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INCONSISTENT MODELS (AND INFINITE
MODELS) FOR ARITHMETICS WITH

CONSTRUCTIBLE FALSITY

Abstract. An earlier paper on formulating arithmetic in a connexive logic
ended with a conjecture concerning C♯, the closure of the Peano axioms
in Wansing’s connexive logic C. Namely, the paper conjectured that C

♯ is
Post consistent relative to Heyting arithmetic, i.e., is nontrivial if Heyting
arithmetic is nontrivial. The present paper borrows techniques from rele-
vant logic to demonstrate that C

♯ is Post consistent simpliciter, rendering
the earlier conjecture redundant. Given the close relationship between C

and Nelson’s paraconsistent N4, this also supplements Nelson’s own proof of
the Post consistency of N4♯. Insofar as the present technique allows infinite
models, this resolves Nelson’s concern that N4

♯ is of interest only to those
accepting that there are finitely many natural numbers.
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1. Introduction

Constructive mathematics (including, e.g., ultrafinitist and intuitionistic
mathematics) is monolithic as a demonstration of the the fruitful applica-
tion of non-classical intuitions about reasoning to mathematical practice.
However, its dominance also risks eclipsing analogous non-classical en-
deavors, such as relevant arithmetic and linear arithmetic,1 that witness
the breadth of the possibilities for non-classical mathematics.

1 Relevant arithmetic is exhaustively examined in the unpublished monograph
[6]. A discussion of linear arithmetic can be found in [15].
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The paper [2] examined the prospects for carrying out mathematical
practice in which reasoning obeyed the principles of a connexive logic.
Despite some suggestive analogies between the connexive intuitions of
Everett Nelson and the super-constructive framework of David Nelson,
the results were ultimately discouraging. To implement even extraordi-
narily weak fragments of the Peano axioms against any of three of the
most well-known connexive logics swiftly and decisively leads to severe
pathologies. (E.g., the theories of Peano arithmetic in first-order exten-
sions of Priest’s connexive logic of [14] are provably decidable, but only
in virtue of the fact that the Peano axioms have no consequences in these
systems.)

One of the final (and more promising) elements of that paper was
a conjecture concerning the theory of the Peano axioms evaluated with
Wansing’s connexive system C of [17] as a background logic, namely,
that the Post consistency of Heyting arithmetic entails the Post consis-
tency of arithmetic in C.2 As Wansing has shown, first-order C enjoys
a faithful translation into first-order intuitionistic logic, a fact that lent
considerable plausibility to the conjecture. (The presence of inconsistent
theorems of C  a radical feature of the system  immediately rules out
the negation consistency of arithmetic in C. Examples of these inconsis-
tencies will be described in Section 2.)

The present paper demonstrates that this conjecture is redundant by
providing a proof that arithmetic in C is indeed Post consistent sim-

pliciter and, in particular, does not prove that 0 = 1. The construction
borrows heavily from the techniques developed by Meyer and Mortensen
in [7] and Priest in [13] for proving the Post consistency of a number
of paraconsistent arithmetics. This family of techniques demonstrates
the nontriviality of relevant arithmetic (R♯) or arithmetic in LP (LP

♯) by
producing finite, inconsistent  yet non-trivial  models whose elements
are equivalence classes of natural numbers. The importance of such
models does not flow from any claim that they are adequate models of
the natural numbers, but rather from their utility as witnesses that these
arithmetics have non-theorems.

Despite their serviceability in proving metatheoretic properties, the
artificiality of such finite models for mathematical practice is regrettable.

2 Recall that a theory T is Post consistent if there is a sentence ψ that T does not
prove while T is negation consistent if there are no sentences ϕ such that T proves
both ϕ and ∼ϕ. In intuitionistic logic, the two coincide while in a paraconsistent
logic like C, Post consistency is a strictly weaker property than negation consistency.
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In the case of C, however, the intensional nature and constructive ele-
ments of C allow for more nuanced, interesting models. I would also
like to discuss methods of equipping the models for arithmetic in C with
more structure and subtlety than is available in, e.g., Priest’s collapsed
models of arithmetic.

In tandem, this will also provide a demonstration that arithmetic in
Nelson’s constructive logic N4 from [9] is also Post consistent. Given the
close relationship between N4 and C  the Kripke-style model theory of
N4 is a core element for Wansing’s semantics for C  this is rather natu-
ral, but it might be surprising that the same models demonstrating the
non-triviality of arithmetic in C witness the non-triviality of arithmetic
in N4. Of particular interest for the case of N4 is the description of an
infinite and non-trivial model for N4

♯ that may work to resolve Nelson’s
worry in [9] that arithmetic in N4 would be of interest only to those who
are unsure that there exist infinitely many natural numbers.

2. Wansing’s C and Nelson’s N4

Although the primary target of this paper is Heinrich Wansing’s con-
nexive logic C, a satisfactory introduction to the system must take a
detour through David Nelson’s logics of constructible falsity. The first
of these systems  N33  was introduced by Nelson in [8] as a revision of
intuitionistic practice in which refutation is taken to be constructive as
well as proof.

