
Logic and Logical Philosophy
Volume 28 (2019), 223–257

DOI: 10.12775/LLP.2018.009

Yaroslav Petrukhin

Vasilyi Shangin

AUTOMATED PROOF-SEARCHING FOR STRONG

KLEENE LOGIC AND ITS BINARY EXTENSIONS

VIA CORRESPONDENCE ANALYSIS∗

Abstract. Using the method of correspondence analysis, Tamminga ob-
tains sound and complete natural deduction systems for all the unary and
binary truth-functional extensions of Kleene’s strong three-valued logic K3.
In this paper, we extend Tamminga’s result by presenting an original finite,
sound and complete proof-searching technique for all the truth-functional
binary extensions of K3.

Keywords: proof search; correspondence analysis; three-valued logic; strong
Kleene logic; natural deduction; proof theory

1. Introduction and motivation

Taking their inspiration from modal correspondence theory [44, 59, 60],
Kooi and Tamminga [26] presented correspondence analysis for the unary
and binary extensions of the three-valued logic of paradox LP [2, 42, 41].
Correspondence analysis allows one to immediately find inference rules
for the unary and binary operators added to LP from their truth tables’
entries. Let ⋆ be an arbitrary unary or binary operator added to LP

and f⋆ be its truth table. Then an inference scheme Π ⊢ φ is said to
characterize an f⋆’s entry E iff the following condition holds: Π |= φ

∗ The first author is supported by Polish National Science Centre, grant number
DEC-2017/25/B/HS1/01268. The second author is supported by Russian Foundation
for Humanities, grant 16-03-00749 “Logical-epistemic problems of knowledge repre-
sentation”.

Received September 15, 2017. Revised February 8, 2018. Published online July 6, 2018

© 2018 by Nicolaus Copernicus University in Toruń

http://dx.doi.org/10.12775/LLP.2018.009

224 Yaroslav Petrukhin, Vasilyi Shangin

iff E is an f⋆’s entry. So, all f⋆’s entries are characterized by inference
schemes. Moreover, these inference schemes are inference rules, in fact.
If one adds them to a natural deduction system for LP, one obtains
a sound and complete natural deduction system for LP extended by ⋆.
Automated proof-searching for natural deduction systems for LP and its
extensions is presented in [36]. In this paper, we will deal with the cor-
respondence analysis for the extensions of Kleene’s strong three-valued
logic K3 [25, 24] which was presented by Tamminga [55]. Based upon
Tamminga’s paper, we develop an original sound and complete proof-
searching technique in the spirit of [10, 36] for the natural deduction
systems for the binary extensions of K3.1

Natural deduction successfully overcame skepticism concerning its
appropriateness to automated theorem-proving [13]. See, for example,
[52, 20]. In the paper, we aren’t going to outline the topic. However, we
stress the following aspects concerning our motivation. First, the paper
deals with automated proof-searching for Fitch-style natural deduction
for strong Kleene logic, and, to the best of our knowledge, this is original.
Strong Kleene logic is itself worth studying for modelling partial recursive
predicates and reasoning in a situation with a lack of information (the
third value is interpreted as ‘intermediate’ or ‘unknown’). Second, there
are arguments that favour a Jaśkowski-Fitch style of natural deduction
to Gentzen style of natural deduction [17]. Both reasons make proof-
searching for natural deduction in this logic an important task. More-
over, we go further by proposing an original proof-searching procedure
not only for this logic but for its generalizations which include some
prominent logics mentioned in the literature (see sections 1.3 and 1.4
further). And the correctness argument (finiteness, soundness, and com-
pleteness) for the proof-searching procedure in all of these logics is given
in one go. Last, but not least, the importance of the logics in question
being equipped with a correct proof-searching procedure lies within the
paradigm by Dov Gabbay, which strongly suggests, roughly speaking,
that if the same logic has two different proof-searching procedures, then
it’s not the same logic [14].

The structure of this paper is as follows: in the rest of this section,
we briefly introduce a semantics for K3 (subsection 1.1), the notion

1 Although Tamminga [55] presented correspondence analysis for the unary and
binary extensions of K3, we will deal with the binary ones only. Note that correspon-
dence analysis was also adapted for four-valued logics [33].

Automated proof-searching for strong Kleene logic . . . 225

of correspondence analysis (subsection 1.2), and discuss some of K3’s
notable binary extensions (subsections 1.3 and 1.4); in section 2, we
consider natural deduction systems for K3 and its binary extensions; in
section 3, we present our proof-searching technique; in section 4, we show
how it works, using some examples; in section 5, we prove its soundness,
completeness and termination; in section 6, we discuss related work; and
in section 7, we summarize our results.

1.1. Semantics of strong Kleene logic

Strong Kleene logic K3 is built over a propositional language L which
contains a set P = {p, q, r, s, p1, . . .} of propositional variables, left and
right parentheses, negation (¬), disjunction (∨), and conjunction (∧).
A set F of all L -formulas is defined in a standard way. A set V of
truth values contains the following elements only: 1 (true), i (interme-
diate/unknown), 0 (false). 1 (true) is the designated value. A function
f⋆ is said to be a truth table f for an operator ⋆.2 A valuation v is said
to be a function from P to V . A valuation v on P is extended to a
valuation on F as follows:

φ f¬

1 0

i i

0 1

f∨ 1 i 0

1 1 1 1

i 1 i i

0 1 i 0

f∧ 1 i 0

1 1 i 0

i i i 0

0 0 0 0

Definition 1. Let Π ⊆ L and φ ∈ L . Then Π |= φ is defined as
follows: if v(ψ) = 1, for all ψ ∈ Π, then v(φ) = 1, for each valuation v.

1.2. The notion of correspondence analysis

K◦
3

(K3’s extension by binary operators ◦1, . . . , ◦n) is built over L ◦

(L ’s extension by ◦1, . . . , ◦n). Throughout the paper, ◦ denotes an
arbitrary element of {◦1, . . . , ◦n} and f◦(x, y) = z denotes an f◦’s entry
such that for all x, y, z ∈ {0, i, 1} and all φ, ψ ∈ L if v(φ) = x and
v(ψ) = y, then v(φ ◦ ψ) = z, for each valuation v. Though the notion of
an entry of a truth table seems to be obvious, let us clarify that an entry
is neither a row nor a column in a truth table. In the truth tables above,
an entry of a truth table for ⋆ is any cell containing a valuation of ⋆. For
instance, the truth table for negation contains exactly three entries.

2 f⋆ takes an operator ⋆ as an input and outputs with a truth table for ⋆.

226 Yaroslav Petrukhin, Vasilyi Shangin

Note that since K3 is not functionally complete, it is not the case
that f◦1

, . . . , f◦n
are definable via f¬, f∧, f∨.

We will use the following adaptation of Kooi and Tamminga’s defi-
nitions 2.1 and 1 from [26] and [55], respectively.

Definition 2 (Single Entry Correspondence [26, 55]). Let Π ∪ {φ} ⊆
L ◦. Let x, y, z ∈ {0, i, 1}. Then the truth table entry f◦(x, y) = z is
characterized by an inference scheme Π ⊢ φ, if

f◦(x, y) = z if and only if Π |= φ.

Tamminga [55, Theorem 1] found inference schemes which character-
ize an f◦’s all possible entries (see Theorem 1 in Section 2 below).

1.3. Implicational extensions of K3

Recall that an ◦ is an arbitrary binary truth-functional operator. In
particular cases, an ◦ may be an implication. So, in this section, we
consider some notable examples of K3’s implicational extensions.

f→1
1 i 0

1 1 i 0

i 1 1 0

0 1 1 1

f→2
1 i 0

1 1 i 0

i 1 1 1

0 1 1 1

f→3
1 i 0

1 1 i 0

i 1 1 i

0 1 1 1

f→4
1 i 0

1 1 0 0

i 1 1 0

0 1 1 1

f→5
1 i 0

1 1 0 0

i 1 1 1

0 1 1 1

f→6
1 i 0

1 1 0 0

i 1 1 i

0 1 1 1

f→7
1 i 0

1 1 1 0

i 1 1 1

0 1 1 1

f→8
1 i 0

1 1 1 0

i 1 1 0

0 1 1 1

Let us start with Heyting’s implication (we denote it by →1). It
originally appeared in Heyting’s logic G3 that was studied by Heyting
[19], Gödel [15], and Jaśkowski [21]. However, G3’s negation is not the
same as K3’s one. Although G3 is not an implicational extension of
K3, Batens [5] presented a logic which is K3 extended by Heyting’s
implication. Natural deduction for G3 itself is presented in [34].

Automated proof-searching for strong Kleene logic . . . 227

Słupecki’s implication →2 was presented in [53] and [31] as an at-
tempt to restore the deduction theorem to Łukasiewicz’s Ł3 [28]. K3

that was extended by Słupecki’s implication appeared untitled in Avron’s
paper [3]. Following Popov [38], we call this logic PComp.

The abovementioned Ł3 [28] is K3 extended by Łukasiewicz’s impli-
cation →3.

Although Rescher’s logic [43] is not an implicational extension of K3,
Rescher’s →4 can be added to K3 as an implicational connective.

Bochvar’s →5 is an implication of his logic B3 [8]. Note that →5 is
also an implication of Sette and Carnielli’s weakly intuitionistic logic I1

[46] (which is a dual of Sette’s P1 [45]) and Popov’s (and Marcos’) I2

[39, 29] (which, in turn, is a dual of Marcos’ P2 [29]). Although none of
the abovementioned logics containing →5 is an implicational extension
of K3, one may consider K3 that was extended by →5.

All these implications are natural in the sense of Tomova [56]. More-
over, as follows from [56], in the case of the only designated value 1,
there are only 6 natural implications →i, 1 ¬ i ¬ 6. A natural deduc-
tion characterisation (via correspondence analysis) of natural logics can
be found in [37].

However, in [58, 57] Tomova presents an extended class of natural
implications. In the case of the only designated value 1, this class con-
tains implications →i, 1 ¬ i ¬ 8. Note that →7 is an implication of
Karpenko and Tomova’s literal paralogic TK2 [22] (TK1’s implication
is →4). Moreover, →8 is Sette’s implication [45].

1.4. Peirce’s arrow and Sheffer’s stroke as extensions of K3

However, it is not the case that an ◦ may be implication only. It may be
either Peirce’s arrow or Sheffer’s stroke. In [50], Shestakov introduced
Peirce’s arrow ↓1 for K3. Moreover, in [49] and [51], Shestakov presented
Peirce’s arrows ↓2 and ↓3 for B3’s internal and external connectives,
respectively. In [30], McKinsey introduced Sheffer’s stroke for Ł3 (⇓).

f⇓ 1 i 0

1 0 i 1

i i 1 1

0 1 1 1

f↓1
1 i 0

1 0 0 0

i 0 i i

0 0 i 1

f↓2
1 i 0

1 0 i 0

i i i i

0 0 i 1

f↓3
1 i 0

1 0 0 0

i 0 0 1

0 0 1 1

228 Yaroslav Petrukhin, Vasilyi Shangin

2. Natural deduction systems

Natural deduction systems for K3 were presented independently by
Priest [41] and by Tamminga [55].3 Tamminga’s system NDK3

contains
the following inference rules.

