression ‘Rx’ are removed from axioms (ax1)–
(ax9), then the axioms will change into theorems of the propositional
calculus with quantifiers binding any variables.

The second proof is slightly more complicated, and yet quite instruc-
tive. Łoś shows a straight line to be a model of his calculus. We present
a somewhat improved version of Łoś’s model. So, let T (“time”) be a
straight line. Let then:

• for any propositional variable ξ, V (ξ) be a subset of T;
• for any instant variable α, V (α) belong to T;
• for any interval variable ε, V (ε) be a closed segment of T.

By induction for any instant term of the form pδ(τ, ε)q, V (δ(τ, ε)) is the
unique member t of T such that V (ε) = [V (τ), t], which means, δ(τ, ε)
is interpreted as the unique point t of T such that the closed segment
V (ε) is equal to the closed segment from the point to which V (τ) refers
to the point t.

Furthermore, for all formulas ϕ, ψ and any instant term τ we put:

V (Rτϕ) =

{

T if V (τ) ∈ V (ϕ),

∅ if V (τ) /∈ V (ϕ),

V (¬ϕ) = T \ V (ϕ),

V (ϕ → ψ) = (T \ V (ϕ)) ∪ V (ψ),

V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ),

V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),

V (ϕ ≡ ψ) = (V (ϕ) ∩ V (ψ)) ∪ (T \ (V (ϕ) ∪ V (ψ))).

Finally, for any ϕ ∈ For, any propositional variable ξ, any instant
variable α and any interval variable ε let:

V (∀ξ ϕ) =

{

T, V (ϕ(ξ′/ξ)) = T, for any propositional variable ξ′

∅, V (ϕ(ξ′/ξ)) = ∅, for some propositional variable ξ′,

V (∀α ϕ) =

{

T, V (ϕ(α′/α)) = T, for any instant variable α′,

∅, V (ϕ(α′/α)) = ∅, for some instant variable α′,

V (∀ε ϕ) =

{

T, V (ϕ(ε′/ε)) = T, for any interval variable ε′,

∅, V (ϕ(ε′/ε)) = ∅, for some interval variable ε′.

It is easy to observe that with respect to quantifiers Łoś covers only
the cases of formulas built up from the subformulas of the form pRαϕq.
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The cases of formulas of Propositional Calculus with quantifiers are not
covered here. Consider for example V (ϕ(ξ′/ξ)) 6= ∅ for any ξ′, but
V (ϕ(ξ′/ξ)) 6= T for some ξ′. Of course, Łoś might have assumed that
his calculus is an extension of Standard Logic, which is known to be
consistent. And yet, Łoś’s conditions may be extended to cover all the
formulas of ŁC:

V (∀ξ ϕ) =
⋂

ξ′ V (ϕ(ξ′/ξ)),

V (∀α ϕ) =
⋂

α′ V (ϕ(α′/α)),

V (∀ε ϕ) =
⋂

ε′ V (ϕ(ε′/ε)),

for any propositional variables ξ, ξ′, instant variables α, α′ and interval
variables ε, ε′. Łoś’s conditions are special cases of these more general
conditions.

One has to conjecture that formula ϕ is true in a model 〈T, V 〉 if
and only if V (ϕ) = T. A formula ϕ is valid if and only if it is true in all
models (there is, however, no explicit mention of either condition).

Łoś claims that axioms (ax1)–(ax9) refer to the straight line T under
that interpretation, i.e., V (ϕ) = T, for every axiom ϕ of Łoś’s calculus,
and that the feature is invariant with respect to classical deductive rules.
Furthermore, it is obvious that no contradictory formulas are both in-
terpreted as the whole straight line T. It follows that Łoś’s calculus is
consistent [cf. Łoś, 1947, pp. 283–284 (307–308)].

The claim seems a little problematic with respect to the Clock Axiom
(ax9). Firstly, axiom (ax9) is clearly a constraint put on the set of models
and formally does not have to be true in general. Secondly and more
importantly for axiom (ax9) to be true it is necessary to regiment Łoś’s
model template. Axiom (ax9) could be valid in Łoś’s line model only
under some restrictions: either when there are uncountably many for-
mulas or when there are only denumerably many instants in the straight
line. The following theorem is likely to be true.

Theorem 3. Axiom (ax9) is not valid in Łoś’s line model unless there

are either uncountably many formulas or there are only denumerably

many instants in the straight line.