Nelson motivates the system by observing that negation is anomalous
among the intuitionistic connectives insofar as it is not constructive in an
important way. This is made apparent by Nelson in the case of proving
a negated universally quantified formula:

[J]ust as in the case of an existential proposition, we may, in the case
of a generality statement ∼ ∀xA(x), distinguish two methods of proof.
In one there is presented an effective method of constructing an n such
that ∼A(n) is true, in the other there is presented a demonstration that
∀xA(x) implies an absurdity. From the viewpoint of constructibility,
this distinction in method of demonstration affords the opportunity of
a distinction in meaning of the statements ∼ ∀xA(x) and ∀xA(x) → F ,
where F is false. [8, p. 16–17]

3 This system is sometimes known as N or as CF.
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Paraconsistent variants of N3 were introduced in [9] and [10] in which
the principle of explosion fails, that is, there exist formulae ϕ such that
the logical closure of the set {ϕ,∼ϕ} is not the entire language.

Following [11], we use L to describe a recursively constructed first-
order language and CTL to describe the set of closed L terms.

Definition 1. The Hilbert-style calculus for QN4 includes axioms and
axiom schema:

(Int) Axioms of intuitionistic positive logic
(NN) ∼ ∼ϕ ↔ ϕ
(NA) ∼(ϕ ∨ ψ) ↔ (∼ϕ ∧ ∼ψ)
(NK) ∼(ϕ ∧ ψ) ↔ (∼ϕ ∨ ∼ψ)

(NCN4) ∼(ϕ → ψ) ↔ (ϕ ∧ ∼ψ)
(NΣ) ∼ ∃xϕ ↔ ∀x∼ϕ
(NΠ) ∼ ∀xϕ ↔ ∃x∼ϕ
(UI) ∀xϕ(x) → ϕ(t), where t is free for x in ϕ

(EG) ϕ(t) → ∃xϕ(x), where t is free for x in ϕ

and rules:
ϕ → ψ ϕ

ψ

ϕ → ψ(x)

ϕ → ∀xψ(x)
(x not free in ϕ)

ϕ(x) → ψ

∃xϕ(x) → ψ
(x not free in ψ)

The connexive logic C, first introduced in [17], essentially modifies
the refutation conditions for a conditional from Nelson-style refutation
for something more connexive in flavor, i.e., one that guarantees that
∼(ϕ → ∼ϕ) is a theorem. Proof-theoretically, then, defining QC requires
only a modest change to the axiom system for QN4.

Definition 2. The Hilbert-style calculus for QC is identical to the cal-
culus for QN4 except that it replaces the axiom (NCN4) with the axiom:

(NCC) ∼(ϕ → ψ) ↔ (ϕ → ∼ψ)

The semantics for QN4 and QC we will employ follow the presen-
tation of [11] and [17], respectively.4 The semantics roughly follow the

4 Though see [4] for another presentation of Kripke-style semantics for QN4.
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lead of Thomason’s semantics for N3 from [16] as variants of Kripke-
style semantics for intuitionistic logic in which a falsification relation
complements the standard verification relation.

As in the proof-theoretic case, the semantics for QN4 and QC are
virtually identical, disagreeing only on the point of how to interpret a
negated implication.

Definition 3. A QN4 or QC model is a structure 〈W,≤,∆, D, v+, v−〉
for which:

• 〈W,≤〉 is a partial order,
• ∆ is a set of terms of L such that CTL ⊆ ∆ ⊆ TL,
• D : W → P(∆) is a function such that D(u) ⊆ D(v) when u ≤ v,
• v+ and v− are functions from AtL to P(W ).

Note that the definition provided by Wansing includes an increasing
domain in a slightly unusual sense. Insofar as the condition is concerned
with the preservation of the interpretations of terms rather than the
semantical objects in the model, the condition holds for models whose
domains might be in fact decreasing, so long as the interpretations of
terms preserve the verification or falsification of literals. We will rely
heavily on this fact in Section 4.

These verification and falsification conditions can be recursively de-
fined as follows:

Definition 4. The QN4 and QC forcing relations are recursively defined
by the following common conditions:

• M, w 
+ R(~t) if w ∈ v+(R(~t))

• M, w 
+ ∼ϕ if M, w 

− ϕ
• M, w 

+ ϕ ∧ ψ if M, w 
+ ϕ and M, w 

+ ψ
• M, w 

+ ϕ ∨ ψ if M, w 
+ ϕ or M, w 

+ ψ
• M, w 

+ ϕ → ψ if ∀w′ s.t. w ≤ w′ & M, w′


+ ϕ, also M, w′


+ ψ
• M, w 

+ ∃xϕ(x) if for some t ∈ D(w), M, w 
+ ϕ(t)

• M, w 
+ ∀xϕ(x) if ∀w′ s.t. w ≤ w′ & ∀t ∈ D(w′), M, w′


+ ϕ(t)

• M, w 
− R(~t) if w ∈ v−(R(~t))