Elimination rules:

(∧E1)
φ ∧ ψ

φ
(∧E2)

φ ∧ ψ

ψ
(∨E)

[φ] [ψ]
φ ∨ ψ χ χ

χ

(¬¬E)
¬¬φ

φ
(¬∨E)

¬(φ ∨ ψ)

¬φ ∧ ¬ψ
(¬∧E)

¬(φ ∧ ψ)

¬φ ∨ ¬ψ

Introduction rules:

(∧I)
φ ψ

φ ∧ ψ
(∨I1)

φ

φ ∨ ψ
(∨I2)

ψ

φ ∨ ψ
(¬¬I)

φ

¬¬φ

(¬∨I)
¬φ ∧ ¬ψ

¬(φ ∨ ψ)
(¬∧I)

¬φ ∨ ¬ψ

¬(φ ∧ ψ)
(EFQ)

φ ¬φ

ψ

Although in [41, 55] a natural deduction derivation is defined in a
tree-format, we will define it in a linear-format (sometimes referred to as
Jaśkowski-Fitch style), following Copi, Cohen, and McMahon’s textbook
[11, p. 366].4

Definition 3. A derivation in NDK3
of a formula ω from a set of as-

sumptions Π is a finite nonempty sequence of formulae with the following
conditions:

1. Each formula is an assumption or follows from the previous formulae
via an NDK3

-rule;
2. By applying (∨E) each formula starting from the assumption φ until

a formula χ, inclusively, as well as each formula starting from the
assumption ψ until a formula χ, inclusively, is discarded from the
derivation.

A proof in NDK3
is a derivation from the empty set of assumptions.

Note that although both a derivation and a proof cannot be empty,
later we will show the way our proof-searching procedure deals with the

3 We follow Tamminga’s formulation; however, the only difference between Tam-
minga’s and Priest’s calculi is with regard to the rule (EFQ). In Priest’s version it is
as follows: φ∧¬φ

ψ
.

4 See also [48], where a precise definition of a derivation is discussed.

Automated proof-searching for strong Kleene logic . . . 229

situation when no derivation is found and, moreover, the sequence of
formulae after proof-searching is empty (see Sections 3 and 4).

As follows from [41] and [55], NDK3
is sound and complete.

To obtain a natural deduction system NDK◦

3
for K◦

3
we need the

following theorem.

Theorem 1 (Tamminga [55]). For all φ, ψ, χ ∈ L ◦ we have:

f◦(0, 0) =

0 iff ¬φ ∧ ¬ψ |= ¬(φ ◦ ψ)
i iff ¬φ ∧ ¬ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= χ

1 iff ¬φ ∧ ¬ψ |= φ ◦ ψ

f◦(0, i) =

0 iff ¬φ |= (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ)
i iff ¬φ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= ψ ∨ ¬ψ
1 iff ¬φ |= (ψ ∨ ¬ψ) ∨ (φ ◦ ψ)

f◦(0, 1) =

0 iff ¬φ ∧ ψ |= ¬(φ ◦ ψ)
i iff ¬φ ∧ ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= χ

1 iff ¬φ ∧ ψ |= φ ◦ ψ

f◦(i, 0) =

0 iff ¬ψ |= (φ ∨ ¬φ) ∨ ¬(φ ◦ ψ)
i iff ¬ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= φ ∨ ¬φ
1 iff ¬ψ |= (φ ∨ ¬φ) ∨ (φ ◦ ψ)

f◦(i, i) =

0 iff |= (φ ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ)
i iff (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= (φ ∨ ¬φ) ∨ (ψ ∨ ¬ψ)
1 iff |= (φ ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨ (φ ◦ ψ)

f◦(i, 1) =

0 iff ψ |= (φ ∨ ¬φ) ∨ ¬(φ ◦ ψ)
i iff ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= φ ∨ ¬φ
1 iff ψ |= (φ ∨ ¬φ) ∨ (φ ◦ ψ)

f◦(1, 0) =

0 iff φ ∧ ¬ψ |= ¬(φ ◦ ψ)
i iff φ ∧ ¬ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= χ

1 iff φ ∧ ¬ψ |= φ ◦ ψ

f◦(1, i) =

0 iff φ |= (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ)
i iff φ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= ψ ∨ ¬ψ
1 iff φ |= (ψ ∨ ¬ψ) ∨ (φ ◦ ψ)

f◦(1, 1) =

0 iff φ ∧ ψ |= ¬(φ ◦ ψ)
i iff φ ∧ ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ) |= χ

1 iff φ ∧ ψ |= φ ◦ ψ

230 Yaroslav Petrukhin, Vasilyi Shangin

The i-rules5 are considered to be elimination rules while the remain-
ing ones are considered to be introduction rules. NDK◦

3
is an extension

of NDK3
by the inference rules which are introduced in Theorem 1. Note

that each of NDK3
’s extensions has one, and only one, rule from each

of the nine groups of the inference rules. As follows from [55], NDK◦

3
is

sound and complete.

Let us introduce an example of a derivation of ¬p from ¬q and p ◦ q
in some NDK◦

3
with R◦(i, 0, i) and R◦(1, 0, i).6

(1) ¬q assumption

(2) p ◦ q assumption

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2

(4) p ∨ ¬p R◦(i, 0, i): 1, 3

(5) p assumption

(6) p ∧ ¬q (∧I): 1, 5

(7) ¬p R◦(1, 0, i): 6, 3

(8) ¬p assumption

(9) ¬p (∨E): 4, 7, 8 [5-7], [8]

3. Proof search for NDK3
and NDK

◦

3

As far as we know, there is no published work concerning natural deduc-
tion proof search for K3. Here we adapt an algorithm for searching for
natural deduction proofs in a variety of logics [9, 10].

Note that proof-searching is always carried out in a particular system.

In searching for a proof, there are internal states of the algorithm:
list−proof and list−goals. List−proof is a name of a (possibly empty)
sequence of formulae (some of them being highlighted as discarded, fol-
lowing the 2nd clause of Definition 3), and list−goals is a name of a
nonempty sequence of goals, i.e. formulae we want to prove.7 The result

5 By an x-rule we mean an ◦-rule with v(φ ◦ ψ) = x. R◦(0, 0, i) is an example of
an i-rule.

6 Note that we obtain R◦(i, 0, i) and R◦(1, 0, i) from f◦(i, 0) = i and f◦(1, 0) = i,
respectively.

7 As the reader will soon find out, the emptiness of list−proof is a specific feature
of proof-searching for K3. A counterexample is extracted even from empty list−proof.

Automated proof-searching for strong Kleene logic . . . 231

of proof-searching may be a proof or a counterexample. Below we de-
scribe in detail all the procedures to define an algo−derivation for NDK3

and NDK◦

3
(abbreviated through the paper as ALGK3

and ALGK◦

3
, re-

spectively).
Given the task of finding an algo−derivation of α from Γ in some

NDK
◦

3
, with Ω and Ξ being its list−proof and list−goals, respectively,

we will use the following notation. ‘Ω ⊢ Ξ’ is to mean that at the current
state of proof-searching Ω denotes list−proof and Ξ denotes list−goals.
If we want to highlight that a formula ψ is a member of Ω / a goal ψ is
a member of Ξ we write ‘Ω1, ψ, Ω2 ⊢ Ξ’ / ‘Ω ⊢ Ξ1, ψ, Ξ2’. If we want to
highlight that a goal ψ is the last member of Ξ we write ‘Ω ⊢ Ξ1, ψ’.

Definition 4. We say current−goal ψ is reached iff (1) Ω1, ψ, Ω2 ⊢ Ξ,ψ

or (2) Ω1, ω, Ω2,¬ω,Ω3 ⊢ Ξ,ψ.

Current−goal ψ is reached in the following situations: (1) ψ is in list−

goals and list−proof ; (2) some formula and its negation are in list−proof.
In the case of (2) current−goal ψ is reached via (EFQ).

Definition 5. We say ‘Ω ⊢ Ξ’ leads to ‘Ω1 ⊢ Ξ1’, if an algorithm takes
‘Ω ⊢ Ξ’ as an input and outputs with ‘Ω1 ⊢ Ξ1’. This definition captures
the idea that at some point during a proof search the current state is
‘Ω ⊢ Ξ’ and some time later it is ‘Ω1 ⊢ Ξ1’.

Procedure 1 (Pr1). Pr1 governs the applicability of the elimination
rules. Pr1 marks both its premise(s) and a conclusion to prevent the
reapplicability of the same elimination rule to the same formula. On
the other hand, reapplicability of the same elimination rule to the same
formula becomes possible, if the conclusion of the previous application
of the elimination rule is discarded from list−proof.

Procedure 2 (Pr2). Pr2 governs the reachability of current−goal.
Pr2 subsequently checks whether list−proof has current−goal as a non-
discarded formula and (if not) checks whether list−proof has some for-
mula and its negation, both being non-discarded.8 Pr2 deletes a reached
goal from list−goals and sets an element in list−goals preceding it, if
existent, as current−goal.

Procedure 3 (Pr3). Pr3 governs the updatabilty of both list−proof
and list− goals when Pr1 fails and current−goal isn’t reached. The pur-
pose of Pr3 is to find new goals, if needed. Pr3 consists of Pr3.1 and

8 Let us recall that the notion of a discarded formula is defined in the 2nd clause
of Definition 3.

232 Yaroslav Petrukhin, Vasilyi Shangin

Pr3.2. Pr3.1 governs updatabilty of list−goals and Pr3.2 governs the
updatabilty of list−proof.

Procedure 3.1 (Pr3.1). Pr3.1 governs current−goal depending on
its type. Below Pr3.1.1–Pr3.1.7 provide a description in detail. If cur-
rent−goal isn’t reached, then current−goal is updated and list−proof is
updated. Note that we do nothing, if current−goal is a literal.9

Pr3.1.1. If Ω ⊢ Ξ, φ∧ψ and φ∧ψ isn’t a member of Ω, then Ω ⊢ Ξ,
φ∧ψ, φ and afterwards Ω, φ ⊢ Ξ, φ∧ψ, ψ (a proof of a conjunctive goal
is searched via searching for proofs of its conjuncts starting from the left
one).

Pr3.1.2. If Ω ⊢ Ξ, φ∨ψ and φ∨ψ isn’t a member of Ω, then Ω ⊢ Ξ,
φ∨ ψ, φ or Ω ⊢ Ξ, φ∨ ψ, ψ (a proof of a disjunctive goal is searched via
searching for proofs of its disjuncts starting from the left one).10

Pr3.1.3. If Ω ⊢ Ξ, ¬(φ∧ ψ) and ¬(φ ∧ ψ) isn’t a member of Ω, then
Ω ⊢ Ξ, ¬(φ ∧ ψ), ¬φ ∨ ¬ψ (proof-searching for ¬φ ∨ ¬ψ guides us to
proof-searching for ¬(φ ∧ ψ)).

Pr3.1.4. If Ω ⊢ Ξ, ¬(φ∨ ψ) and ¬(φ ∨ ψ) isn’t a member of Ω, then
Ω ⊢ Ξ, ¬(φ ∨ ψ), ¬φ ∧ ¬ψ (proof-searching for ¬φ ∧ ¬ψ guides us to
proof-searching for ¬(φ ∨ ψ)).

Pr3.1.5. If Ω ⊢ Ξ,¬¬φ and ¬¬φ isn’t a member of Ω, then Ω ⊢
Ξ,¬¬φ, φ (proof-searching for φ guides us to proof-searching for ¬¬φ).

Pr3.1.6-Pr.3.1.7 govern the cases with φ ◦ ψ or ¬(φ ◦ ψ) being cur-
rent−goal. The way we treat them depends solely on ◦-rules the partic-
ular system has.

