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THEORY OF QUANTUM COMPUTATION AND
PHILOSOPHY OF MATHEMATICS. PART II

Abstract. In the article, the philosophical significance of quantum com-
putation theory for philosophy of mathematics is discussed. In particular,
I examine the notion of “quantum-assisted proof” (QAP); the discussion
sheds light on the problem of the nature of mathematical proof; the poten-
tial empirical aspects of mathematics and the realism-antirealism debate (in
the context of the indispensability argument). I present a quasi-empiricist
account of QAP’s, and discuss the possible impact on the discussions cen-
tered around the Enhanced Indispensabity Argument (EIA).
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Introduction

This paper discusses the philosophical significance of quantum computa-
tion theory for philosophy of mathematics, in particular for the following
issues: the nature of mathematical proof; the potential empirical aspects
of mathematics and the realism–antirealism debate (in the context of
the indispensability argument). It can be viewed as a continuation of
[Wójtowicz, 2009], but is essentially self-contained. The former paper
was more technical in character, here I concentrate on the philosophical
questions.

The article has the following structure: general remarks on quantum
algorithms; the concept of quantum-assisted proof (QAP); are there em-
pirical proofs?; quasi-empirical account of quantum proofs; and conclud-
ing remarks.
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The investigations within the paper concern mainly quantum compu-
tation, but they apply to the general problem of the relationship between
mathematics and physics. I argue, that the possibility of quantum proofs
present serious difficulties for the recently much discussed Enhanced In-
dispensabity Argument (EIA) for mathematical realism  and propose a
way of solving the emerging problems. In particular, I claim that the
best philosophical account is quasi-empiricism in Quine’s manner. The
paper therefore gives a support for the realistic account of mathematics.

1. General remarks on quantum algorithms

One of the motivations for investigating quantum-computational mod-
els is the intractability of many computational (combinatorial, number-
theoretical, graph-theoretical etc.) problems.1 An important example
of such a intractable problem is factorization, where no quick, (i.e. poly-
nomial) classical algorithm is known  but there is a quick quantum
algorithm [Shor, 1994].

A natural set of complex computational problems arises, when we
consider simulating the behavior of quantum systems. Usually, the com-
puter simulation of the evolution of a quantum system is impossible
because we need exponentially many coefficients even to describe the
quantum system in question.2 So the computation corresponding to the
evolution of the quantum system is extraordinarily complex. But this
gives us the possibility to exploit the specific features of the quantum
world in order to solve computational problems.

The general idea here is  broadly speaking  to reverse the way we
usually conceive the relationship between the physical system and the
computer simulation: instead of providing a computer simulation of the
physical system, we use the physical system to perform a physical sim-
ulation of the (mathematical) computational process.3

1 [Nielsen and Chuang, 2000] is a monographic survey. A readable survey article
is [Montanaro, 2015]. Aaronson [2013] gives a popular presentation, including also a
discussion of related problems.

2 We need 2n complex coefficients (probability amplitudes) in order to describe
the state of n entagled particles (as a superposition of 2n basic states).

3 The idea of using quantum phenomena in solving computational problems was
presented in [Feynman, 1982].
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So consider a computational problem P which corresponds (in some
identifiable way) to the evolution of a quantum system Q(P ). In partic-
ular  the final state of the evolution of the quantum system Q(P ) cor-
responds to the result of the computation P . In such situations we could
exploit the (quick) quantum evolution instead of the (slow) computation
to solve the computational problem P . Trivially, such a correspondence
obtains, when we start with a quantum system Q, and consider its com-
puter simulation PQ (then of course Q(PQ) = Q). But this is not the
point: the crucial question is, whether there are any mathematically

motivated computational problems P (i.e. problem which arise within
ordinary mathematics, and not for the purpose of describing quantum
systems) for which such quantum systems Q(P ) exist. This is indeed
the case  as demonstrated by the famous Shor’s algorithm for factoring
numbers.

Quantum algorithms are mathematical counterparts of certain quan-
tum processes (such as for example a system of photons passing through
a system of half-silvered mirrors).4 They exploit the peculiarities of the
quantum world (entanglement and superposition). The class of problems
decidable by quantum algorithms is exactly the class of (Turing) decid-
able problems, so in particular  unsolvable problems remain unsolvable.
But  at least in some cases  there can be an enormous increase in com-
putational speed, and this makes them particularly attractive.5

However, there are no quantum computers available, because the
technical problems to be overcome are formidable (due to the fragility
of quantum states, which have to be isolated from their environment,
i.e. the external world). It may well be the case, that even the impres-
sive Shor’s factoring algorithm remains just a purely theoretical possi-
bility. There is also a perhaps deeper, conceptual problem: the class of
known interesting quantum algorithms is limited. Factorization is not

4 Mathematically, a qubit is an element of the form α0|0〉 + α1|1〉, where α0 and
α1 are complex numbers. Passing through a quantum gate corresponds to the action
of a certain operator on a Hilbert space on the qubit. A 2-qubit quantum register
has the form α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉. An n-qubit register requires 2n

coefficients for its description, and has the general form α00..0|00..0〉 + α00..1|00..1〉 +
· · ·+α11..0 |11..0〉+α11..1|11..1〉 (being an element of a Hilbert space of dimension 2n).