• M, w 
− ∼ϕ if M, w 

+ ϕ
• M, w 

− ϕ ∧ ψ if M, w 
− ϕ or M, w 

− ψ
• M, w 

− ϕ ∨ ψ if M, w 
− ϕ and M, w 

− ψ
• M, w 

− ∃xϕ(x) if ∀w′ s.t. w ≤ w′ & ∀t ∈ D(w′), M, w′


− ϕ(t)
• M, w 

− ∀xϕ(x) if for some t ∈ D(w), M, w 
− ϕ(t)
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The two logics differ in that QN4 has the following negative condition
for the conditional:

• M, w 
− ϕ → ψ if M, w 

+ ϕ and M, w 
− ψ

while QC includes the following interpretation:

• M, w 
− ϕ → ψ if ∀w′ s.t. w ≤ w′ & M, w′


+ ϕ, also M, w′


− ψ

It is important to note that we treat identity as a relation like any
other, with the proviso that self-identity is always verified (though it
might also be falsified). We will, of course, prove that identity has the
requisite properties in the models of arithmetic to be described. With
this in mind, let us proceed to consider arithmetic.

A couple of comments about the status of the conditional in C are
in order. For one, C is one of the few systems in the literature on non-
classical logics that is authentically dialethic in that it has inconsistent
theorems, e.g.,

• (ϕ ∧ ∼ϕ) → ∼(ϕ ∧ ∼ϕ), and
• ∼((ϕ ∧ ∼ϕ) → ∼(ϕ ∧ ∼ϕ))

are both provable. This can be seen by considering the falsification
conditions for the conditional in C. In constructivist terms, to verify
ϕ → ψ is to provide a construction turning any proof of ϕ into a proof
of ψ while to falsify the conditional is to possess a construction turning
proofs of ϕ into refutations of ψ. Hence, a proof of ϕ∧ ∼ϕ a pair of a
proof of ϕ and a refutation of ϕ can be used to yield a proof of ϕ (whence
the validity of (ϕ ∧ ∼ϕ) → ϕ) as well as a refutation of ϕ (whence the
validity of ∼((ϕ ∧ ∼ϕ) → ϕ)).

It is also worth mentioning that the semantic falsity condition for
the conditional in C has a correlate in the Brouwer-Heyting-Kolmogorov
interpretation of constructive logic. Where Nelson’s refutation condition
for a conditional ϕ → ψ consists of a pair of a proof of ϕ coupled with
a refutation of ψ, Wansing’s interpretation of negated conditionals more
closely resembles the more dynamic BHK conditions. While the shared
BHK account considers a proof of ϕ → ψ to be a function that can
be applied to any proof of ϕ to yield of proof of ψ, refutations of the
connexive ϕ → ψ are functions that when applied to proofs of ϕ yield
refutations of ψ.



Inconsistent models . . . for arithmetics . . . 395

3. C
♯: Arithmetic in C

Because we are primarily concerned with arithmetic in what follows,
we will assume that we are working in the language of arithmetic in
the sequel. Notably, LPA is the language including only equality as a
relation, 0 as a constant, and unary function _

′

(successor) and binary
functions + (addition) and · (multiplication).

The representation of the Peano axioms that we will adopt in the
sequel is described below:

Definition 5. The Peano axioms are the following six axioms (PA1)–
(PA6) and the induction scheme (Ind):

(PA1) ∼ ∃x(x′ = 0)
(PA2) ∀x(x+ 0 = x)
(PA3) ∀x∀y(x+ y′) = (x+ y)′

(PA4) ∀x(x · 0) = 0

(PA5) ∀x∀y(x · y′) = (x · y) + x
(PA6) ∀x∀y(x′ = y′ → x = y)
(Ind) (ϕ(0) ∧ ∀(ϕ(x) → ϕ(x′))) → ∀xϕ(x)

We follow the convention of Robert Meyer in [6] by using the nomen-
clature L♯ to denote the theory of Peano arithmetic in a logic L. One
possible stumbling block is the fact that every One observation about
the above representation of the Peano axioms will be useful in what
follows. Note that in axioms (PA1)–(PA5) there are no instances of the
intensional implication connective. For this reason, these axioms may
be thought of as the extensional axioms while (PA6) and (Ind) may be
thought of as the intensional axiom schema. A useful way of thinking
of this distinction is that the evaluation of the former axioms at a point,
when considered in a QN4 or QC model, only takes features of that point
into account.

Wansing has provided a translation of C into intuitionistic logic, mo-
tivating a conjecture in [2] about C♯ (i.e., the Peano axioms evaluated
against C). Clearly, because C is negation inconsistent, C♯ cannot be
negation consistent. But this does not rule out the Post consistency of
C♯, leading to the aforementioned conjecture in [2]:

Conjecture 1 ([2]). C♯ is Post consistent if HA (i.e., Heyting Arith-
metic) is Post consistent.
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To look deeper into this conjecture, we first take a detour through ear-
lier techniques for proving the Post consistency of paraconsistent arith-
metics.

A common strategy for proving the nontriviality of relevant and other
inconsistent arithmetics is to provide a finite model that satisfies all
Peano axioms in which 0 = 0

′ (i.e., 0 = 1) is unprovable. Robert
Meyer and Chris Mortensen, for example, demonstrated that Z/nZ is a
model of the Peano axioms in the three-valued logic RM3 in the paper
[7]. Because RM3 is an extension of the relevant logic R, Meyer and
Mortensen were able to demonstrate that R♯ is Post consistent and, in
particular, fails to prove 0 = 1.