The general idea is that only the 1-rules of the system in question (if
any) are responsible for searching for current−goal φ ◦ ψ and only the

9 A literal is standardly defined to be a propositional variable or its negation.
10 Note that the difference between Pr3.1.1 and Pr3.1.2. In the former procedure,

the left conjunct is reached if and only if we start out searching for the right one. In
the latter procedure, the left disjunct is reached if and only if we don’t start out
searching for the right one. In more detail, if the left disjunct is reached, then we
don’t start out searching for the right one because a disjunctive goal is reachable via
(∨I1). Conversely, if we don’t start out searching for the right disjunct, then it means
we have already reached the left one and, therefore, a disjunctive goal is reached via
(∨I1). Additionally, in the case of Pr3.1.2 we delete all the formulae and goals to
have been added to an algo-derivation while searching for the left disjunct. It should
be noted that ‘deleted’ means something considerably different than ‘discarded’. For
example, discarded formulae are one of the essential parts of a derivation while, having
been one of the essential parts of proof-searching, deleted formulae are not parts of a
derivation at all.

Automated proof-searching for strong Kleene logic . . . 233

0-rules of the system in question (if any) are responsible for searching
for current−goal ¬(φ ◦ψ). For the considerations concerning the 0-rules
are similar to the ones concerning the 1-rules we confine ourselves to the
1-rules.

Among the 1-rules, the easiest rule to apply is R◦(i, i, 1): it has no
premises. If it is in the system and current−goal is φ◦ψ, then (φ∨¬φ)∨
(ψ∨ ¬ψ) ∨ (φ◦ψ) is in list−proof.11 This formula in list−proof is helpful
in searching for φ ◦ ψ.

Then it is easier to apply a 1-rule, if its premise is a conjunct of some
conjunctive formula and not a conjunctive formula itself. Thus the next
ones to apply are the rules R◦(0, i, 1), R◦(1, i, 1), R◦(i, 1, 1), R◦(i, 0, 1).12

We consider R◦(0, i, 1). The others are considered similarly. If R◦(0, i, 1)
is in the system, current−goal is φ ◦ ψ and ¬φ is in list−proof, then
(ψ ∨ ¬ψ) ∨ (φ ◦ ψ) is in list−proof. This formula in list−proof is, again,
helpful in searching for φ ◦ ψ.

The hardest 1-rules to apply are R◦(0, 0, 1), R◦(0, 1, 1), R◦(1, 0, 1),
R◦(1, 1, 1) for their premises are conjunctive formulas. We consider
R◦(0, 0, 1). The others are considered similarly. If R◦(0, 0, 1) is in the
system, current−goal is φ ◦ ψ and ¬φ ∧ ¬ψ is in list−proof, then φ ◦ ψ is
readily reached. We thank one of the referees for the following general-
isation for these procedures: “if a rule R is in the system, current−goal
is φ ◦ ψ and all formulas from the left-hand side of |= in R occur in
list−proof, then we also have everything that occurs on the right-hand
side of |= in R in list−proof ”. We, however, strongly believe that a more
detailed description makes understanding easier.

So, this is the fixed order in applying the 1-rules in searching for
current−goal φ ◦ ψ.13 We try to saturate list−proof with (negations) of
subformulae of φ ◦ ψ.

Pr3.1.6.1. If Ω ⊢ Ξ, φ ◦ ψ and φ ◦ ψ isn’t a member of Ω, then Ω,
(φ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨ (φ ◦ψ) ⊢ Ξ, φ ◦ψ (a proof of φ ◦ψ is searched for
via searching for the applicability of the rule R◦(i, i, 1)).

Pr3.1.6.2. If Ω ⊢ Ξ, φ◦ψ and φ◦ψ isn’t a member of Ω, then Ω ⊢ Ξ,
φ ◦ ψ, (ψ ∨ ¬ψ) ∨ (φ ◦ ψ), ¬φ or Ω ⊢ Ξ, φ ◦ ψ, (φ ∨ ¬φ) ∨ (φ ◦ ψ), ¬ψ or

11 Note that current−goal determines applicability of R◦(i, i, 1).
12 The order of their application is arbitrary. The algorithm just scans list−proof

for all the possible applications of these rules in the same way as it scans for all
occurrences of conjunctive formulae in order to apply (∧E1) and (∧E2).

13 This order, of course, isn’t necessary.

234 Yaroslav Petrukhin, Vasilyi Shangin

Ω ⊢ Ξ, φ ◦ ψ, (φ ∨ ¬φ) ∨ (φ ◦ ψ), ψ or Ω ⊢ Ξ, φ ◦ ψ, (ψ ∨ ¬ψ) ∨ (φ ◦ ψ),
φ (a proof of φ ◦ ψ is searched for via searching for the applicability of
one of the rules R◦(0, i, 1), R◦(i, 0, 1), R◦(i, 1, 1), R◦(1, i, 1)).14

Pr3.1.6.3. If Ω ⊢ Ξ, φ◦ψ and φ◦ψ isn’t a member of Ω, then Ω ⊢ Ξ,
φ◦ψ, ¬φ∧¬ψ or Ω ⊢ Ξ, φ◦ψ, ¬φ∧ψ or Ω ⊢ Ξ, φ◦ψ, ¬φ∧¬ψ or Ω ⊢ Ξ,
φ ◦ ψ, φ∧ ¬ψ or Ω ⊢ Ξ, φ ◦ψ, φ∧ψ (a proof of φ ◦ ψ is searched for via
searching for the applicability of one of the rules R◦(0, 0, 1), R◦(0, 1, 1),
R◦(1, 0, 1), R◦(1, 1, 1)).15

Pr3.1.7.1. If Ω ⊢ Ξ, ¬(φ◦ψ) and ¬(φ◦ψ) isn’t a member of Ω, then
Ω, (φ ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ) ⊢ Ξ, ¬(φ ◦ ψ) (a proof of ¬(φ ◦ ψ) is
searched for via searching for the applicability of the rule R◦(i, i, 0)).

Pr3.1.7.2. If Ω ⊢ Ξ, ¬(φ ◦ ψ) and ¬(φ ◦ ψ) isn’t a member of Ω,
then Ω ⊢ Ξ,¬(φ ◦ ψ), (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ), ¬φ or Ω ⊢ Ξ, ¬(φ ◦ ψ),
(φ ∨ ¬φ) ∨ ¬(φ ◦ ψ), ¬ψ or Ω ⊢ Ξ, ¬(φ ◦ ψ), (φ ∨ ¬φ) ∨ ¬(φ ◦ ψ),
φ or Ω ⊢ Ξ, ¬(φ ◦ ψ), (ψ ∨ ¬ψ) ∨ ¬(φ ◦ ψ), φ (a proof of ¬(φ ◦ ψ)
is searched via searching for applicability one of the rules R◦(0, i, 0),
R◦(i, 0, 0), R◦(i, 1, 0), R◦(1, i, 0)).16

Pr3.1.7.3. If Ω ⊢ Ξ, ¬(φ◦ψ) and ¬(φ◦ψ) isn’t a member of Ω, then
Ω ⊢ Ξ, ¬(φ◦ψ), ¬φ∧¬ψ or Ω ⊢ Ξ, ¬(φ◦ψ), ¬φ∧ψ or Ω ⊢ Ξ, ¬(φ◦ψ),
¬φ∧ψ or Ω ⊢ Ξ, ¬(φ ◦ψ), φ∧ ¬ψ or Ω ⊢ Ξ, ¬(φ ◦ψ), φ∧ψ (a proof of
¬(φ ◦ ψ) is searched for via searching for the applicability of one of the
rules R◦(0, 0, 0), R◦(0, 1, 0), R◦(1, 0, 0), R◦(1, 1, 0)).17

Procedure 3.2. Pr3.2 governs current−goal depending on the type
of formulae in list−proof. Below Pr3.2.1-Pr3.2.2 provide a detailed de-
scription. As in Pr1, Pr3.2 prevents reapplicability with marks. First,
Pr3.2 doesn’t apply to the formulae which are marked by Pr1. Second,
Pr3.2 marks the reapplicability of the same rule to the same formula.
However, it allows the applicability of two (three etc.) rules to the same
formula. On the other hand, the reapplicability of Pr3.2 to the same
formula becomes possible, if the result of its application is discarded
from list−proof.

14 Pr3.1.6.2 is performed after Pr3.1.6.1 only. Note that proof-searching is per-
formed with deleting formulae which have appeared in list−proof and list−goals via
Pr3.1.6.1. (This is the same way we deal with a disjunctive formula in Pr3.1.2.)

15 Pr3.1.6.3 is performed after Pr3.1.6.2 only.
16 Pr3.1.7.2 is performed after Pr3.1.7.1 only.
17 Pr3.1.7.3 is performed after Pr3.1.7.2 only.

Automated proof-searching for strong Kleene logic . . . 235

Pr3.2.1. If Ω1, φ∨ψ,Ω2 ⊢ Ξ, χ, then Ω1, φ∨ψ,Ω2, φ ⊢ Ξ, χ, χ and af-
terwards Ω1, φ∨ψ,Ω2, χ, ψ ⊢ Ξ, χ, χ and afterwards Ω1, φ∨ψ,Ω2, χ ⊢ Ξ

(if an unmarked formula φ ∨ ψ is in list−proof and current−goal χ isn’t
reached, then list−proof and list−goals are updated with an assumption
φ and new current−goal χ, respectively; if χ is reached, then an assump-
tion φ is discarded, an assumption ψ is added, current−goal χ is deleted
and new current−goal χ is set; if χ is reached with an assumption ψ this
time, then an assumption ψ is discarded, (∨E) is applied, both goals χ, χ
are deleted and the preceding goal is set as current−goal).18

The general idea is to use φ◦ψ and ¬(φ◦ψ) from list−proof in order
to reach current−goal. Here the i-rules come into play. As in the case of
the 1-rules and the 0-rules in Pr3.1, the i-rules are ordered by the ease of
applicability. Since the considerations concerning φ ◦ ψ from list−proof
are similar to the ones concerning ¬(φ ◦ ψ) from list−proof we confine
ourselves to φ ◦ ψ from list−proof.

Among the i-rules, the easiest rule to apply is R◦(i, i, i): it has one
premise. If it is in the system and φ ◦ ψ is in list−proof, then list−goals
updates with the following goals: (φ∨ ¬φ) ∨ (ψ ∨ ¬ψ), (φ◦ψ) ∨ ¬(φ◦ψ).
For (φ ◦ψ) ∨ ¬(φ ◦ψ) is readily reached via Pr3.1.2, (φ∨ ¬φ) ∨ (ψ ∨ ¬ψ)
is readily reached too. This formula in list−proof is helpful in searching
for any current−goal.

Then it is easier to apply an i-rule, if one of its two premises is a
conjunct of some conjunctive formula and not the conjunctive formula
itself. Thus the next ones to apply are the rules R◦(0, i, i), R◦(1, i, i),
R◦(i, 1, i), R◦(i, 0, i). We consider R◦(0, i, i). The others are considered
similarly. If R◦(0, i, i) is in the system and φ ◦ ψ is in list−proof, then
list−goals updates with the following goals: ψ ∨ ¬ψ, ¬φ, (φ ◦ ψ) ∨ ¬(φ ◦
ψ). For (φ ◦ ψ) ∨ ¬(φ ◦ ψ) is readily reached via Pr3.1.2, ¬φ becomes
current−goal. This goal is helpful in searching for the preceding goal.