5 Apart of Shor’s algorithm, another example is Grover’s search algorithm: we are
searching an item within an unstructured database of size N. Classically, on average
we have to make N/2 checks. Grover’s search algorithm gives a quadratic speed-up:
we need O(

√
N) checks.
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NP-complete, so even if we had a quantum computer available, Shor’s
algorithm would not give us a general method of solving NP-complete
problems. It far from obvious, that a quantum algorithm for solving
NP-complete problems (e.g. SAT) will ever be found.6

The emergence of (applicable) quantum computers would certainly
lead to major changes in science and technology. And even the theo-
retical possibility inspires us to reconsider philosophical questions con-
cerning the nature of mathematical knowledge, the role of mathematical
proofs and the relationships between mathematics and science. We face
the question of the relationships between mathematics and the math-
ematical notion of computation on one hand  and the laws of physics
and the “computational resources” of the universe on the other. And
even if these considerations have the character of a thought experiment,
they can shed new light on fundamental philosophical problems.

2. Quantum-assisted proofs (QAPs)

The (theoretical) possibility of quantum computation, and executing
quantum assisted proofs (for which I will use the acronym QAP) is very
exciting. In order to understand the peculiarities of the possible QAP,
let us exhibit its most important features. In general, it would consist
of the following steps.

1. The mathematical (conceptual) phase. Consider a computational
problem P (e.g. factoring numbers). Our task is to define a quantum
system Q(P ), which is connected to P in an explicit way  in particular
there is a way of identifying the outcome of P from the outcome of Q(P ).
Here we reverse the usual way of viewing the relationship between real-
world situations and computer simulations. Instead of running a com-
puter simulation to find out, what would happen in a physical situation
(e.g. whether a bridge would break down), we perform the physical exper-
iment in order to learn, what the outcome of the (perhaps extraordinarily
long) computation would be. This problem becomes interesting, when

6 In the case of a NP-complete problem (where 2n data have to be examined),
the lower bound of the unstructured search is O(2n/2), as was proved in [Bennett
et al., 1997]. They interpret their result in the following way: “There is no black-
box approach to solving NP  complete problems by using some uniquely quantum-
mechanical features of QTMs”. So in order to obtain a quicker algorithm, the structure
of the problem should be exploited in some clever way. It is an open question, whether
it is possible.
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P has a natural mathematical motivation, and arises within a natural
mathematical context. In this case, finding a corresponding quantum
system Q(P ) would allow us to solve P .

2. The experimental phase consists of:

(a) Preparing the quantum system Q(P) in an appropriate initial state.
(b) Initiating the quantum process. The crucial feature of this process

is that during this computation we cannot in any way interfere with
it, as this would destroy the process (so we have to wait patiently
for the outcome).

(c) Performing the final measurement. This means, roughly speaking,
that we extract the available information from the quantum system.

The outcome of the experiment with the use of Q(P ) yields a solution
of the problem P .

A natural question follows: measurements have a probabilistic na-
ture, so in general we cannot identify the state of the quantum system
before the measurement, and the information is lost.7 This is true  but
in some cases, it is possible to “extract” enough information from the
quantum system. For example, if we knew in advance (i.e. before the
measurement), that the qubit could have been only in one of the two
basic states, then the measurement would give us complete information.
A similar situation can happen with more complicated n-qubit registers:
if we know in advance, that they are in one of few possible states, ap-
propriate measurements will enable us to identify it.8 This is crucial for
quantum algorithms.

Many mathematical problems involve a complex computational part,
so a quick computational method might settle some of such problems (as
it happens in the case of ordinary computer assisted proofs). In partic-

7 In the measurement of a qubit yields 1, we can only learn from that, that the
probability amplitude of the system being in the state |1〉 was non-zero.