The tractability of these finite models has a number of attractive
consequences. The theory of a finite model is decidable, for example,
permitting a proponent of some logic to easily demonstrate the Post
consistency of arithmetic in that logic. Indeed, given the paraconsistency
of N4 and C, the existence of a single relation in the language, and the
finiteness of the domain, the question of whether one of these models
makes true a set of sentences reduces to propositional logic. Furthermore,
as Meyer frequently pointed out, because these proofs often follow from
the existence of a finite model, the Post consistency of these arithmetics
can be shown by a priori finitistic means. On one reading of Hilbert’s
program, such systems are therefore quite attractive.

First, we will look at Graham Priest’s finite models of arithmetic,
using these as a foundational building block for our own intensional
models. These models are evaluated as models of the logic of paradox LP:

Definition 6. The paraconsistent logic LP is the 4-tuple 〈VLP,DLP,S,
ILP〉, where

• VLP = {t, b, f} is a set of truth values,
• DLP = {t, b} is a set of designated values.

The function ILP interprets connectives ∼ and ∧ and the quantifier ∀:

f∼
LP f∧

LP t b f

t f t t b f

b b b b b f

f t f f f f

f∀
LP(X) =















t if b /∈ X and f /∈ X

b if b ∈ X and f /∈ X

f if f ∈ X

Interpretations of disjunction and the existential quantifier follow
from the typical definitions. First-order models for LP are defined as
follows:
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Definition 7. An LP-model M is a 4-tuple 〈M,CM,FM,RM〉 where

• M is a set of elements,
• for each c ∈ C, cM ∈ M ,
• for each n-ary f ∈ F, fM : Mn → M ,
• for each n-ary R ∈ R, RM : Mn → VLP.

In the sequel, we assume that every model is a Henkin model, in other
words, we assume that every element in a domain has at least one term
t ∈ CTL that counts that element as its interpretation.

Definition 8. For an LP-model M, the valuation function vM : L 0
σ →

VLP is defined so that for all n-ary connectives and quantifiers:

• for atomic sentences ψ = R(t0, ..., tn−1), vM(ψ) = RM(tM0 , ..., tMn−1),
• for sentences of the form ψ = ⊙(ϕ0, . . . , ϕn−1), vM(ψ) = f⊙

L (vM(ϕ0),
. . . , vM(ϕn−1)),

• for sentences ψ = Qxϕ, vM(ψ) = fQ
L ({vM(ϕ(a/x)) | a ∈ M}).

The valuation function allows us to define validity in LP as the preser-
vation of designated values in all models.

Priest’s finite models of arithmetic rely on a construction of collapsing

a classical or LP model by effectively taking a quotient of that model
modulo a congruence relation.

Definition 9. Let M be a model and let ∼ be a congruence relation
on the domain M where [a] is the equivalence class of a ∈ M modulo ∼.
Then a collapsed model M∼ is a model where:

• The domain M∼ is the quotient {[a] | a ∈ M}.
• For each t ∈ C, tM

∼

= [tM].
• For each function f ∈ F, fM

∼

([a0], ..., [an−1]) = [fM(a0, ..., an−1)].
• For each relation R ∈ R (including identity), we have the following:

RM
∼

([a0], ..., [an−1])























∈ {t, b} if ∃a′
0 ∈ [a0], ..., a′

n−1 ∈ [an−1]

s.t. RM(a′
0, ..., a

′
n−1) ∈ {t, b}

∈ {b, f} if ∃a′
0 ∈ [a0], ..., a′

n−1 ∈ [an−1]

s.t. RM(a′
0, ..., a

′
n−1) ∈ {b, f}

In [12], Priest described the Collapsing Lemma that assures the
preservation of a model’s truths under these collapses. (Priest’s result
is dual to Dunn’s Theorem in Three-Valued Model Theory introduced in
[1]; discussion of the duality can be found in [3].) The lemma guarantees
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for any classical structure M with a congruence relation ∼ on M (i.e.,
an equivalence relation that respects functions) that the following holds:

Lemma 1 (Collapsing Lemma). Let M be a classical first-order model
and let ∼ be a congruence relation on M inducing a collapsed model
M∼. Then for any ϕ: if M � ϕ then M∼

� ϕ.

Alternatively, one could describe the Collapsing Lemma as the the-
sis that Th(M) ⊆ Th(M∼). Note also that although Priest has used
the Collapsing Lemma to produce LP models from classical models, the
lemma also turns LP models into other LP models with the same preser-
vation properties.

Now, we can define the particular finite models of arithmetic, begin-
ning with an appropriate type of congruence relation. Fix i and n and
define ∼i,n as

j ∼i,n k iff

{

j = k if j < i and k < i

j ≡ k(modn) if j ≥ i and k ≥ i

and let [j]i,n denote the equivalence class of a natural number j modulo
the congruence relation ∼i,n. Then:

Definition 10. A collapsed model of arithmetic Ni,n is the collapse of
the natural numbers modulo ∼i,n.