This theorem follows from the fact that there are only denumerably
many formulas and the formulas are finite. Hence, there are denumerably
many formulas which are true at exactly one instant each. If the straight
line is to be identified with the set of real numbers it is not possible
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to assign every instant with a formula true only at that very instant.
One can remedy this either by identifying the straight line with the set
of rational numbers rather than the real numbers or by modifying the
language to the effect that there are uncountably many formulas.

It seems obvious that to avoid the problem uncovered by the above
theorem the set of models should simply be restricted. One may simply
assume that there is a sequence of indexed propositional variables such
that V (pi) = {V (xi)}. However, in such a case there are only denumer-
ably many instants. So, the straight line T is to be considered as the
set of rational numbers rather than real numbers. Another option is to
introduce an extra set of atomic formulas, say pN(α)q, for any instant
symbol α, to the effect that V (N(x)) = {V (x)}, for any instant x. So,
it is the case that Rx(N(y)) if and only if x = y (or x ≃ y in Łoś’s
language):

Ry(N(x)) ≡ x ≃ y. (1)

If formulas pN(α)q were allowed in the object language, the formula (1)
would serve as the Clock Axiom instead of the formula (ax9), as (ax9)
follows from (1), but not conversely. It is now more evident how close
Łoś’s calculus gets to hybrid logics. Thus qualified, Łoś’s calculus is
in fact sound with respect to the T model, and so consistent as well.
It is also clear that Łoś anticipated hybrid logics, as has been already
mentioned.

Łoś did not provide nor even sketch a completeness result. He clearly
focused on the question of consistency of the calculus itself as well as its
extensions, which he called “applications”. Furthermore it turns out that
Łoś’s calculus is not actually complete with respect to Łoś’s model T.
For consider the formula:

∀x∀y(x 6= y → ∃e(δ(x, e) = y ∨ δ(y, e) = x)). (2)

Since, as Łoś claims, T is a straight line, the formula (2) is obviously
valid and yet it is not provable in Łoś’s calculus.

Theorem 4. The valid formula (2) is not provable in Łoś’s calculus.

Proof. The proof goes by interpretation. In every formula of ŁC read
the term pδ(α, ε)q as α and pRαϕq as ϕ (so ignore expressions pRαq).
All the axioms of Łoś calculus become tautological under such an inter-
pretation and the feature is invariant to inferences. However, the formula
(2) becomes an invalid first-order one. ⊣
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Łoś’s calculus was developed as application-orientated and so purely
formal questions have neither been properly posed nor answered.

5. Hiż’s review

Reviewing in 1951 Łoś’s work, Hiż (‘ż’ sounds exactly like ‘g’ in the word
‘genre’) described both the philosophical background and formal details
of the calculus, and even a kind of improvement of its axiomatization.
The objective is clear:

The main purpose of this paper is to analyze Mill’s canons as rules of
operation for a part of the language of physics. To do it the author
builds up an axiomatization of a fragment of the physical language.

[Hiż, 1951, p. 58]

Hiż’s review is really good. In barely two pages Hiż summarized all vital
details of Łoś’s calculus, such as its formulas, axioms and interpretations.
Hiż even noticed that Łoś’s original calculus did not exclude circular
time:

According to the author the axioms of the fragment of the physical
language require that there be an infinite number of constants which
can be substituted for the variables representing instants of time. To
the reviewer this would seem to be true only if we exclude the pos-
sibility that, for some n1, δt1n1 is identical with t1  as can be done
e.g. by adding the axiom “Cρδt1n1t2Nρ t1t2”, where “ρ t1t2” is defined,
following Łoś, as “∀p1EUt1p1Ut2p1”. [Hiż, 1951, p. 59]

However, no matter how good Hiż’s review is, it is an abbreviation. As
far as we are aware Łoś’s pioneering work was not even translated into
English until 1977 [cf. Łoś, 1977]. To avoid circularity Hiż proposes
another axiom

δ(x, e) ≃ y → x 6≃ y,

which certainly can do the job, but at a price. The formula above ex-
cludes circularity but also any possibility of using zero-length intervals.

6. Formulas of the classical logic

The position and role of axiom (ax6) is of special interest. As we have
already mentioned, by (ax6) Łoś means to accept as theorems all the
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formulas which hold at all instants. As Łukasiewicz was often doing,
Łoś fails to clearly distinguish truth and validity. Obviously, by axiom
(ax6), a formula ϕ ∈ ForCPL is exclusively a theorem of ŁC, provided
that the formula p∀xRxϕq is too. And the latter holds if and only if ϕ
is a theorem of CPL.