8 An example of 2-qubit quantum register will illustrate the general rule. Let us
assume, that we know in advance, that a certain quantum process terminates only
in one of the two following states:

S0: 1/
√

2(|00〉 + |01〉)
S1: 1/

√
2(|10〉 + |11〉)

We perform the measurement on the first qubit. The result is either 0 or 1, and there
is a clear correspondence: we could obtain 0 if and only if the state of the register is
S0 (analogously for 1). So the measurement on the first qubit informs us definitely,
whether the process terminated in S0 or S1. (Observe, that the measurement on the
second qubit yields 0 or 1 with equal probability for both S0 and S1).
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ular, we might get quantum-assisted proofs of some mathematical theo-
rems. The outcome might differ from the outcome of the classical com-
putation in one important respect: we would not be able to know which
of the theoretically possible computational paths was the successful one.
Indeed, there are quantum algorithms, which do not always exhibit con-

crete solutions, but rather provide some general information about the
problem. For example, the quantum algorithm presented in [Harrow et
al., 2009] allows to get some information about systems of equations: the
algorithm outputs a quantum state with certain properties, and not ex-
plicitly the solution.9 In order to “extract” the solution from this state we
would have to perform a large number of measurements. But sometimes
we are interested not in the exact solution, but in some general property
of it, which might be established by performing just few measurements.10

In some cases, solving a computational problem is an essential part of
a proof.11 So we might get a QAP of a possibly important mathematical
theorem. The situation becomes philosophically even more interesting,
when we consider logical problems in their combinatorial (number-the-
oretic) formulation/disguise. Formal proofs can be encoded as numbers
(via arithmetization of syntax), So  ultimately  the question whether
there is a formal proof of a sentence α within a formal theory T becomes
a computational problem. Usually this is not a decidable problem (and
will not become “quantumly decidable” either12), but we can always
check, whether a given string σ of symbols is a formal proof of α within
T  and we can also check, whether there is a proof of α within a given
finite set of strings S). A quick computational procedure would allow us
to find answer to questions like: “Is there a proof of α within T of the

9 “The same algorithm, or closely related ideas, can also be applied to problems
beyond linear equations themselves. [. . . ] It should be stressed that in all these
cases the quantum algorithm “solves” these problems in the same sense as the HHL
algorithm solves them: it starts with a quantum state and produces a quantum state
as output. Whether this is a reasonable definition of “solution” depends on the ap-
plication, and again may depend on whether the input is produced algorithmically or
is provided explicitly as arbitrary data [1].” [Montanaro, 2015, p. 9]

10 We might be interested in the question, whether there exists a solution  and
often this very fact is much more important than the particular details. In general,
qualitative information might be easier to obtain.

11 It might be factoring numbers, pattern matching, multiplying (big) matrices,
establishing a property of graphs etc.

12 Remember, that quantum algorithms have the same computational power as
classical algorithms (but can be quicker).
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length bounded by n?” (T being for example ZFC or PA or RCA0 or
any other formal theory of interest). At least in the case of some open
problems, the answer would be positive.13 But then, from our point of
view, after the process terminates, only a big “YES!” is displayed on
the screen . . . . Even if it happened only in one single case, i.e. even if
one such a quantum demonstration of the existence of a formal proof
succeeded only once, the question of the status of such knowledge would
become philosophically intriguing.

So, in general we might think of two possible scenarios:

1. A “direct” QAP: i.e. a computation, which solves a computational
problem, yielding a proof of a mathematical theorem α.14

2. A “meta-QAP”: the computation has a direct metamathematical in-
terpretation, yielding a positive answer to the question “Is there is a
formal proof of α within T of length bounded by n?”15

Could either of these processes be considered a proof of α? We cannot
even dream of reading out any details of this proof from the process, as
measurements cannot be performed during the computation. In partic-
ular, in the “meta-QAP” case we would be confronted with a kind of
of “quantum non-constructive existence argument”: we only learn, that
such a formal proof (of the length ¬ n) exists  and nothing more.

Observe the following crucial features of a potential QAP:

1. It is quick (it might even be exponentially quicker that the classical
algorithms).

2. We have no insight into the process  we only can perform the final
measurement.

3. We have to rely strongly of physical theories in order to treat these
procedures as reliable.

13 Trivially, the question would be positive in many cases, as there are also formal
proofs of length 1. But the question is, whether there are any mathematically

interesting facts, which could be given answers in this way. By the way, negative
answers (i.e. that there is no such a proof) would also provide valuable information,
as we would get some kind of lower bound concerning the logical complexity of the
problem.

14 So we would think of a situation similar to e.g. the four-color theorem, where
a formidable computation yields the result. In the case of a QAP, this computation
would become “formidableformidable”.