Because LPA has only = as a primitive relation, all we need to know is:

• if j ∼i,n k then Ni,n � [j] = [k],
• if there is an l ∈ [k] such that j 6= l, then Ni,n � ∼([j] = [k]).

N.b. that Ni,n � ∼ϕ is not the same as Ni,n 2 ϕ; many of the models
discussed in this paper are semantically inconsistent and make true both
ϕ and ∼ϕ.

Because ∼i,n is a congruence relation, we are able to state the fol-
lowing facts:

• if j′ = k then Ni,n � [j]′ = [k],
• if j + k = l then Ni,n � [j] + [k] = [l],
• if j · k = l then Ni,n � [j] · [k] = [l].

Because of the properties of each of these models Ni,n, they serve to
define appropriate possible worlds in the Kripke-style semantics for QC

and QN4. In particular, we can define models in the following fashion:
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Theorem 1. Consider a collapsed model of Ni,n and a QN4/QC model

Ni,n = 〈{wi,n},⊆, CTLPA
, v+, v−〉,

where:

• v+(s = t) = {wi,n} iff Ni,n � s = t,
• v−(s = t) = {wi,n} iff Ni,n � ∼(s = t).

Then the resulting model is a model of N4
♯ or C♯, respectively.

Proof. We consider first the case of the purely extensional Peano ax-
ioms (PA1)–(PA5). In virtue of these axioms’ lacking any propositional
connectives, we immediately get each of these from Priest’s results con-
cerning collapsed models of arithmetic. Having established that these
axioms hold, we must next consider the further cases of the axiom and
axiom scheme in which the implication connective appears.

(PA6) may be proven quite simply. Take two arbitrary closed terms
m and n and suppose that at the single point in the model it is true
that m′ = n′. Then for any elements of the equivalence classes [m′] and
[n′], their predecessors are each in the equivalence classes [m] and [n].
Hence, at this world, m = n also holds. Because m and n were chosen
arbitrarily, this holds for all x and y.

The induction axiom scheme (Ind) can be established by similar
means. Suppose that ϕ(0) and ∀x(ϕ(x) → ϕ(x′)) holds for a formula
ϕ. Then as ∀x(ϕ(x) → ϕ(x′)) is true ex hypothesi, also ϕ(0) → ϕ(0′).
Since the single point is accessible from itself, it follows that ϕ(0′) holds
as well. By a second application of this procedure, we can establish
that ϕ(0′), and, then, that ϕ(0′′′), and so forth. Because the model
has finitely many elements, eventually we exhaust the domain. Since
this establishes that for any element [m], ϕ(m) holds, we conclude that
∀xϕ(x) holds as well.

A referee has also suggested that it ought to be shown that typical
axioms concerning identity hold in the model as well. Given how we
have populated v+, the reflexivity of identity in LP ensures that identity
is reflexive in the theory of Ni,n. The transitivity of identity  captured
by the axiom ∀x∀y∀z(x = y → (y = z → x = z)) is straightforward to
establish as well. If wi,n  s = t, then Ni,n � s = t. Suppose, moreover,
that wi,n  t = r; then Ni,n � t = r. The transitivity of identity in LP

means that Ni,n � s = r and, by the way that v+ is defined, entails also
that wi,n  s = r.
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The existence of these models is sufficient to establish the primary
goal of this paper:

Corollary 1. C♯ is Post consistent.

Nelson himself had shown through realizability semantics that N4
♯

has a model in [9]. Hence, although the Post consistency of N4
♯ could be

derived as a corollary of Theorem 1, this fact is already established. In-
deed, one could view the Post consistency of C♯ as a corollary of Nelson’s
results in [9].

Although Theorem 1 could have been demonstrated by a small mod-
ification to Nelson’s bilateral realizability semantics, there is worth in
having presented the proof by appeal to the Kripke-style semantics. In
particular, the Kripke semantics will be essential in the next section
insofar as they allow us to construct infinite models.

4. Infinite Models: Improving on Nelson

Despite Nelson’s already having provided a proof of the Post consistency
of N4

♯, the foregoing observations about N4
♯ are not entirely redundant

to the extent that they allow us to provide a remedy to Nelson’s skep-
ticism regarding certain aspects of N4

♯. Regarding the inconsistent-yet-
nontrivial arithmetic N4

♯, Nelson writes:

Does the system have any practical interest? I should not want to claim
much in this direction; however, the system might be of some interest
to a mathematician who cannot make up his mind as to whether there
are an infinite number of natural numbers or not. [9, p. 224]

One application of the types of models we are employing in this pa-
per is that we can easily generate infinite models that might show that
“the system” might be of interest to mathematicians who unequivocally
accept an infinitude of natural numbers.

To show this, let us first define a congruence relation on the domains
of collapsed models of arithmetic Ni,n.

Definition 11. Let [j]i,n and [k]i,n be equivalence classes modulo ∼i,n.
Then we define the congruence relation ∼⋆

i,m as follows:

[j]i,n ∼⋆
i,m [k]i,n iff

∃j′ ∈ [j]i,n & ∃k′ ∈ [k]i,n s.t.