By assumption [cf. Łoś, 1947, p. 280 (303)], all theorems of CPL are
theorems of ŁC. So no extra CPL formula is provable by axiom (ax6).
As classical propositional calculus is strongly (syntactically) complete in
the sense of Emil Post, the observation follows immediately from the
claim of consistency of Łoś’s system. An analogous claim is valid with
respect to unsatisfiable formulas.

Theorem 5. If ϕ or p¬ϕq is a theorem of CPL, then p∀αRαϕ → ϕq
is provable without axiom (ax6).

Proof. Suppose ϕ is a theorem of CPL. Then pp → ϕq is also a theorem
of CPL. Hence p∀αRαϕ → ϕq is a substitution of a theorem of CPL,
and so it is an axiom of ŁC.

Now suppose p¬ϕq is a theorem of CPL. Then, by (ax1)–(ax5) (see
the proof of Theorem 1), the formula p¬Rαϕq is a theorem of ŁC. As
a substitution of the theorem p¬p → (p → ϕ)q of CPL the formula
p¬Rαϕ → (Rαϕ → ϕ)q is also a theorem of ŁC. Hence pRαϕ → ϕq
and p∃α(Rαϕ → ϕ)q are also theorems of ŁC. By the classical rules for
quantifiers, so too is the formula p∀αRαϕ → ϕq. ⊣

And yet, axiom (ax6) is perfectly independent. Hence, with this
axiom, only certain relations holding between formulas containing Łoś’s
connective and formulas of CPL can be formalised. In this way the
operation of consequence is influenced by (ax6).

Theorem 6. Axiom (ax6) is independent of the other axioms.

Proof. Let instant and interval variables be interpreted as integers,
propositional variables as sets of integers. Let the connectives of CPL be
interpreted as analogous operations on sets. Let pRαϕq mean pα ∈ ϕq
and pδ(α, ε)q mean pα + εq. Under such an interpretation all axioms
of Łoś’s calculus, with the exception of (ax6), are true formulas of the
arithmetic of integers. This kind of truth is invariant with respect to
inference rules. It follows that axiom (ax6) is not derivable from the
other axioms. ⊣
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Hence, it would be possible to restrict the assumption of CPL to
the formulas one obtains from tautologies by the substitution of pRαϕq
formulas for all propositional variables.

It was noted by Łoś that the converse of axiom (ax6), i.e., the fol-
lowing formula:

p → ∀xRxp, (‡)

is a consequence of the formula (†), and so, by the first proof of consis-
tency of Łoś’s calculus, if it is added to the calculus, it creates another
consistent one [cf. Łoś, 1947, p. 282 (306)]. Therefore (ax6) may be
replaced by the stronger formula

∀xRxp ≡ p

and the calculus obtained that way remains consistent. And yet, if (‡)
where a theorem, no formula would hold at some, but not all, instants.
For consider the formulas:

∃xRxp, (3)

∃xRx¬p, (4)

exemplified by such sentences as ‘Sometimes it rains’ and ‘Sometimes it
does not rain’, respectively. They are not only clearly consistent, but
the temporal logic is actually designed to deal with formulas of this
kind. And yet, theorems of Łoś’s calculus with addition of the formulas
(‡), (3) and (4) create an inconsistent set. The contradiction arises in
the following way. Notice that the formula ‘¬∀x¬Rxp’ follows from (3),
and by (ax1) so does ‘¬∀xRx¬p’; and by (‡), so does ‘¬¬p’, and so ‘p’
itself. Notice also that the formula ‘¬∀x¬Rx¬p’ follows from (4), and
by (ax1) so does ‘¬∀xRx¬¬p’ and consequently ‘¬∀xRxp’, and by the
formula (‡) so does ‘¬p’. For Łoś rejects for the formula (‡) for this
reason. A question then arises of what ways there are to obtain such
outcomes. It is called by Łoś the question of applicability [cf. Łoś, 1947,
p. 283 (307)].

7. Applicability

The question of applicability is solved by Łoś by means of the following
theorem of applicability. Let Φ be a set of formulas of the form pRαϕq.
If there are no formulas ϕ, ψ and instant variables α, β such that pRαϕq,
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pRβψq belong to Φ and p¬ϕ ∼= ψq and pα ≃ βq are theorems of ŁC,
then the union of the set of theorems and the set Φ is consistent. Łoś
does not deliver a proof of the theorem, but claims the proof to be quite
easy to A question then arises of what ways there are to obtain such
construct [cf. Łoś, 1947, p. 284 (308)].

Łoś’s theorem needs a small improvement, for consider the two fol-
lowing versions of the set Φ:

(a) Φ = {Rx(p ∧ ¬p)},
(b) Φ = {Rxp,Rx(¬p ∧ q)}.