The hardest i-rules to apply are R◦(0, 0, i), R◦(0, 1, i), R◦(1, 0, i),
R◦(1, 1, i) for they have some conjunctive formulas as one of their
premises. We consider R◦(0, 0, i). The others are considered similarly.
If R◦(0, 0, i) is in the system and φ ◦ ψ is in list−proof, then list−goals
updates with the following goals: ¬φ ∧ ¬ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ). For
(φ ◦ ψ) ∨ ¬(φ ◦ ψ) is readily reached via Pr3.1.2, ¬φ ∧ ¬ψ becomes cur-
rent−goal. This goal is helpful in searching for the preceding goal.

18 Note that despite new current−goal being the same formula as the preceding
goal, these goals aren’t the same goal in list−goals.

236 Yaroslav Petrukhin, Vasilyi Shangin

So, this is the order in applying the i-rules in searching for cur-
rent−goal. Again, we try to saturate list−proof with (negations) of sub-
formulae of φ ◦ ψ, if φ ◦ ψ is in list−proof.

In what follows, ̟ denotes φ ◦ ψ or ¬(φ ◦ ψ).
Pr3.2.2.1. If Ω1, ̟,Ω2 ⊢ Ξ, χ, then Ω1, ̟,Ω2 ⊢ Ξ, χ, (φ ∨ ¬φ) ∨

(ψ ∨ ¬ψ), (φ ◦ ψ) ∨ ¬(φ ◦ ψ).
Pr3.2.2.2. If Ω1, ̟,Ω2 ⊢ Ξ, χ, then Ω1, ̟,Ω2 ⊢ Ξ, χ, ψ ∨ ¬ψ, ¬φ,

(φ◦ψ) ∨ ¬(φ◦ψ) and afterwards Ω1, ̟,Ω2 ⊢ Ξ, χ, φ∨ ¬φ, ¬ψ, (φ◦ψ) ∨
¬(φ ◦ ψ) and afterwards Ω1, ̟,Ω2 ⊢ Ξ, χ, φ ∨ ¬φ, ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ)
and afterwards Ω1, ̟,Ω2 ⊢ Ξ, χ, ψ ∨ ¬ψ, φ (φ ◦ ψ) ∨ ¬(φ ◦ ψ).

Pr3.2.2.3. If Ω1, ̟,Ω2 ⊢ Ξ, χ, then Ω1, ̟,Ω2 ⊢ Ξ, χ, ¬φ ∧ ¬ψ,
(φ◦ψ)∨¬(φ◦ψ) and afterwards Ω1, ̟,Ω2 ⊢ Ξ, χ, ¬φ∧ψ, (φ◦ψ)∨¬(φ◦ψ)
and afterwards Ω1, ̟,Ω2 ⊢ Ξ, χ, φ∧¬ψ, (φ◦ψ)∨¬(φ◦ψ) and afterwards
Ω1, ̟,Ω2 ⊢ Ξ, χ, φ ∧ ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ).

Procedure 4. Pr4 governs the applicability of the introduction
rules. It is strictly determined by and following Pr3.1 that list−proof is
updated via an introduction rule. For example, Pr3.1.1 is formulated
so that when both φ and ψ are in list−proof, φ ∧ ψ is in list−proof via
(∧I), either. As both Pr1 and Pr3, Pr4 prevents reapplicability with
marks. Pr4 marks reapplicability to the same formula. On the other
hand, the reapplicability of Pr4 to the same formula becomes possible,
if the result of its application is discarded from list−proof. The specifics
of the marking mechanism of Pr4 amount to the fact that results of its
application are marked to prevent the applicability of both Pr1 and Pr3.

Proof-searching algorithm ALGK◦

3

A description of the proof-searching algorithm ALGK◦

3
is as follows. A

flowchart of the algorithm one can find in Figure 1 on page 237.

1: Step 1. Input a task to find an algo-derivation of α from Γ .
2: Goto step 2.
3: Step 2. Pr2 is launched.
4: The algorithm checks if current−goal is reached.
5: if yes then

6: goto step 3.
7: else goto step 4.
8: end if

9: Step 3. The algorithm checks if current−goal is initial−goal.
10: if yes then

Automated proof-searching for strong Kleene logic . . . 237

Step 1

Step 2

StopStep 3 Step 4

Step 5Step 6

Yes No

YesNo

No

Yes

No
No

Yes

Yes

Figure 1. A flowchart of the algorithm

11: an algo-derivation of α from Γ is found. Stop.
12: else Pr4 is launched. Goto step 2.
13: end if

14: Step 4. The algorithm checks if any elimination rule is applicable.
15: if yes then

16: Pr1 is launched. Goto step 2.
17: else goto step 5.
18: end if

19: Step 5. The algorithm checks if Pr 3.1 is applicable.
20: if yes then

21: goto step 2.
22: else goto step 6.
23: end if

24: Step 6. The algorithm checks if any unmarked formulae are in list−

proof.
25: if yes then

26: Pr3.2 is launched. Goto step 2.
27: else a counterexample is extracted. Stop.
28: end if

4. Algo-Proof Examples

As an example, we consider an algo-proof of ¬p from ¬q and p ◦ q in
some system with the following i-rules only: R◦(i, i, i), R◦(1, 0, i) and
R◦(i, 0, i).

238 Yaroslav Petrukhin, Vasilyi Shangin

¬p is set to be initial−goal in list−goals with both ¬q and p ◦ q
being added in list−proof as assumptions. Pr1 isn’t applicable, and
current−goal isn’t reached. Following the order in Pr3.2.2, Pr3.2.2.1,
which governs the applicability of R◦(i, i, i), is of more priority than
Pr3.2.2.2, which governs applicability of R◦(i, 0, i), and is of more priority
than Pr3.2.2.3, which governs applicability of R◦(1, 0, i). By Pr3.2.2.1,
(p ∨ ¬p) ∨ (q ∨ ¬q) and (p ◦ q) ∨ ¬(p ◦ q) are added to list−goals with
(p ◦ q) ∨ ¬(p ◦ q) being current−goal. Pr3.1.2 applies to (p ◦ q) ∨ ¬(p ◦ q)
and sets p ◦ q as current−goal. Formally, we have

list−proof

(1) ¬q assumption; list−goals: ¬p

(2) p ◦ q assumption; list−goals: (p ∨ ¬p) ∨ (q ∨ ¬q)

(3) list−goals: (p ◦ q) ∨ ¬(p ◦ q)

(4) list−goals: p ◦ q

By Pr2, current−goal is reached and (p ◦ q) ∨ ¬(p ◦ q) is set as cur-
rent−goal. By Pr4, (∨I1) applies to derive (p ◦ q) ∨ ¬(p ◦ q) in list−proof
and it is marked. Now (p◦ q) ∨ ¬(p◦ q) is reached and (p∨ ¬p) ∨ (q∨ ¬q)
is derived in list−proof by thus making (p ∨ ¬p) ∨ (q ∨ ¬q) reached.
Formally, we have

list−proof

(1) ¬q assumption; list−goals: ¬p

(2) p ◦ q assumption

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2

(4) (p ∨ ¬p) ∨ (q ∨ ¬q) R◦(i, i, i): 3

(p ∨ ¬p) ∨ (q ∨ ¬q) is the only unmarked formula in list−proof, so
Pr3.2.1 applies to it. The algorithm tries to derive current−goal ¬p
from, first, the assumption p∨ ¬p and then from the assumption q ∨ ¬q.
By applying Pr3.2.1 to the assumption p ∨ ¬p the algorithm tries to
derive current−goal ¬p from, first, the assumption p and then from the
assumption ¬p. Formally, we have

list−proof

(1) ¬q assumption; list−goals: ¬p

(2) p ◦ q assumption; list−goals: ¬p from q ∨ ¬q

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2; list−goals: ¬p from p ∨ ¬p

Automated proof-searching for strong Kleene logic . . . 239

(4) (p∨ ¬p) ∨ (q ∨ ¬q) R◦(i, i, i): 3; list−goals: ¬p from ¬p

(5) p ∨ ¬p assumption; list−goals: ¬p from p

(6) p assumption

By Pr3.2.2.3, which governs applicability of R◦(1, 0, i), p ∧ ¬q is set
to be current−goal. Then Pr3.1.1 applies to it with ¬q, p being added
to list−goals and p being current−goal. Because p is in list−proof, it is
reached and deleted from list−goals. Current−goal ¬q is reached since
it is in list−proof. By Pr4, p∧ ¬q is derived via (∧I) and then R◦(1, 0, i)
applies to derive ¬p. A proof of ¬p from ¬p is trivial, so we have reached
both goals ¬p from ¬p and ¬p from p. So, ¬p from p∨ ¬p is reached too
with ¬p being derivable via (∨E). Formally, we have

list−proof

(1) ¬q assumption; list−goals: ¬p

(2) p ◦ q assumption; list−goals: ¬p from q ∨ ¬q

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2

(4) (p ∨ ¬p) ∨ (q ∨ ¬q) R◦(i, i, i): 3

(5) p ∨ ¬p assumption

(6) p assumption

(7) p ∧ ¬q (∧I): 6, 1

(8) ¬p R◦(1, 0, i): 7, 3

(9) ¬p assumption

(10) ¬p (∨E): 9, 8, 5 [9], [6-8]

The algorithm tries to derive current−goal ¬p from the assumption
q∨¬q. By applying Pr3.2.1 to the assumption q∨¬q, the algorithm tries
to derive current−goal ¬p from, first, the assumption q and then from
the assumption ¬q. In the first case, current−goal is reached, by Pr4 and
via (EFQ), for both q and ¬q are in list−proof. Then the algorithm tries
to derive current−goal ¬p from the assumption ¬q. p ∨ ¬p is unmarked
in list−proof and Pr3.2.1 applies to it. Now the algorithm, again, tries
to derive current−goal ¬p from, first, the assumption p and then from
the assumption ¬p. Formally, we have

list−proof

(1) ¬q assumption; list−goals: ¬p

(2) p ◦ q assumption; list−goals: ¬p from q ∨ ¬q

240 Yaroslav Petrukhin, Vasilyi Shangin

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2; list−goals: ¬p from ¬q

(4) (p ∨ ¬p) ∨ (q ∨ ¬q) R◦(i, i, i): 3; list−goals: ¬p from p ∨ ¬p

(5) p ∨ ¬p assumption; list−goals: ¬p from ¬p

(6) p assumption; list−goals: ¬p from p

(7) p ∧ ¬q (∧I): 6, 1

(8) ¬p R◦(1, 0, i): 7, 3

(9) ¬p assumption

(10) ¬p (∨E): 9, 8, 5 [9], [6-8]

(11) q ∨ ¬q assumption

(12) q assumption

(13) ¬p (EFQ): 12, 1

(14) ¬q assumption

(15) p assumption

At this stage of proof-searching Pr3.2.2.3 is applicable again for the
result of the previous application of this procedure (step 8) is now dis-
carded from list−proof. We refer to the above passage for the detailed
description. So, we have the final algo-proof. Note that list−goals now
is empty.

list−proof

(1) ¬q assumption

(2) p ◦ q assumption

(3) (p ◦ q) ∨ ¬(p ◦ q) (∨I1): 2

(4) (p ∨ ¬p) ∨ (q ∨ ¬q) R◦(i, i, i): 3

(5) p ∨ ¬p assumption

(6) p assumption

(7) p ∧ ¬q (∧I): 6, 1

(8) ¬p R◦(1, 0, i): 7, 3

(9) ¬p assumption

(10) ¬p (∨E): 9, 8, 5 [9], [6-8]

(11) q ∨ ¬q assumption

(12) q assumption

(13) ¬p (EFQ): 12, 1

(14) ¬q assumption

Automated proof-searching for strong Kleene logic . . . 241

(15) p assumption

(16) p ∧ ¬q (∧I): 15, 1

(17) ¬p R◦(1, 0, i): 16, 3

(18) ¬p assumption

(19) ¬p (∨E): 18, 17, 5 [18], [15-17]

(20) ¬p (∨E): 19, 13, 11 [14-19], [12-13]

(21) ¬p (∨E): 20, 10, 4 [5-10], [11-20]

Now let us introduce two more examples of an algo-proof with coun-
termodel extracting. Let us try to prove p ∨ ¬p.

p∨ ¬p is set to be initial−goal in list−goals. By P3.1.2, p is set to be
current−goal.