{

j′ = k′ if j < i or k < i

j′ ≡ k′(modm) otherwise
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In preparation, we use the notation m | n to represent that the
natural number m divides the natural number n. Now, let us also review
a few obvious facts.

Fact 1. If j ≡ k(modn) and m | n then j ≡ k(modm).

Fact 2. In a collapsed model of Ni,n, if j < i then [j]i,n = {j}.

Fact 3. In a collapsed model of Ni,n, if sNi,n ≥ i then Ni,n � ∼(s = t)
for any t ∈ CTLPA

.

Facts 1–3 allow us to establish a few less trivial lemmas.

Lemma 2. Suppose that m | n and that Ni,n is a collapsed model of
arithmetic. Then the following are equivalent:

(a) ∃j′ ∈ [j]i,n, ∃k′ ∈ [k]i,n s.t. j′ < i, k′ < i, and j′ = k′,
(b) j < i, k < i, and j = k.

Proof. For (a) ⇒ (b): Suppose that all of (a) holds. Then by Fact 2,
[j]i,n = j and [k]i,n = k, meaning that j = j′ and k = k′. Hence, j < i,
k < i, and j = k hold, as required.

For (b) ⇒ (a): Suppose that each of (b) holds, i.e., suppose that
j < i, k < i, and j = k. Then because j ∈ [j]i,n and k ∈ [k]i,n, j and k
themselves can serve as the elements j′ ∈ [j]i,n and k′ ∈ [k]i,n for which
j′ < i, k′ < i, and j′ = k′. Hence, j and k may serve as witnesses for
the existential quantifiers in (a).

Lemma 3. Suppose that m | n and that Ni,n is a collapsed model of
arithmetic. Then the following are equivalent:

(a) ∃j′ ∈ [j]i,n, ∃k′ ∈ [k]i,n s.t. j′ ≥ i, k′ ≥ i, and j′ ≡ k′(modm),
(b) j ≥ i, k ≥ i, and j ≡ k(modm).

Proof. For (a) ⇒ (b): Suppose that each element of (a) holds. Then we
have assumed that j ≡ j′(modn) and k ≡ k′(modn). But because m | n,
Fact 1 entails that j ≡ j′(modm) and k ≡ k′(modm) likewise hold. But
by the transitivity of congruence mod m, that j′ ≡ k′(modm)  together
with the congruences between j and j′ on the one hand and k and k′ on
the other  we also may infer that j ≡ k(modm).

For (b) ⇒ (a): Suppose that each of (b) holds. Then because j ∈
[j]i,n and k ∈ [k]i,n, j and k themselves can serve as the j′ and k′ needed
in (a).
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Lemma 4. Let m | n. Then:

[j]i,n ∼⋆
i,m [k]i,n iff j ∼i,m k .

Proof. The left hand side by definition is equivalent to the existence of
j′ ∈ [j]i,n and k′ ∈ [k]i,n to which one of two the following cases applies:

(1) j′ < i, k′ < i, and j′ = k′, or
(2) j′ ≥ i, k′ ≥ i, and j′ ≡ k′(modm).

By applying lemmas 2 and 3 to the respective cases, we find that these
cases are equivalent to the following:

(1′) j = k, or
(2′) j ≡ k(modm).

But (1′) and (2′) are the two possible cases that are together equivalent
to j ∼i,m k.

With these lemmas, we are able to establish a crucial property for
the construction of infinite models.

Observation 1. Let Ni,m and Ni,n be two collapsed models of arith-
metic such that m | n. Then for every ϕ in the language of arithmetic:

Ni,m � ϕ iff N
∼

⋆
i,m

i,n � ϕ .

Proof. This follows by induction on complexity of formulae. Lemma
4 and Fact 3 together ensure the property holds for every atom and
negated atom. A simple induction over the connectives and quantifiers
extends this to the whole of LPA.

Given that the models Ni,n are finite, this effectively means that Ni,m

and N
∼

⋆
i,m

i,n are interchangeable when m | n, allowing us to apply the
Collapsing Lemma to establish the following corollary, which we obtain
from Observation 1 and the Collapsing Lemma:

Corollary 2. Let Ni,m and Ni,n be two collapsed models of arithmetic
such that m | n. Then if Ni,n � ϕ, also Ni,m � ϕ.

The upshot of this is simple. Suppose the diagram of each world
in a QN4 or QC model is induced by a collapsed model of arithmetic
such that for worlds wi,n and wi,m induced by models Ni,m and Ni,n,
wi,n ≤ wi,m holds only if m | n. Then we are guaranteed the type of
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Ni,1

Ni,2

Ni,4

Ni,8

· · ·

· · ·

· · ·

Ni,3

Ni,9

Ni,6

Ni,24

Ni,54

Ni,27

· · ·

· · ·

Figure 1. Infinite model of N4
♯ and C♯

positive and negative heredity properties between worlds demanded by
the definition of a QN4 or a QC model. This licenses us to countenance
models such as the one represented in Figure 1.

There is one further wrinkle, however, before we can use this fact to
produce infinite models of arithmetic in N4

♯ and C♯ if we are to be true
to Nelson. Nelson assumes as an axiom of arithmetic an extra-Peano
thesis that does not uniformly hold in collapsed models of arithmetic.