15 Nevertheless, it is not very probable, that such “meta-QAPs”, confirming that
a theory T formally proves α will be invented. It would require a very specific insight
into the structure of the “database” to check (i.e. the collection of possible proofs).
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We are therefore faced with a situation, where we exploit some physi-
cal processes (resources) in order to solve computationally difficult prob-
lems. The analyses given here apply to all cases, in which these three
conditions are met.16 In some cases such a computational support can
lead to new important results. Indeed, this was exactly the case of
computer-assisted proofs (CAPs). The most famous example is probably
the proof of the four-color theorem (4CT).17 Its computer-assisted proof
was presented in [Appel and Haken, 1977; Appel et al., 1997]. As the
proof required the use of a computer (in its original form, they needed
ca. 1200 hours), several methodological, conceptual and philosophical
questions concerning the proof and the epistemological status of 4CT
arose.18 The fundamental question is whether this CAP really is a
mathematical proof, i.e. whether the four color hypothesis turned into
a mathematical theorem.

The problem becomes more intricate in the case of QAP’s. We can
even imagine, that one of the big mathematical open problems (say,
Riemann’s hypothesis or Goldbach’s conjecture) is proved with the help
of a QAP, which would surely be sensational. But even if α is just an
ordinary mathematical problem, the philosophical status of α remains
to be examined.

3. Are there empirical proofs?

The received view considers mathematical activity to be purely intellec-
tual. The mathematician is idealized as a purely rational subject, who
begins with some self-evident truths as a starting point, and proceeds

16 Admittedly, the possibility of the existence of such a physical process is de-
batable. Aaronson discusses the “NP Hardness assumption”: the thesis, that NP-
complete problems of intractable in our physical universe, and speculates, that in
future it might be considered a fundamental principle (like the second law of thermo-
dynamics) [Aaronson, 2005, p. 17]. Aaronson’s claims directly contradict the specula-
tions concerning the possibility of quick natural computation, in particular concerning
hypercomputational procedures solving mathematical problems [cf. Andréka et al.,
2009; Németi and Dávid, 2006; Wójtowicz, 2015].

17 Another interesting example is the proof of Kepler’s conjecture, which claims
that the “ordinary” packing of spheres is best [Hales, 2005].

18 The first articles concerning 4 CT are: [Detlefsen and Luker, 1980; Krakowski,
1980; Levin, 1981; Swart, 1980; Teller, 1980; Tymoczko, 1979], followed by a lively
discussion.
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through a sequence of logically connected intellectual acts to arrive at
the conclusion of the argument. Of course, in this process, understanding
of mathematical concepts is involved. Speaking metaphorically, we need
some “insight” into the mathematical realm (however we conceive it),
and mathematical proofs reveal the interplay of mathematical ideas. In
the process of proving theorems there are some “mechanical fragments”,
but  on the whole  it amounts to grasping inferential connections be-
tween the premises of the mathematical argument and its conclusions
(and not to checking, whether some strings of symbols conform to formal
rules).

From this point of view, already ordinary CAPs might be viewed as
problematic. The following issues are often mentioned in this context:
(1) our lack of understanding of the proof; (2) the explanatory value of
these proofs; (3) the role of empirical elements. An important feature
is the lack of (full) control over what is going on during the proof. We
have to rely on the algorithms and the hardware, and believe, that the
computer performs exactly the task it was designed to perform. There is
an empirical ingredient in the proof, which makes it difficult to reconcile
it with the traditional vision of mathematics as an a priori science, whose
claims are justified by conceptual analysis. What  ultimately  is the
epistemological warrant for 4CT? In the context of (possible) QAPs,
these questions become much more dramatic, because the strange and
counterintuitive laws of the quantum world are involved here.

A general objection might be formulated, which prima facie seems
reasonable: it is always necessary to rely on some laws of physics  so
does it really matter, whether the physical theory in question is classical
mechanics, quantum mechanics, general relativity, thermodynamics or
electromagnetism? Even if we built a steam-powered mechanical com-
puting device (say, an universal Turing machine. . . ), we would have to
rely on the laws of thermodynamics and classical mechanics in order
to trust it. Even if we use paper and pencil, we make some empirical
assumptions  e.g. we assume, that the symbols do not change during
the proof.19 The same applies to ordinary computers  but we accept
them as legitimate devices. From this point of view, a (hypothetical)
quantum computer would not differ in principle from the ordinary one

19 Of course, they change: ink evaporates, certain chemical processes take place,
the shape of the piece of paper changes etc. But these changes are not essential, and
our idealization is justified.
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(and from the steam-powered calculating device). So, finally  no new
interesting philosophical questions arise.