Note that list−proof now is empty. Note also that, by Definition 3,
that if list−proof is empty, then it is not a proof in any NDK◦

3
.

list−proof

(1) list−goals: p ∨ ¬p

(2) list−goals: p

Pr1 isn’t applicable for list−proof is empty. By Pr2, p isn’t reached
for neither p is in list−proof nor list−proof contains some formula and
its negation. By P3.1.2, p is deleted from list−goals and ¬p is set to be
current−goal. Again, Pr1 isn’t applicable for list−proof is empty. By
Pr2, ¬p isn’t reached for neither is ¬p in list−proof nor does list−proof
contain some formula and its negation.

Note that list−proof is still empty.

list−proof

(1) list−goals: p ∨ ¬p

(2) list−goals: ¬p

At this moment, no procedures are applicable. A counterexample
is extracted from empty list−proof with p 6∈ Σ and ¬p 6∈ Σ. Thus,
ξ(p) = ξ(¬p) = ξ(p ∨ ¬p) = i.

As another example, we consider an algo-proof of p◦ q from ¬p∧ q in
some system with the following 1-rules only: R◦(1, 1, 1) and R◦(0, i, 1).
R◦(0, 1, 0) is a rule of the system as well.

Initial−goal p ◦ q and a formula ¬p ∧ q are added to list−goals and
list−proof, respectively. Pr1 (applicability of the elimination rules) ap-
plies to ¬φ∧ψ in order to derive ¬p and q via (∧E1) and (∧E2). P1 isn’t

242 Yaroslav Petrukhin, Vasilyi Shangin

applicable, and current−goal isn’t reached. So we proceed with Pr3.1
(analysis of current−goal p◦q). The order in Pr3.1.6 says Pr3.1.6.2 (deal-
ing with R◦(0, i, 1)) applies before Pr3.1.6.3 (dealing with R◦(1, 1, 1)).
So, (p ∨ ¬q) ∨ (p ◦ q) is set to be the current−goal. Formally, we have

list−proof

(1) ¬p ∧ q assumption; list−goals: p ◦ q

(2) ¬p (∧E1): 1; list−goals: (q ∨ ¬q) ∨ (p ◦ q)

(3) q (∧E2): 1

Pr3.1.2 applies to current−goal resulting in p◦q and then q∨¬q being
added to list−goals with q ∨ ¬q being current−goal. Pr3.1.2 applies to it
and sets q as current−goal. By Pr2 (reachability of current−goal), q is
reached. Hence, by Pr4 (applicability of the introduction rules), q ∨ ¬q
and then (q ∨ ¬q) ∨ (p ◦ q) are derived in list−proof via two applications
of (∨I1). Now p ◦ q is current−goal, again. Formally, we have

list−proof

(1) ¬p ∧ q assumption; list−goals: p ◦ q

(2) ¬p (∧E1): 1

(3) q (∧E2): 1

(4) q ∨ ¬q (∨I1): 3

(5) (q ∨ ¬q) ∨ (p ◦ q) (∨I1): 4

Note that both q∨¬q and (q∨¬q)∨ (p◦q) are marked to prevent ap-
plications of Pr3.2.1 (updatability of list−proof and list−goals) to them.
No procedures are applicable; however, we don’t stop for the system
has R◦(1, 1, 1). Hence, we delete all the formulae from list−proof and
list−goals, which have been added by Pr3.1.6.2, and launch Pr3.1.6.3.
Formally, we have

list−proof

(1) ¬p ∧ q assumption; list−goals: p ◦ q

(2) ¬p (∧E1): 1

(3) q (∧E2): 1

p∧q is set to be current−goal. Pr3.1.1 applies to it resulting in p and
then q being added to list−goals with q being current−goal. q is reached,
so p is set to be current−goal. Formally, we have

Automated proof-searching for strong Kleene logic . . . 243

list−proof

(1) ¬p ∧ q assumption; list−goals: p ◦ q

(2) ¬p (∧E1): 1; list−goals: φ

(3) q (∧E2): 1

At this moment we stop for no procedures of the algorithm are ap-
plicable with p 6∈ Σ, ¬p ∈ Σ, q ∈ Σ and ¬q 6∈ Σ. The following
counterexample is extractable: ξ(p) = 0, ξ(q) = 1, ξ(¬p ∧ q) = 1, and
ξ(p ◦ q) = 0.

5. Termination, soundness, and completeness

Theorem 2 (Termination of the algorithm). The algorithm halts on any
input.

Theorem 2 follows from two lemmata. Lemma 3 shows each pro-
cedure of the algorithm is finite. Lemma 4 shows no infinite loop is
possible.

Lemma 3. Each procedure of the algorithm is finite.

Proof. We need a standard definition of the degree of a formula ω,
g(ω), as the number of connectives in ω. Without loss of generality, we
say g(P) = g(¬P) = 0, for each propositional variable P .

We start out by showing the finiteness of Pr3.1, which is a part of Pr3
and governs an analysis of current−goal. With regard to Pr3.1.1–Pr3.1.5,
any application of these procedures decreases, directly or indirectly, the
degree of current−goal.

For example, Pr3.1.1 does it directly for g(φ) < g(φ∧ψ) and g(ψ) <
g(φ ∧ ψ). Pr3.1.4 does it indirectly. First, it applies to ¬(φ ∨ ψ) to
obtain current−goal ¬φ ∧ ¬ψ. Second, Pr3.1.1 applies to ¬φ ∧ ¬ψ with
g(¬φ) < g(¬(φ∨ψ)) and g(¬ψ) < g(¬(φ∨ψ)). The reader might readily
check that the same thing holds for Pr3.1.6–Pr3.1.7. By induction on a
degree of current−goal, it can be shown that within a finite number of
applications of Pr3.1 to current−goal the algorithm stops by obtaining
a literal as current−goal.

The finiteness of Pr3.1 implies the finiteness of Pr4, which governs
applications of the introduction rules. Note that the marking mechanism
prevents reapplication of an introduction rule unless the result of this
application is discarded from list−proof.

244 Yaroslav Petrukhin, Vasilyi Shangin

To show the finiteness of Pr1, which governs applications of the elim-
ination rules, let’s consider the following.

First, the number of assumptions in Γ is finite. Second, due to the
finiteness of Pr3.1, a number of assumptions added to list−proof via
Pr3.1 is finite.

Third, it can be shown in the same manner as in the case of Pr3.1
that in any application of Pr1 (except (∨E), (¬∧E), R◦(i, i, i), R◦(0, 0, i),
R◦(0, 1, i), R◦(1, 0, i), and R◦(1, 1, i)), the degree of a conclusion is less
than a degree of (some of) its premise(s).

With regard to (¬∧E) and R◦(i, i, i), they are reducible to the case
of (∨E).

With regard to (∨E), R◦(0, 0, i), R◦(0, 1, i), R◦(1, 0, i), and R◦(1, 1, i),
let’s recall that an arbitrary formula χ, which is the conclusion of these
rules, is current−goal (see Pr3.2). By induction, it can be shown that
there can be a finite number of applications of Pr1 to a finite number
of both assumptions from Γ and assumptions added to list−proof via
Pr3.1. Note that the marking mechanism prevents the reapplication of
an elimination rule unless the result of this application is discarded from
list−proof.

The finiteness of Pr1 implies the finiteness of Pr2, which governs
reachability of current−goal: it is a finite process to check, if a finite
list−proof contains current−goal and/or some formula and its negation.

Finally, the finiteness of both Pr1 and the number of assumptions
implies the finiteness of Pr3.2, which governs current−goal depending on
the type of formulae in list−proof. The same argument concerning Pr3.1
applies to Pr3.2. For example, by 3.2.1, if φ ∨ ψ is in list−proof, then φ

is in list−proof or ψ is in list−proof with g(φ) < g(φ ∨ ψ) and g(ψ) <
g(φ∨ψ). By induction, it can be shown that there can be a finite number
of applications of Pr3.2 to a finite list−proof. Note that the marking
mechanism prevents the reapplication of Pr3.2 to the same formula unless
the result of this application is discarded from list−proof. ⊣

Lemma 4. No infinite loops are possible.

Proof. According to the description of the algorithm, the following
loops are possible.

Loop 1: Step2 ∞ Step3.
On Step 2, the algorithm checks the reachability of current−goal. If

current−goal is reached, then the algorithm checks whether current−goal
is initial−goal. If it’s not, then, by Pr4, which governs applications

Automated proof-searching for strong Kleene logic . . . 245

of introduction rules, current−goal is deleted from list−goals and the
preceding goal is set to be current−goal. Then the algorithm returns to
Step 2 to check whether new current−goal is initial−goal. Due to the
finiteness of Pr3.1, which governs an analysis of current−goal, list−goals
is finite. Thus, the algorithm subsequently checks each goal in list−goals
down initial−goal. It implies Loop 1 is impossible.

Loop 2: Step2 ∞ Step4.

On Step 2, the algorithm checks the reachability of current−goal. If
current−goal isn’t reached, then, by Pr1, which governs applications of
elimination rules, all possible elimination rules are applied in list−proof.
Due to the finiteness of Pr1, this process stops and the algorithm re-
turns to Step 2 to check whether current−goal is reached in an updated
list−proof. If current−goal isn’t reached, again, then Pr1 isn’t applicable,
and the algorithm goes to Step 5. It implies Loop 2 is impossible.

Loop 3: Step2 ∞ Step5.

On Step 2, the algorithm checks the reachability of current−goal.
If current−goal isn’t reached, then the algorithm goes to Step 4. By
the previous argument, it’s possible for the algorithm to go to Step 5.
On this Step, the algorithm checks whether Pr3.1, which governs an
analysis of current−goal, is applicable to current−goal. If it is, new
current−goal is set and the algorithm returns to Step 2 to check whether
new current−goal is reached. Due to the finiteness of Pr3.1, the al-
gorithm subsequently comes down to a literal being current−goal. For
Pr3.1 isn’t applicable to a literal the algorithm goes to Step 6. It implies
Loop 3 is impossible.

Loop 4: Step2 ∞ Step6.