(Nelson) ∀x, y(∼(x′ = y′) → ∼(x = y))

If i 6= 0 in the construction described in Theorem 1, then this axiom can
easily be seen to fail. Let i = 2. Then despite the fact that w2,n 

+

∼(0′′′ = 0
′′′) holds, we also may observe that w2,n 1

+ ∼(0′′ = 0
′′).

In any case in which i 6= 0, the axiom (Nelson) fails. Hence, we
must restrict ourselves to models whose worlds are induced by collapsed
models for which i = 0.

Theorem 2. Consider a collapsed model of arithmetic Ni,n and consider
the QN4/QC model

N⋆
0,n = 〈{w0,n | n ≥ 1},≤, CTLPA

, v+, v−〉,
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where:

• w0,n ∈ v+(s = t) iff N0,n � s = t,
• w0,n ∈ v−(s = t) iff N0,n � ∼(s = t),
• w0,n ≤ w0,m iff m | n.

Then the resulting model is an infinite and non-trivial model of N4
♯+

(Nelson) or C♯+(Nelson), respectively.

Proof. The proof of non-triviality runs identically to the proof of The-
orem 1, taking into account Corollary 2. Because in any model N0,n and
any two terms s and t, N0,n � ∼(s = t), every instance of the consequent
of (Nelson) is true in each point, getting us (Nelson) trivially.

That the model has infinitely many elements can be proven by con-
tradiction. Suppose otherwise, i.e., suppose that there were only j many
elements in the domain of the model for a finite j. Then by definition,
the world w0,j+1 is in the model, and its domain is that of the collapsed
model N0,j+1, implying that there exist more than j elements in the
model and contradicting the assumption.

Again, the existence of the model described in Theorem 2 immedi-
ately yields an appropriate corollary, one that serves to resolve some of
Nelson’s concerns from [9]:

Corollary 3. N4
♯+(Nelson) and C♯+(Nelson) have models including

an infinite number of natural numbers.

5. Concluding Remarks

The conclusions of [2] were largely pessimistic, suggesting that connexive
arithmetic has little hope of working. The observations in this paper
clearly ameliorate this cynicism to some degree by showing that the
state of C♯ is, if nothing else, no more hopeless than other paraconsistent
arithmetics. At this point, C♯ appears to be the most reasonable of all
connexive arithmetics built on connexive logics in the literature, but it
is not free of difficulties.

One possible stumbling block is the fact that every model of C♯ is
inconsistent. The relevant logician may think the inconsistency of par-
ticular models can be resolved as merely features of a device and not
reflective of arithmetic proper; to a connexive logician embracing C♯, the
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inconsistency is an inseverable fact of life. It seems that if C♯ is to be a
viable arithmetic, this inconsistency must receive some explanation.

I think that such an explanation should fall out of a deeper philo-
sophical analysis of C, but this avenue is outside of the scope of this
paper. Nevertheless, it is still worth considering to some degree in the
special case of arithmetic.

So let us ask why we would want to reject, e.g., a sentence ϕ → ∼ϕ in
the context of arithmetic. Some of the remarks in [19] on the motivations
for connexive logic bear on this this question. If we follow a broadly
Brouwer-Heyting-Kolmogorov line concerning implication  and insofar
as C is based on the constructive logic N4, this is a reasonable line to
take  then we read the demonstration of a conditional ϕ → ψ as a
construction that turns demonstrations of ϕ into demonstrations of ψ.
Thus, two cases appear: One in which ϕ is provable and another in which
ϕ is not provable.

Now, on a naïve level, it seems intuitive that if ϕ is in fact provable,
then there should be no way of converting a valid proof of ϕ into a valid
refutation of ϕ. After all, the purpose of giving a proof is arguably to
guarantee that no such refutation exists. On the other hand, if ϕ is not

provable, then there exists no proof of ϕ available that one can convert
into a refutation of ϕ. Although this case counts as a satisfying instance
of the BHK interpretation of the conditional, this state of affairs satisfies
the BHK condition only vacuously by allowing what [5] calls an “empty
promise conversion.” If one is troubled by the vacuous satisfaction of
conditionals  and this seems to be the type of thing that ought to trou-
ble a constructivist  then one might then wish to reject all instances of
the sentence ϕ → ∼ϕ.

Now, this type of explanation has some deficiencies that stop me
from actually endorsing it. Both C and N4 are paraconsistent, so the
naïve assertion that a proof of ϕ precludes the existence of a refutation
of ϕ does not extend to this domain. For example, a proof that 2 =
2 does not rule out discovering a proof that ∼(2 = 2) holds. Nor,
I will concede, does the argument from the vacuity of the satisfaction of
the BHK condition cleanly align with the implicit BHK reading of the
negated conditional for C (also implicit in the typed λ-calculus for bi-
connexive logic described in [18]). But the intuition, at least, shows that
there might exist some reason that one might take a line that mirrors
connexive principles in arithmetic.



406 Thomas Macaulay Ferguson

Acknowledgments. I appreciate the helpful and challenging comments
due to several reviewers for this journal and participants at the Philoso-

phy of Contra-Classical Logics workshop at UNAM. The research in this
paper was partly done as part of the PAPIIT project IA401117.