This objection is  in my opinion  seriously flawed. The differences
between classical computers and quantum computers are much deeper,
as we have no access during the quantum process to the temporary state
of the computation. A classical computer performs the computations we
could also perform. So in principle we could proceed with the proof in
the traditional way. We can stop the computation at any stage, examine
the temporary state and continue with the process  so in particular, we
could analyze fragments of the computation, and reconstruct an ordinary
proof (so the computer would serve as heuristic device). We could imag-
ine a group of 1000 mathematicians examining a computer assisted proof,
but in the case of QAPs, the situation is radically different. A quantum
proof is a kind of black box  as there are no knowable intermediate
states: regardless of the size of the quantum circuit, we only have access
to the final outcome (through measurement). And quantum phenomena,
like entanglement and interference are built into the procedure.

From the epistemological point of view, the “minimal item” is the
experiment conceived as a whole. QAPs are not even partially verifiable
or acceptable in any way  we have to accept them as certain wholes,
as “atomic procedures”. A part (usually a significant part) of the infor-
mation, which is present during the quantum computation, is definitely
lost in the final step and cannot be retrieved in any way. The quantum
system does not “remember” which of the computational paths involved
(simulated in the experiment) corresponds to the successful proof. In a
sense, we are presented with a kind of empirical oracle, which can an-
swer some questions, leading to the acceptance of a sentence α. Maybe it
can even answer questions of the kind “Does T formally prove α within
n steps?”  but the answers can only be ’YES’ and ’NO’ (or perhaps:
’YES’ and ’TRY A LARGER n’)  without giving any hints concerning
the structure and general ideas of the proof.20

20 In [Rav, 1999] an example of PYTHIAGORA, a super-quick computer an-
swering all possible mathematical questions is discussed. Rav claims, that this would
be rather destructive for mathematics: “A universal decision method would have
dealt a death blow to mathematics, for we would cease having ideas and candidates
for conjectures” [Rav, 1999, p. 6]. Tymoczko [1979] discusses Simon, a hypothetical
mathematical genius. After becoming an outstanding and highly respected expert
mathematician, Simon claims some theorems to be proved, but refuses to inform us
about the details of his proofs, as he claims them to be too complicated for us.
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4. Quasi-empiricical account of QAPs

Some mathematicians have still an uneasy feeling about CAPs, but new
proofs of this kind are presented, are accepted as legitimate  and prob-
ably this will lead to a permanent change in mathematical practice and
standards. And if quantum computers existed, surely they would be
widely used, also to settle mathematical questions  even if some (per-
haps many?) mathematicians would have doubts about them. It would
be better to know, that e.g. Riemann’s hypothesis is true (even without
learning the details of the proof and being forced to rely on the quantum
device)  then to remain ignorant on this subject (I shortly comment on
the case of Riemann’s hypothesis in footnote 33). “Quantum-assisted
knowledge is better than classical ignorance”  one might say. But even
if there were QAPs available, and mathematical practice changed, this
would not settle the philosophical issue of the status of this kind of
knowledge.

The situation is particularly problematic for the mathematical real-
ists, who claim, that mathematical statement have truth values. They
should decide, whether a sentence α demonstrated via a quantum ex-
periment (without exhibiting any details of this proof whatsoever) is
a mathematical truth. And if it is  what is the truthmaker for this
sentence, the warrant of its truth?

I will argue, that the best account can be given within the quasi-
empiricist stance, where a natural source of inspiration is Quine’s posi-
tion. It is well known, and has been discussed extensively, so I will only
briefly recall some important points. According to Quine, our knowledge
forms a web of beliefs, where the ultimate criterion is the given data (i.e.,
the sensory stimulation). This seamless web should be viewed as a logi-
cally coherent whole, even if  for psychological reasons  we might tend
to differentiate between its fragments. But: “our statements about the
external world face the tribunal of sense experience not individually but
only as a corporate body” [Quine, 1953]. Quine’s famous indispensabil-
ity argument for mathematical realism rests on two premises: (1) we are
committed to the existence of those entities, which are indispensable to
our best scientific theories; (2) mathematical objects are such entities.21

21 Of course, the special role of proof as a method of argumentation is not ques-
tioned. But metascientific analyses concerning the role of mathematics in science are
necessary in order to justify claims concerning the truth of mathematical claims, and
the ontological status of mathematical theories.
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It is the role in science, which is the warrant of truth of mathematical
claims  not any kind of mathematical intuition or some purely philo-
sophically motivated metaphysical claims.