On Step 2, the algorithm checks the reachability of current−goal. If
current−goal isn’t reached, then the algorithm goes to Step 4. By the
penultimate argument, it’s possible for the algorithm to go to Step 5. By
the ultimate argument, it’s possible for the algorithm to go to Step 6. On
this step, the algorithm checks whether Pr3.2 which governs current−goal
depending on the type of formulae in list−proof, is applicable. If it’s
applicable, then the algorithm sets new current−goal, marks the formula
from list−proof to which Pr3.2 is applied and returns to Step 2. Due to
the finiteness of both Pr3.2 and list−proof, the algorithm subsequently
comes down to the situation, where each formula in list−proof is a literal
or is marked. Since Pr3.2 isn’t applicable to a literal, so the algorithm
goes to a counterexample extraction. It implies Loop 4 is impossible. ⊣

246 Yaroslav Petrukhin, Vasilyi Shangin

Theorem 5 (Soundness of the algorithm). The algorithm is sound.

Proof. By Theorem 3 in [55], the system for strong Kleene logic K3

and the systems for each of its binary extensions are sound. Any algo-
derivation is a derivation in one of the systems. Therefore, the algorithm
is sound. ⊣

Note, again, that the fact that list−proof in an algo-proof may be
empty doesn’t affect the soundness of the algorithm. We just say that
if there is an algo-proof of α from Γ in a NDK◦

3
, then there is a proof

of α from Γ in a NDK◦

3
. To prove completeness we need the following

Lemma 6. We use the idea in [10, 36].
A truth-value assignment ξ of a formula φ in a model is denoted by

ξ(ϕ). This definition is easily extended to sets of formulae. For example,
ξ(Γ) = 1 iff ξ(φ) = 1 for each φ from Γ .

Lemma 6. If the algorithm with a task to find a derivation of α from
(possibly, empty) Γ in some system NDK◦

3
stops without finding such a

derivation in this system, then list−proof contains a (possibly, empty) set
Σ, Γ ⊆ Σ, of non-discarded formulae such that ξ(Γ) = 1 and ξ(α) 6= 1.

Proof. We, first show that ξ(α) 6= 1. A type of α determines the
number of cases. Note that Σ may be empty. In the text of the proof of
this Lemma below, we will abbreviate the fact that there is no algo-proof
of α from Γ by “Condition”.

1. α is a literal. By Condition, α 6∈ Σ. So, ξ(α) 6= 1.
2. α is φ ∨ ψ. By Condition and Pr3.1.2, φ 6∈ Σ and ψ 6∈ Σ. So,

ξ(φ) 6= 1 and ξ(ψ) 6= 1. Therefore, ξ(φ ∨ ψ) 6= 1.
3. α is φ ∧ ψ. By Condition and Pr.3.1.1, φ 6∈ Σ or ψ 6∈ Σ. So,

ξ(φ) 6= 1 or ξ(ψ) 6= 1. Therefore, ξ(φ ∧ ψ) 6= 1.
4. α is φ ◦ ψ. By Condition, φ ◦ ψ 6∈ Σ. In total there are sixteen

outputs depending on whether φ ∈ Σ or ψ ∈ Σ or ¬φ ∈ Σ or ¬ψ ∈ Σ.
We exclude seven outputs, where (φ ∈ Σ and ¬φ ∈ Σ) or (ψ ∈ Σ and
¬ψ ∈ Σ): otherwise, there would be a proof of φ ◦ ψ from Γ , by (EFQ).
So, we come up with the following nine outputs:

4.1. φ ∈ Σ,¬φ 6∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ;
4.2. φ ∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ ∈ Σ;
4.3. φ ∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ 6∈ Σ;
4.4. φ 6∈ Σ,¬φ ∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ;
4.5. φ 6∈ Σ,¬φ ∈ Σ,ψ 6∈ Σ,¬ψ ∈ Σ;
4.6. φ 6∈ Σ,¬φ ∈ Σ,ψ 6∈ Σ,¬ψ 6∈ Σ;

Automated proof-searching for strong Kleene logic . . . 247

4.7. φ 6∈ Σ,¬φ 6∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ;

4.8. φ 6∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ ∈ Σ;

4.9. φ 6∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ 6∈ Σ.

First, we consider one of the four outputs, where two literals belong
to Σ, say, 4.1; the others are similar. Note that we always search for an
algo-proof in a particular system.

Suppose the system we are looking for an algo-proof in has R◦(1, 1, 1).
By Pr3.1.6.3, φ ∧ ψ ∈ Σ, that contradicts Condition that φ ◦ ψ 6∈ Σ.
Therefore, R◦(1, 1, 1) isn’t a rule of the system in this output. So, if
ξ(φ) = ξ(ψ) = 1, then ξ(φ ◦ ψ) 6= 1.

Second, we consider one of the four outputs, where only one of the
literals belongs to Σ, say, 4.3; the others are similar.

Suppose the system we are looking for an algo-proof in has R◦(1, i, 1).
By Pr3.1.6.2, (ψ ∨ ¬ψ) ∨ (φ ◦ ψ) ∈ Σ. By Pr3.2.1, ψ ∈ Σ or ¬ψ ∈ Σ or
φ ◦ ψ ∈ Σ. The latter variant contradicts Condition and the two former
ones contradict Condition of output 4.3. Therefore, R◦(1, i, 1) isn’t a rule
of the system in the case of this output. So, if ξ(φ) = 1 and ξ(ψ) = i,
then ξ(φ ◦ ψ) 6= 1.

Third, we consider 4.9, the only output, where no literal belongs
to Σ.

Suppose the system we are looking for a proof in has R◦(i, i, 1). By
Pr3.1.6.1, (φ ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨ (φ ◦ ψ) ∈ Σ. By Pr3.2.1, φ ∈ Σ

or ¬φ ∈ Σ or ψ ∈ Σ or ¬ψ ∈ Σ or φ ◦ ψ ∈ Σ. The latter variant
contradicts Condition while the four former ones contradict Condition
of output 4.9. Therefore, R◦(i, i, 1) isn’t a rule of the system in this
output. So, if ξ(φ) = ξ(ψ) = i, then ξ(φ ◦ ψ) 6= 1.

5. α is ¬(φ ◦ ψ). We treat it analogously to Case 4.

Second, we show that ξ(Σ) = 1, that is, a set Σ is a model set. The
number of cases depends on the type of a formula in Σ.

Case 0: for any formula φ, it is not the case that φ ∈ Σ and ¬φ ∈ Σ.

Suppose both φ and ¬φ belong to Σ. By Pr2 and Pr4, α is derived,
which contradicts Condition.

Case 1: If ¬¬φ ∈ Σ, then φ ∈ Σ and ¬φ 6∈ Σ.

If ¬¬φ ∈ Σ, then φ ∈ Σ, by Pr1. If ¬φ ∈ Σ, then, by Pr2 and Pr4,
α is derived that contradicts Condition. So, we have φ ∈ Σ and ¬φ 6∈ Σ.
Therefore, ξ(φ) = ξ(¬¬φ) = 1.

248 Yaroslav Petrukhin, Vasilyi Shangin

Case 2: If φ ∧ ψ ∈ Σ, then φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ.

If φ ∧ψ ∈ Σ, then both φ ∈ Σ and ψ ∈ Σ, by Pr1. By Pr2 and Pr4,
both ¬φ 6∈ Σ and ¬ψ 6∈ Σ. So, we have φ ∈ Σ, ψ ∈ Σ, ¬φ 6∈ Σ, and
¬ψ 6∈ Σ. Therefore, ξ(φ) = ξ(ψ) = ξ(φ ∧ ψ) = 1.

Case 3: If φ ∨ ψ ∈ Σ, then φ ∈ Σ or ψ ∈ Σ.

If φ∨ψ ∈ Σ, then, by Pr3.2.1, φ ∈ Σ or ψ ∈ Σ or α ∈ Σ. The latter
output contradicts Condition. By Pr2 and Pr4, if φ ∈ Σ or ψ ∈ Σ, then
the outputs with the following properties contradict Condition: (φ ∈ Σ

and ¬φ ∈ Σ) or (ψ ∈ Σ and ¬ψ ∈ Σ). So we have five outputs out of
the sixteen ones:

3.1 φ ∈ Σ,¬φ 6∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ;
3.2 φ ∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ ∈ Σ;
3.3 φ ∈ Σ,¬φ 6∈ Σ,ψ 6∈ Σ,¬ψ 6∈ Σ;
3.4 φ 6∈ Σ,¬φ 6∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ;
3.5 φ 6∈ Σ,¬φ 6∈ Σ,ψ ∈ Σ,¬ψ 6∈ Σ.

Therefore, ξ(φ) = ξ(φ ◦ ψ) = 1 or ξ(ψ) = ξ(φ ◦ ψ) = 1.

Case 4: If φ ◦ ψ ∈ Σ, then
4.1 φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ;
4.2 φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ 6∈ Σ;
4.3 φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ;
4.4 φ 6∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ;
4.5 φ 6∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ 6∈ Σ;
4.6 φ 6∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ;
4.7 φ 6∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ;
4.8 φ 6∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ 6∈ Σ;
4.9 φ 6∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ.

We will use the following notation. By a (x, y)-cluster, where x, y ∈
{0, i, 1}, we mean a set of ◦-rules with ξ(φ) = x and ξ(ψ) = y. For
example, the (0, 0)-cluster is {R◦(0, 0, 0), R◦(0, 0, i), R◦(0, 0, 1)}. Recall
that by an x-rule we mean an ◦-rule with ξ(φ ◦ ψ) = x. R◦(0, 0, i) is an
example of an i-rule.

We divide subcases into groups and prove this case for an arbitrary
cluster from each group depending on the type of a 0-rule in it. Group 1
consists of the (0, 0)-cluster, the (0, 1)-cluster, the (1, 0)-cluster and the
(1, 1)-cluster. Group 2 consists of the (0, i)-cluster, the (1, i)-cluster, the
(i, 0)-cluster and the (i, 1)-cluster. The (i, i)-cluster forms group 3.

Automated proof-searching for strong Kleene logic . . . 249

We start with group 1 and choose the (0, 0)-cluster. The analogous
argument holds, if we choose the (0, 1)-cluster or the (1, 0)-cluster or the
(1, 1)-cluster.

4.1. A system has R◦(0, 0, 0). The Condition implies (4.1.1) ¬φ 6∈ Γ

or (4.1.2) ¬ψ 6∈ Γ . We consider (4.1.1). The other one is symmetrical.
Given ¬φ 6∈ Γ , there are two outputs depending on whether φ ∈ Γ . We
consider (4.1.1.1), where φ ∈ Γ . (4.1.1.2.) is symmetrical.

We have both ¬φ 6∈ Γ and φ ∈ Γ . Let’s consider the (1, i)-cluster. By
correspondence analysis, the system has only one rule from this cluster.

Suppose it has R◦(1, i, 0). Then (ψ∨¬ψ)∨¬(φ◦ψ) ∈ Σ, by Pr3.1.7.2.
By Pr3.2.1, ψ ∈ Σ or ¬ψ ∈ Σ or ¬(φ◦ψ) ∈ Σ. ¬(φ◦ψ) ∈ Σ contradicts
Condition. We consider first ψ ∈ Σ. Note that ψ ∈ Σ implies ¬ψ 6∈ Σ,
by Condition.