References

[1] Dunn, J. M., “A theorem in 3-valued model theory with connections to
number theory, type theory, and relevant logic”, Studia Logica 38, 2
(1979): 149–169. DOI: 10.1007/BF00370439

[2] Ferguson, T. M., “On arithmetic formulated connexively”, IFCoLog Jour-

nal of Logics and Their Applications 3, 3 (2016): 357–376.

[3] Ferguson, T. M., “Dunn-Priest quotients of many-valued structures”,
Notre Dame Journal of Formal Logic 58, 2 (2017): 221–239. DOI: 10.

1215/00294527-3838853

[4] Hasuo, I., and R. Kashima, “Kripke completeness of first-order construc-
tive logics with strong negation”, Logic Journal of the IGPL 11, 6 (2003):
615–646. DOI: 10.1093/jigpal/11.6.615

[5] Kapsner, A., Logics and Falsifications: A New Perspective on Construc-

tivist Semantics, vol. 40 of Trends in Logic, Springer, 2014. DOI: 10.

1007/978-3-319-05206-9

[6] Meyer, R. K., “Arithmetic formulated relevantly” (Unpublished
manuscript), Canberra, 1976.

[7] Meyer, R. K., and C. Mortensen, “Inconsistent models for relevant arith-
metics”, Journal of Symbolic Logic 49, 3 (1984): 917–929. DOI: 10.2307/

2274145

[8] Nelson, D., “Constructible falsity”, Journal of Symbolic Logic 14, 1 (1949):
16–26. DOI: 10.2307/2268973

[9] Nelson, D., “Negation and separation of concepts in constructive systems”,
pages 208–225 in A. Heyting (ed.), Constructivity in Mathematics , North-
Holland, Amsterdam, 1959.

[10] Nelson, D., and A. Almukdad, “Constructible falsity and inexact predi-
cates”, Journal of Symbolic Logic 49, 1 (1984): 231–233. DOI: 10.2307/

2274105

[11] Odintsov, S., and H. Wansing, “Inconsistency-tolerant description logic:
Motivation and basic systems”, , pages 301–335 in V. Hendricks and
J. Malinowski (eds.), Trends in Logic: 50 Years of Studia Logica, Kluwer
Academic Publishers, Dordrecht, 2003.

http://dx.doi.org/10.1007/BF00370439
http://dx.doi.org/10.1215/00294527-3838853
http://dx.doi.org/10.1215/00294527-3838853
http://dx.doi.org/10.1093/jigpal/11.6.615
http://dx.doi.org/10.1007/978-3-319-05206-9
http://dx.doi.org/10.1007/978-3-319-05206-9
http://dx.doi.org/10.2307/2274145
http://dx.doi.org/10.2307/2274145
http://dx.doi.org/10.2307/2268973
http://dx.doi.org/10.2307/2274105
http://dx.doi.org/10.2307/2274105


Inconsistent models . . . for arithmetics . . . 407

[12] Priest, G.,“Minimally inconsistent LP”, Studia Logica 50, 2 (1991): 321–
331. DOI: 10.1007/BF00370190

[13] Priest, G., “Inconsistent models for arithmetic I. Finite models”, Jour-

nal of Philosophical Logic 26, 2 (1997): 223–235. DOI: 10.1023/A:

1004251506208

[14] Priest, G., “Negation as cancellation and connexive logic”, Topoi 18, 2
(1999): 141–148. DOI: 10.1023/A:1006294205280

[15] Slaney, J. K., R. K. Meyer, and G. Restall, “Linear arithmetic desecsed”,
Logique et Analyse 39, 155–156 (1996): 379–387.

[16] Thomason, R. H., “A semantical study of constructible falsity”, Zeitschrift

für Mathematische Logik und Grundlagen der Mathematik 15, 16–18
(1969): 247–257. DOI: 10.1002/malq.19690151602

[17] Wansing, H., “Connexive modal logic”, pages 367–383 in R. Schmidt,
I. Pratt-Hartmann, M. Reynolds and H. Wansing (eds.), Advances in

Modal Logic vol. 5, Kings College Publications, London, 2005.

[18] Wansing, H., “Natural deduction for bi-connexive logic and a two-sorted
typed λ-calculus”, IFCoLog Journal of Logics and Their Applications

(2016): 413–439.

[19] Wansing, H., H. Omori and T. M. Ferguson, “The tenacity of connexive
logic”, IFCoLog Journal of Logics and Their Applications (2016): 279–
296.

Thomas Macaulay Ferguson

Saul Kripke Center CUNY and Cycorp, United States
tferguson@gradcenter.cuny.edu

http://dx.doi.org/10.1007/BF00370190
http://dx.doi.org/10.1023/A:1004251506208
http://dx.doi.org/10.1023/A:1004251506208
http://dx.doi.org/10.1023/A:1006294205280
http://dx.doi.org/10.1002/malq.19690151602

	Introduction
	Wansing's C and Nelson's N4
	C: Arithmetic in C
	Infinite Models: Improving on Nelson
	Concluding Remarks
	References