If we accept this way of addressing ontological issues and identifying
ontological commitments of theories, we get to the realistic account of
mathematics in a very natural way. The criterion of existence is given
via logical analysis and allows us to identify the ontology of scientific
theories.22

4.1. The enhanced indispensability argument

Quine’s ontological stance faces some problems, and it has been ques-
tioned.23 In the last years, however, a modified version of the argument
has been presented  in the form of the Enhanced Indispensability Ar-
gument, and the debate has gained new impetus.24

The modified version stresses the explanatory role played by math-
ematics in science and in particular assumes the existence of entities
presupposed by our best explanations. If mathematics plays a genuine
and indispensable explanatory role in science, we have a stronger ar-
gument for mathematical realism. The problem of the explanatory power
of mathematics in science becomes therefore crucial for the debate. The
main question is whether mathematics per se can provide an explanation
of physical facts, i.e. whether there is some explanatory power inherent to
mathematics. Many authors claim, that this is ineed the case, and treat
some scientific explanations as non-causal  because mathematical theo-
rems are present in the explanans. Broadly speaking, the general claim is
that it is not the laws of physics, but rather the truths of mathematics,
which explain the phenomena. One of the much discussed examples is
Baker’s example of the periodical life-cycle of cicadas (13 and 17 years).

22 “The common man’s ontology is vague and untidy in two ways. It takes in
many purported objects that are vaguely or inadequately defined. But also, what
is more significant, it is vague in its scope; we cannot even tell in general which of
these vague things to ascribe to a man’s ontology at all, which things to count him
as assuming” [Quine, 1981, p. 9].

23 Examples of “classical” antirealist accounts are: Field’s [1980] nominaliza-
tion strategy, Hellman’s [1989] modal structuralism, Chihara’s [1990] modalism or
Balaguer’s [1998] fictionalist account (followed by a vast number of papers and mono-
graphs).

24 E.g. Colyvan [1999, 2001] stresses the importance of epistemic virtues for the
discussion.
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The fact, that these cycles are prime numbers is considered by some
authors to have a distinctive mathematical explanation (due to certain
properties of prime numbers expressed in a series of lemmas). Similarly,
the Borsuk-Ulam theorem in claimed to provide an explanation of some
meteorological phenomena [cf. Baker, 2005, 2009; Baker and Colyvan,
2011] Another interesting phenomenon is the regular, hexagonal struc-
ture of the honeycombs, and here again a mathematical explanation is
proposed  it is the honeycomb conjecture [Hales, 2000]: hexagonal tiling
is optimal with respect to the total perimeter length (so bees use as little
wax as possible).25 The topic is much discussed, and the problem, what
constitutes the special character of mathematical explanations in science
is acute.26 We might dismiss EIA or claim, that mathematics “an sich”
has no explanatory powers. But if we accept EIA (even as a working
hypothesis), we have to address the question, what exactly warrants the
explanatory virtues of the theorem α in question. Generally, there are
two possible answers: (1) it is the theorem per se, independent of its
proof; (2) the theorem and its proof (and  so to say  the conceptual
environment).

These two distinct points of view lead to quite different conclusions
concerning the possible explanatory role of “quantumly demonstrated
theorems”.

Ad 1. If we claim, that it is the very theorem itself, which provides
the explanatory power, (regardless of how it was proved), we need not
bother about the details of the proof, the ideas and concepts involved, the
necessary technical prerequisites etc. Even if we knew α (explaining the

25 There are much more examples, to mention just a few: Lipton [2004] analyses
a geometric explanation of a simple physical process (the distribution of rigid sticks in
the air). Bangu [2013] considers the law of large numbers as explaining the outcomes
of a simple game. Lyon and Colyvan [2008] examine the explanatory virtues of the use
of phase spaces in physics. Baron [2014] examines the behavior of predators, where a
mathematical explanation is offered by theorems on stochastic processes.

26 Lange [2013] discusses the problem in details. Some authors claim, that math-
ematics imposes a kind of modal constraints on the world, or consider mathematical
facts as a kind of “programming properties” [see, e.g., Lyon, 2012]. Due to some
antirealistic accounts, mathematics has only a kind of representational function [see,
e.g., Daly and Langford, 2009 for the “indexing account”]. Liggins [2014] discusses
the doctrine of “abstract expressivism”, i.e. the thesis that mathematics serves only
as a tool of saying things about the concrete world, which otherwise would be difficult
(or impossible) to say [cf. Yablo, 2005, 2012]. The literature on the subject is vast,
and only few examples can be mentioned here.
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behavior of a physical system S) from a (reliable) oracle  this would
be satisfactory. From this point of view, to understand, why nobody
has ever passed the famous bridges in Königsberg (crossing every bridge
exactly once) it is enough to know Euler’s theorem  and we do not need
to examine the proof.27