In the case φ ◦ψ ∈ Σ, φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ let’s consider
the (1, 1)-cluster. Again, by correspondence analysis, the system has only
one rule from this cluster. The system hasn’t R◦(1, 1, 0) for φ ∈ Σ and
ψ ∈ Σ imply ¬(φ ◦ ψ) ∈ Σ, by Pr3.1.7.3, that contradicts Condition.
The system hasn’t R◦(1, 1, i), either, for φ ◦ ψ ∈ Σ implies φ ∧ ψ ∈
Σ and (φ ◦ ψ) ∨ ¬(φ ◦ ψ) ∈ Σ, by Pr3.2.2.3. Then φ ∧ ψ ∈ Γ and
(φ ◦ ψ) ∨ ¬(φ ◦ ψ) ∈ Σ imply α that contradicts Condition. Hence,
if the system has R◦(0, 0, 0) and R◦(1, i, 0), then it follows that it has
R◦(1, 1, 1) with φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ.

Now we consider ¬ψ ∈ Σ. Note that ¬ψ ∈ Σ implies ψ 6∈ Σ, by
Condition.

The case of φ ◦ ψ ∈ Σ, φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ is treated
analogously to the previous one by considering the (1, 0)-cluster. We go
right to Conclusion that if the system has R◦(0, 0, 0) and R◦(1, i, i), then
it follows that it has R◦(1, 0, 1) with φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ.

To sum up we show that if the system has R◦(1, i, 0), then it has
R◦(1, 1, 1) or R◦(1, 0, 1) with ξ(φ ◦ ψ) = 1.

Now we suppose the system has R◦(1, i, i). Then (φ◦ψ)∨¬(φ◦ψ) ∈ Σ,
by Pr3.1.2.2 or Pr3.2.2.1. Hence, ψ∨ ¬ψ ∈ Σ. So, ψ ∈ Σ or ¬ψ ∈ Σ, by
Pr3.2.1. Both cases are treated above. Now we show if the system has
R◦(1, i, i), then it also has R◦(1, 1, 1) or R◦(1, 0, 1) with ξ(φ ◦ ψ) = 1.

The last rule in the (1, i)-cluster we haven’t treated so far isR◦(1, i, 1).
Then (φ ◦ ψ) ∨ ¬(φ ◦ ψ) ∈ Σ. This case is, again, treated above.

To finally sum up case (4.1.1.1), where φ ∈ Σ, we show that if the
system has R◦(0, 0, 0), then ξ(φ ◦ ψ) = 1 independently of which rule
from the (1, i)-cluster the system has.

250 Yaroslav Petrukhin, Vasilyi Shangin

Case (4.1.1.2), where φ 6∈ Σ, is treated symmetrically. So is case
(4.1.2), where ¬ψ 6∈ Σ.

Now we finish considering case (4.1), where the system has R◦(0, 0, 0).

4.2. A system has R◦(0, 0, i).

φ ◦ψ ∈ Σ implies (φ ◦ψ) ∨ ¬(φ ◦ψ) ∈ Σ, by Pr3.2.2.3. On the other
hand, Condition implies (4.2.1) ¬φ 6∈ Γ or (4.2.2) ¬ψ 6∈ Γ .

Both (4.2.1) and (4.2.2) are treated analogously to (4.1.1) and (4.1.2).

4.3. A system has R◦(0, 0, 1). Let’s consider the (i, i)-cluster. By
correspondence analysis, the system has only one rule from this cluster.

4.3.1. The system has R◦(i, i, 0). By Pr3.1.7.1, (φ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨
¬(φ ◦ ψ) ∈ Σ. By Pr3.2.1, φ ∈ Σ or ¬φ ∈ Σ or ψ ∈ Σ or ¬ψ ∈ Σ or
¬(φ ◦ ψ) ∈ Σ. The latter output contradicts Condition.

The output φ ∈ Σ is treated above. The remaining ones are treated
analogously.

4.3.2. The system has R◦(i, i, i). By Pr3.2.2.1, (φ◦ψ) ∨¬(φ◦ψ) ∈ Σ.
Hence, (φ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∈ Σ. Pr3.2.1, φ ∈ Σ or ¬φ ∈ Σ or ψ ∈ Σ or
¬ψ ∈ Σ. We treat each of them as in (4.3.1).

4.3.3. The system has R◦(i, i, 1). By Pr3.1.6.1, (φ∨ ¬φ) ∨ (ψ ∨ ¬ψ) ∨
(φ ◦ ψ) ∈ Σ. By P3.2, φ ∈ Σ or ¬φ ∈ Σ or ψ ∈ Σ or ¬ψ ∈ Σ or
φ ◦ ψ ∈ Σ. The latter output takes a little bit more detail; the others
are treated above.

If φ ◦ ψ ∈ Σ, then we consider the other eight clusters, depending
on the rules of corresponding analysis in the system in question. In this
way, we either derive one of the literals φ, ψ (i.e. φ ∈ Σ or ¬φ ∈ Σ or
ψ ∈ Σ or ¬ψ ∈ Σ) or we don’t derive any of the literals φ, ψ (i.e. φ 6∈ Σ

and ¬φ 6∈ Σ and ψ 6∈ Σ and ¬ψ 6∈ Σ).

The outputs φ ∈ Σ or ¬φ ∈ Σ or ψ ∈ Σ or ¬ψ ∈ Σ are treated
above. With regard to the output φ 6∈ Σ and ¬φ 6∈ Σ and ψ 6∈ Σ and
¬ψ 6∈ Σ, we have ξ(φ) = ξ(ψ) = i and ξ(φ ◦ ψ) = 1.

Now we finish treating the (0, 0)-cluster, which is a part of group 1.

Group 2 and 3 are treated similarly.

Now a proof of Case 4 is complete.

Case 5: if ¬(φ ∧ ψ) ∈ Σ, then ¬φ ∨ ¬ψ ∈ Σ.
Case 6: if ¬(φ ∨ ψ) ∈ Σ, then ¬φ ∧ ¬ψ ∈ Σ.
Case 7: if ¬(φ ◦ ψ) ∈ Σ, then there are 9 cases as in Case 4.

Proofs of cases 5 and 6 are obvious. The proof of Case 7 is analogous to
the proof of Case 4. ⊣

Automated proof-searching for strong Kleene logic . . . 251

The contraposition of Lemma 6 yields us a proof of the following
theorem.

Theorem 7 (Completeness of the algorithm). The algorithm is com-
plete.

6. Related work

We begin by stressing the fact that both analytic tableaux and resolution
are out of our scope due to their well-known worst-case complexity. To
put it differently, these proof systems have so-called hard examples. In
particular, M. D’Agostino [12] proves that analytic tableaux has factorial
complexity and A. Haken [16] proves exponential complexity for resolu-
tion. This is the reason we don’t discuss provers based upon these proof
systems (see, for example, [6, 23]).19

We, also, note that it’s still an open problem whether Hilbert-style
calculus, sequent-style calculus with cut, and natural deduction calculus
have hard examples. In addition, we avoid an influential paradigm, ac-
cording to which a proof search is carried out in some proof system and
then its result is transformed into natural deduction proofs [1].

On the other hand, our extensions of strong Kleene logic are limited
to the 3-valued case. Therefore, in the paper we discuss neither some
special case with n 4 (for example, n = 16 as in [54]), nor the general
n-valued case as in [18]. We consider these to be topics for future work

(Automated) proof-searching for (Jaśkowski-Fitch style) natural de-
duction has been the focus of much fruitful research since the nineties.
Without pretending to give a full outline, let’s us mention the follow-
ing provers for classical logic: THINKER by J. Pelletier [32], OSCAR
by J. Pollock [35], ANDP by D. Li [27], CMU PT by W. Sieg and J.
Byrnes [47], and Symlog by F. Portoraro [40]. Some of them have been
extended to non-classical logics and/or are accompanied with metathe-
oretical arguments (soundness and completeness). We note that none of
them deals with the logics to have been studied in this paper and none
of them provides a one-go proof-searching account (accompanied with a
metatheory) for such a number of logics.

With regard to implementation, we highlight the fact that the general
feature of our approach is that we propose a wide open platform for

19 To be sure, it doesn’t imply these proof systems aren’t in the center of auto-
mated deduction. For the details see an influential volume [4], where natural deduction
is mentioned casually.

252 Yaroslav Petrukhin, Vasilyi Shangin

possible implementations. It’s clear that the proof-searching procedure
presented in the paper needs auxiliary and specific subprocedures, if
one wants to implement them for a particular logic or logics. Some
derivable rules will definitely make proof-searching more effective and
easier. So, these new rules will need original proof-searching procedures.
With regard to first-order variants, we note that the presented proof-
searching procedure has a classical first-order extension [7]. And we
believe both implementation and first-order extensions for the presented
logics will be a part of future research.

7. Conclusion

In the paper, we have presented an original finite, sound, and complete
proof-searching algorithm for all the natural deduction systems for the
binary extensions of strong Kleene logic. We leave for future work the
task of providing the similar work for all the unary truth-functional
extensions of strong Kleene logic to have been presented by Tamminga
[55]. The study of complexity and proof-searching procedures for the
given natural deduction systems are another points of future research.

Acknowledgements. The authors are very greatful to two anonymous
referees for their important comments on the previous draft of the paper.
Many warmly thanks go to Matthew Carmody, the linguistic editor of
LLP, who corrected the English.

References

[1] Andrews, P., “Classical type theory”, pages 967–1007 in Handbook of Au-
tomated Reasoning, Elsevier Science Publishers BV, 2001. DOI: 10.1016/

B978-044450813-3/50017-5

[2] Asenjo, F. G., “A calculus of antinomies”, Notre Dame Journal of Formal
Logic 7 (1966): 103–105. DOI: 10.1305/ndjfl/1093958482

[3] Avron, A., “Natural 3-valued logics — characterization and proof theory”,
The Journal of Symbolic Logic 61, 1 (1991): 276–294. DOI: 10.2307/

2274919

[4] Baaz, M., C. G. Fermüller, and G. Salzer, “Automated deduction for
many-valued logics”, Handbook of Automated Reasoning, Elsevier Science
Publishers BV, 2001.

http://dx.doi.org/10.1016/B978-044450813-3/50017-5
http://dx.doi.org/10.1016/B978-044450813-3/50017-5
http://dx.doi.org/10.1305/ndjfl/1093958482
http://dx.doi.org/10.2307/2274919
http://dx.doi.org/10.2307/2274919

Automated proof-searching for strong Kleene logic . . . 253

[5] Batens, D., “Paraconsistent extensional propositional logics”, Logique et
Analyse 23 (90–91) (1980): 195–234.

[6] Beckert B., Hähnle R., P. Oel, and M. Sulzmann, “The tableau-based
theorem prover 3T

AP Version 4.0”, pages 303–307 in M. A. McRobbie,
J. K. Slaney (eds.) Automated Deduction — Cade-13, CADE 1996, Lecture
Notes in Computer Science (Lecture Notes in Artificial Intelligence), 1104,
1996. DOI: 10.1007/3-540-61511-3_95

[7] Bocharov V. A., A. E. Bolotov, A. E. Gorchakov, and V. O. Shangin, “Au-
tomated first order natural deduction”, pages 1292–1311 in Proceedings of
the 2nd Indian International Conference on Artificial Intelligence (IICAI-
05), Puna, India, 2005.