They both meet Łoś’s conditions, and yet create obviously inconsistent
sets within Łoś’s calculus. In (a) Φ has the only one formula, and ob-
viously ‘¬(p ∧ ¬p) ∼= (p ∧ ¬p)’ is not provable, as in any model 〈T, V 〉,
the left side refers to T, whereas the right side to ∅. In (b) too, neither
‘¬p ∼= (¬p∧ q)’ nor ‘¬(¬p∧ q) ∼= p’ is provable, as to belong to V (¬p∧ q)
it is compulsory to belong to V (q) itself, which does not apply to V (p).
And yet, in both examples the formulas belonging to Φ allow immediately
to infer a contradiction, by use of (ax1) and (⋆⋆).

To improve Łoś’s applicability theorem it is sufficient to assume that
ϕ is either an atomic formula or a negation of an atomic formula. Such a
qualification causes no theoretical problem, since by means of the mini-
mal normal positional logic MR  which is a proper part of Łoś’s calculus
[cf. Jarmużek and Pietruszczak, 2004]  all the formulas in question are
effectively reducible to them. Furthermore it seems likely that this is
exactly what Łoś had in mind. So, here is an improved version of appli-
cability theorem.

Theorem 7. Let Φ be a set of formulas of the form pRτ ξq or p¬Rτ ξq,

for any instant term τ and any propositional variable ξ. If there are no

elements pRτ ξq, p¬Rτ ′ξq in Φ such that pτ ≃ τ ′q is demonstrable, then

the union of the set of theorems and the set Φ is consistent.

Proof. There is a model 〈T, V 〉 of the set Φ united with the theorems
of ŁC. To obtain such a model it is sufficient to find the sets referred to
by formulas and instant terms. Let

V (ξ) = {V (τ) : pRτ ξq ∈ Φ}

Every formula pRτ ξq of the set Φ is true in the model by definition.
Every formula p¬Rτ ξq of the set Φ is true in the model, unless for some τ ′
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the formula pRτ ′ξq is in Φ and V (τ) = V (τ ′). But the condition V (τ) =
V (τ ′) is not a constraint on any mode unless the formula pτ ≃ τ ′q is
demonstrable. ⊣

8. Łoś and Prior

Prior’s outstanding achievements in the field of temporal logic were in-
spired by three sources: the problem of future contingents and Łukasie-
wicz’s many-valued logic; the medieval programme to construct the logic
of the vernacular with its account of truth-values; and a small footnote
on tense and modalities in a work by John Findlay. This is the standard
story, based on Prior’s texts and repeated by his followers. Our claim
here is that there definitely was a vitally important fourth source: the
work of Łoś. As we have said Łoś’s pioneering work on temporal logic
was published in Polish in 1948 and was summarised and reviewed in
English by Hiż as early as 1951.

Prior’s idea of tense logic appeared in 1953. This may be shown
by the following two facts. Firstly, in the very year it was published,
Prior’s paper [1953] on Łukasiewicz’s three-valued logic was also pub-
lished. It shows that Prior was still interested in the many-valued pro-
gramme although he was aware of its difficulties. Secondly, Prior’s wife
Mary remembered Prior waking her at night with Findlay’s book in his
hands and announcing the idea of tense logic. This took place in 1953
[cf. Øhrstrøm and Hasle, 2006a, pp. 414–415]. Furthermore, in Past,

Present and Future Prior [1967, p. 212–213] explicitly acknowledged
that he had known Łoś’s work [1947] from Hiż’s review [1951] and he
was actually inspired by Łoś when beginning to work on his first full
book on tense logic, i.e., Time and Modality [Prior, 1957]. In 1968 Łoś’s
work found its place in the bibliography of Prior’s collected papers [cf.
Prior, 1968, p. 161]. The only formal tool Łoś’s work [1947] lacks is a
way of representing tenses by means of modal connectives. Prior took
this idea from Findlay.

It should therefore be agreed and acknowledged in the literature
henceforth that it was Jerzy Łoś who invented and first explored tempo-
ral logic. Such an admission does in no way dethrone Prior’s works on
tense logic as classics of their kind. The key achievements in the field
belong to Prior, Łoś having abandoned his investigations into tempo-
ral logic shortly after beginning them. Nevertheless, it is to Los that
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the credit is due for the first presentation of a formal logic of time in
1947. The more obvious Łoś’s influence over Prior and the subsequent
development of temporal logic becomes, the more mysterious failures to
acknowledge L as the true founder of the logic of time will be.
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