Ad 2. I consider (1) to be an oversimplified point of view. The
proof of the theorem is crucial also for the explanation  it reveals the
necessary assumptions, the concepts involved (which might be exhibited
only by the proof), the role the theorem plays in the conceptual structure
etc.28 In particular, the proof might exhibit not only the mathematical
assumptions and techniques (this is obvious), but also allow to identify
the necessary assumptions concerning the relationship between the phys-
ical reality and the mathematics involved (bridge laws). In particular,
we have to get a deeper understanding of the meaning of the theorem,
its role in the overall conceptual (mathematical) system, so we need to
know its proof.29

This poses a problem for the adherent of the EIA in the context of
QAPs. If the explanatory power of mathematics is conveyed by the ideas
and concepts (exploited in the proof), then the story becomes compli-
cated, as we do not know the proof of the theorem α demonstrated by
a quantum computer. The theory using α can happen to be empirically
adequate, can serve us well as a predictive tool, but we do not under-
stand, why it works, and what features of the empirical situation made
it work.30

27 “Given that the proof justifies the theorem, we are then entitled to make use of
the theorem, e.g., in applications to physical facts. [. . . ] The role of the proof of that
theorem is to justify the acceptance of that theorem. In neither case is mathematics
being taken to explain facts in the concrete world.” [Daly and Langford, 2009, p. 648]

28 According to Baker and Colyvan [2011, p. 327]: “intra-mathematical explana-
tions may spill over into the empirical realm. The idea is that if, say, the Borsuk-Ulam
theorem is explained by its proof and the antipodal weather patterns are explained
by the Borsuk-Ulam theorem, it would seem that the proof of the theorem is at least
part of the explanation of the antipodal weather patterns.”

29 The explanatoriness of a proof within mathematics is a different problem, and
will not be discussed here. Another important problem is the more general question
of the interactions between mathematics and physics  and what exactly is meant by
the phrase “explaining the phenomena”.

30 Consider chess- or go-playing programs  they are already better that humans.
If human chess or go masters play their games, they can explain the meaning of
the moves (using technical terms, figurative language or even metaphors to enhance
understanding). But the computer will win all games and give precise answers to
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4.2. “Quantum theorems” as empirical data

The standard scheme of using mathematics as an explanatory tool is
(more or less) as follows:

1. We are presented with a physical (biological, chemical etc.) phe-
nomenon S.

2. We learn, that there is a theorem α (of standard mathematics M).
3. We see, that α (including its proof) helps us to explain the phe-

nomenon S.
4. (And  being adherents of EIA  we consider this fact to be an im-

portant argument in the discussion).

But what if α is proved via a QAP? A QAP certainly does not of-
fer any understanding or explanation, attributed usually to traditional
proofs. The only information we could get from a QAP is the fact, that
a sentence α can be demonstrated, and nothing more. An “oracle proof”
would not preserve the explanatory virtues of the theorem α, being a
part of the mathematical theory. This would weaken the pro-realistic
argument (as one of the premises of EIA would lose its fundaments).

To overcome this difficulty, I propose to view these new results (i.e.
quantumly demonstrated propositions) not as full-fledged mathematical
theorems, but rather as available empirical data, which have to be ex-
plained. So they would become rather a part of the explanandum, not
the explanans.

Let M be standard mathematics31, and α a QAP-proved theorem.
Accepting M+α better fits and explains the empirical data (including
the quantum experiment yielding α) than other choices. Even if we re-
frain from accepting the quantum process as a legitimate mathematical
proof, and even if we share the doubts resulting from the “explanatori-
ness postulate” (on which EIA rests), we are entitled to include α into
our system of beliefs. This rests on the fact, that we equipped the phys-
ical experiment (performed for example on a system of photons flying
around) with a semantics: we interpret the results of the experiment as

questions like “given a position P on the chess/go board  who is more likely to win?”.
But  ultimately  it will offer explanations of the form: “I played this move because
my evaluating function judged it to be the best one.” So as a predictive device the
chess computer is clearly better, but it cannot explain the underlying “deep reasons”.

31 This is a vague notion  but it is obvious, that M is not one of the formal
theories, but rather “the subject mathematicians are working on and physicists make
use of”. It is clear enough for our purposes.
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information about the provability of α.32 Of course, in this case M+α

fits the empirical data well, and is a very natural rounding out of our
knowledge. But its acceptance does not follow from the fact, that α is
mathematically reliable (e.g. completes a theory in a mathematically
natural way, fits the mathematical intuitions of the experts etc.), but
rather from the fact, that M+α proves to be a good tool in physics.33

To give a better feeling for this way of viewing “quantumly proved
theorems”, consider the case, where the status of a mathematical claim
α is unknown (i.e. we have no proof and do not even know, whether
it is consistent with M). It might be the case, that M+α suits the
purposes of physics (it provides better methods of describing and ex-
plaining certain phenomena, it has a better predictive power etc.)  but
as we do not know, whether it is consistent, we have an uneasy feeling
about it.34 Now, if we prove, that M+α is (relatively) consistent, the
methodological obstacle is overcome. But what is the mathematical

status of α? We haven’t proved α (perhaps it is even independent from
M , so unprovable). Should we accept α as a new mathematical axiom
only because it suits the purposes of physics?

Consider now a different situation, where we use a (relatively) con-
sistent theory M+α in physics, and  later on  α happens to be proved
by a QAP. This would give us perhaps an even stronger belief in the
consistency of M+α (than just having the “old fashioned” metamathe-
matical proof, e.g. by some exotic forcing or model-theoretic arguments).
Consider the following two situations:

32 We have in particular to assume some bridge laws concerning the empirical
situation with the mathematical theories.

33 Riemann’s hypothesis is one the the great unsolved mathematical problems.
But it also exhibits some connections with physics: indeed, Berry and Keating [1999]
formulated a hypothesis concerning the existence of a certain quantum system whose
energy levels exactly correspond to the nontrivial zeros of the Riemann zeta function.
In [Bender et al., 2017] such a quantum system is defined (but it should be noted, that
it is not obvious, whether this quantum system has a physical meaning, is realistic,
not too “weird” etc.). We might therefore speculate, that quantum mechanics could
have a contribution to solving Riemann’s hypothesis. To be exact: we would accept
Riemann’s hypothesis because of empirical arguments  and not because a purely
mathematical argumentation. I think that if quantum physics (perhaps even quantum
computation) could contribute to the solution of Riemann’s hypothesis in any way,
this would not happen by a metamathematically interpreted computation, but rather
by a direct “check”.

34 We might perhaps consider using inconsistent theories, but I do not discuss
the problem here [cf. Colyvan, 2008].
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(i) We know, that M+α is relatively consistent (but do not know,
whether α is provable within M)  and it fits the empirical data
well.

(ii) We have a QAP of α.

Is there  from the point of view of the EIA-realist  an important dif-
ference between (i) and (ii)? Anyway, we have already decided to make
use of M+α as a tool in science, and  being EIA-realists  we included
M+α into our system of beliefs (in particular, accepting its ontological
commitments). M+α was accepted before the QAP of α, and its prov-
ability within M becomes a question of the internal logical structure of
M+α  not the question of accepting α.

I claim, that this way of viewing quantumly proved theorems gives
a better philosophical explanation of the status of M+α from the point
of view of mathematical realism based on the indispensability argument.
In particular, it solves the problem of the lack of explanatoriness, which
presents a difficulty for the EIA-realist. Our system of beliefs (including
mathematical beliefs) has to fit the data, and these data include in par-
ticular the outcomes of the experiments, including (quantum) computer
simulations. Ultimately  from the point of view of EIA-realism  what
matters is the fact, that mathematical sentences gain the status of truths
via the empirical theory they are part of  not via conceptual, a priori

insights.35

5. Concluding remarks

Quantum computation is a quickly developing area. However, there
are no quantum computers, and there are also theoretical limitations
to quantum algorithms. It might well happen, that Shor’s factoring al-
gorithm will remain the most spectacular theoretical achievement for a
long time  and also that there quantum computers of a practical impor-
tance will never be build.36 Nevertheless, quantum computation theory
is philosophically intriguing, also for philosophy of mathematics.

35 This point of view does not dispute the status of classical proof. But according
to this point of view, it is the applicability which elevates the mathematical theorems
to the status of truths (to paraphrase Frege’s famous phrase).

36 So far, Shor’s algorithm is the only quantum algorithm, for which a quantum
computer is significantly faster than any known classical one. This is situation might
be called embarrassing  and possibly connected with the fact, that it is still not clear,
what exactly is the deep reason for the efficiency of the quantum algorithms.
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The possibility of “oracle-like QAPs” poses some difficulties for the
pro-realistic EIA. I have argued, that they are best explained within
the holistic account, where traditional theorems, computer-assisted the-
orems, “quantum theorems” etc. are all integrated within one coherent
system of knowledge.

There has been an extensive discussion concerning the role of empir-
ical procedures in mathematics [e.g. Baker, 2008]  and the hypothetical
QAPs would constitute an important theoretical and philosophical nov-
elty. I hope, that the thought experiment presented here contributes to
the discussion concerning the empirical aspects of mathematics and the
interplay between physical and mathematical knowledge.
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