[8] Bochvar, D. A., “Ob odnom trehznachnom ischislenii i ego primenenii
k analizu paradoksov klassicheskogo rasshirennogo funkcional’nogo is-
chislenija” (in Russian), Sbornik: Mathematics 4, 2 (1938): 287–308. En-
glish translation: D. A. Bochvar, “On a three-valued logical calculus and
its application to the analysis of the paradoxes of the classical extended
functional calculus”, History and Philosophy of Logic 2 (1981): 87–112.
DOI: 10.1080/01445348108837023

[9] Bolotov, A., A. Basukoski, O. Grigoriev, and V. Shangin, “Natural deduc-
tion calculus for linear-time temporal logic”, Lecture Notes in Computer
Science 4160 (2006): 56–68. DOI: 10.1007/11853886_7

[10] Bolotov, A., and V. Shangin, “Natural deduction system in paraconsistent
setting: Proof search for PCont”, Journal of Intelligent Systems 21 (2012):
1–24. DOI: 10.1515/jisys-2011-0021

[11] Copi, I. M., C. Cohen, and K. McMahon, Introduction to Logic, Fourteenth
Edition, Routledge, New York, 2011.

[12] D’Agostino, M., “Are tableaux an improvement on truth-tables? Cut-
free proofs and bivalence”, Journal of Logic, Language and Information 1
(1992): 235–252. DOI: 10.1007/BF00156916

[13] Fitting, M. First-Order Logic and Automated Theorem Proving, Springer-
Verlag, New York, 1996. DOI: 10.1007/978-1-4684-0357-2

[14] Gabbay, D. M., “What is a logical system?”, pages 179–216 in D. M. Gab-
bay (ed.), What Is a Logical System?, Clarendon Press, Oxford.

[15] Gödel, K., “Zum intuitionistischen Aussgenkalkül”, Anzeiger der
Akademie der Wissenschaften in Wien, 69 (1932): 65–66. English trans-
lation: “On the intuitionistic propositional calculus”, pages 300–301 in
K. Gödel, Collected Works, Vol. 1., New York, 1986.

[16] Haken, A., “The intractability of resolution”, Theoretical Computer Sci-
ence 39 (1985): 297–308. DOI: 10.1016/0304-3975(85)90144-6

http://dx.doi.org/10.1007/3-540-61511-3_95
http://dx.doi.org/10.1080/01445348108837023
http://dx.doi.org/10.1007/11853886_7
http://dx.doi.org/10.1515/jisys-2011-0021
http://dx.doi.org/10.1007/BF00156916
http://dx.doi.org/10.1007/978-1-4684-0357-2
http://dx.doi.org/10.1016/0304-3975(85)90144-6

254 Yaroslav Petrukhin, Vasilyi Shangin

[17] Hazen, A., and F. J. Pelletier, “Gentzen and Jaśkowski natural deduc-
tion: Fundamentally similar but importantly different”, Studia Logica 102
(2014): 1103–1142. DOI: 10.1007/s11225-014-9564-1

[18] Hähnle, R., “Automated theorem proving in multiple-valued logics”, Proc.
ISMIS, vol. 93, 1993.

[19] Heyting, A., “Die Formalen Regeln der intuitionistischen Logik. Sitzungs-
berichte der Preussischen Academie der Wissenschaften zu Berlin”, Berlin,
1930: 42-46. English translation: “The formal rules of intuitionistic logic”,
pages 311-328 in P. Mancosu (ed.), From Brouwer to Hilbert. The Debate
on the Foundations of Mathematics in the 1920s, Oxford, 1998.

[20] Indrzejczak A., “Introduction”, Studia Logica 102 (2014): 1091–1094.
DOI: 10.1007/s11225-014-9560-5

[21] Jaśkowski, S., “Recherches sur le système de la logique intuitioniste”,
Actes du Congrès International de Philosophie Scientifique 6 (1936): 58–
61. English translation: “Investigations into the system of intuitionistic
logic”, Studia Logica 34, 2 (1975): 117–120.

[22] Karpenko, A., and N. Tomova, “Bochvar’s three-valued logic and literal
paralogics: Their lattice and functional equivalence”, Logic and Logical
Philosophy 26 (2017): 207–235. DOI: 10.12775/LLP.2016.029

[23] Kerber M., and M. Kohlhase, “A mechanization of strong Kleene logic for
partial functions”, pages 371–385 in A. Bundy (ed.), Automated Deduction
– CADE-12. CADE 1994, Lecture Notes in Computer Science (Lecture
Notes in Artificial Intelligence), 814, 1994. DOI: 10.1007/3-540-58156-

1_26

[24] Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand Com-
pany, Inc., New York, Toronto. 1952.

[25] Kleene, S. C., “On a notation for ordinal numbers”, The Journal of Sym-
bolic Logic 3 (1938): 150–155. DOI: 10.2307/2267778

[26] Kooi, B., and A. Tamminga, “Completeness via correspondence for ex-
tensions of the logic of paradox”, The Review of Symbolic Logic 5 (2012):
720–730. DOI: 10.1017/S1755020312000196

[27] Li, D., “Unification algorithms for eliminating and introducing quantifiers
in natural deduction automated theorem proving”, Journal of Automated
Reasoning 18 (1997): 105–134. DOI: 10.1023/A:1005749401809

[28] Łukasiewicz, J., “O logice trójwartościowej”, Ruch Filozoficzny 5 (1920):
170–171. English translation: “On three-valued logic”, pages 87-88 in
L. Borkowski (ed.), Jan łukasiewicz: Selected Works, Amsterdam, North-
Holland Publishing Company, 1997.

http://dx.doi.org/10.1007/s11225-014-9564-1
http://dx.doi.org/10.1007/s11225-014-9560-5
http://dx.doi.org/10.12775/LLP.2016.029
http://dx.doi.org/10.1007/3-540-58156-1_26
http://dx.doi.org/10.1007/3-540-58156-1_26
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.1017/S1755020312000196
http://dx.doi.org/10.1023/A:1005749401809

Automated proof-searching for strong Kleene logic . . . 255

[29] Marcos, J., “On a problem of da Costa”, pages 53–69 in Essays of the
Foundations of Mathematics and Logic, Polimetrica International Scien-
tific Publisher, Monza, Italy, 2005.

[30] McKinsey, J. C. C., “On the generation of the functions Cpq and Np of
Łukasiewicz and Tarski by means of the single binary operation”, Bulletin
of the American Mathematical Society 42 (1936): 849–851. DOI: 10.1090/

S0002-9904-1936-06440-2

[31] Monteiro, A. “Construction des algèbres de Łukasiewicz trivalentes dans
les algèbres de Boole monadiques. I”, Mathematica Japonica 12 (1967):
1–23.

[32] Pelletier, F. J., “Automated natural deduction in Thinker”, Studia Logica
60 (1998): 3–43. DOI: 10.1023/A:1005035316026

[33] Petrukhin, Y. I., “Correspondence analysis for first degree entailment”,
Logical Investigations 22, 1 (2016): 108–124.

[34] Petrukhin, Y. I., “Natural deduction system for three-valued Heyting’s
logic”, Moscow University Mathematics Bulletin 72, 3 (2017): 63–66. DOI:
10.3103/S002713221703007X

[35] Pollock, J., “Natural deduction”, an unpublished manuscript is
available at http://johnpollock.us/ftp/OSCAR-web-page/PAPERS/

Natural-Deduction.pdf

[36] Petrukhin, Y., and V. Shangin, “Automated correspondence analysis for
the binary extensions of the logic of paradox”, The Review of Symbolic
Logic 10, 4 (2017): 756–781. DOI: 10.1017/S1755020317000156

[37] Petrukhin, Y., and V. Shangin, “Natural three-valued logics characterised
by natural deduction”, Logique et Analyse, accepted.

[38] Popov, V. M., “Between the logic Par and the set of all formulae” (in Rus-
sian), pages 93–95 in The Proceeding of the 6th Smirnov Readings in logic,
Contemporary notebooks, Moscow, 2009. http://smirnovreadings.ru/

en/archive/7/

[39] Popov, V. M., “On a three-valued paracomplete logic” (in Russian),
Logical Investigations 9 (2002): 175–178. https://iphras.ru/uplfile/

logic/log09/LI9_Popov.pdf

[40] Portoraro, F. “Symlog automated advice in Fitch-style proof construc-
tion”, pages 802–806 in A. Bundy (ed.) Automated Deduction — CADE-
12. CADE 1994, Lecture Notes in Computer Science (Lecture Notes in
Artificial Intelligence), 814, 1994. DOI: 10.1007/3-540-58156-1_64

[41] Priest, G., “Paraconsistent logic”, in M. Gabbay and F. Guenthner
(eds.), Handbook of Philosophical Logic, vol. 6, Second Edition, Dordrecht,
Kluwer, 2002. DOI: 10.1007/978-94-017-0460-1_4

http://dx.doi.org/10.1090/S0002-9904-1936-06440-2
http://dx.doi.org/10.1090/S0002-9904-1936-06440-2
http://dx.doi.org/10.1023/A:1005035316026
http://dx.doi.org/10.3103/S002713221703007X
http://johnpollock.us/ftp/OSCAR-web-page/PAPERS/ Natural-Deduction.pdf
http://johnpollock.us/ftp/OSCAR-web-page/PAPERS/ Natural-Deduction.pdf
http://dx.doi.org/10.1017/S1755020317000156
http://smirnovreadings.ru /en/archive/7/
http://smirnovreadings.ru /en/archive/7/
https://iphras.ru/uplfile/logic/log09/LI9_Popov.pdf
https://iphras.ru/uplfile/logic/log09/LI9_Popov.pdf
http://dx.doi.org/10.1007/3-540-58156-1_64
http://dx.doi.org/10.1007/978-94-017-0460-1_4

256 Yaroslav Petrukhin, Vasilyi Shangin

[42] Priest, G., “The logic of paradox”, Journal of Philosophical Logic 8 (1979):
219–241. DOI: 10.1007/BF00258428

[43] Rescher, N., Many-Valued Logic, New York, McGraw Hill, 1969.

[44] Sahlqvist, H., “Completeness and correspondence in the first and second
order semantics for modal logic”, pages 110–143 in S. Kanger (ed.), Pro-
ceeding of the Third Scandinavian Logic Symposium, Amsterdam, North-
Holland Publishing Company, 1975.

[45] Sette, A. M., “On propositional calculus P1”, Mathematica Japonica 18
(1973): 173–180.

[46] Sette, A. M., and W. A. Carnielli, “Maximal weakly-intuitionistic logics”,
Studia Logica 55 (1995): 181–203. DOI: 10.1007/BF01053037

[47] Sieg, W. and J. Byrnes, “Normal natural deduction proofs (in clas-
sical logic)”, Studia Logica 60 (1998): 67–106. DOI: 10.1023/A:

1005091418752

[48] Shangin, V. O., “A precise definition of an inference (by the example of
natural deduction systems for logics I〈α,β〉)”, Logical Investigations 23, 1
(2017): 83–104. DOI: 10.21146/2074-1472-2017-23-1-83-104

[49] Shestakov, V. I., “Modelling operations of propositional calculus through
the relay contact circuit” (in Russian), in E. Y. Kolman, G. N. Povarov,
P. V. Tavanets, and S. A. Yanovskaya (eds.), Logical investigations, 1959.

[50] Shestakov, V. I., “On the relationship between certain three-
valued logical calculi” (in Russian), Uspekhi Mat. Nauk 19, 2,
116 (1964): 177–181 (available at http://www.mathnet.ru/links/

573d2c9a26538eb817452537a0e26733/rm6197.pdf).

[51] Shestakov, V. I., “On one fragment of D. A. Bochvar’s calculus” (in Rus-
sian), Information Issues of Semiotics, Linguistics and Automatic Trans-
lation VINITI, 1 (1971): 102–115.

[52] Sieg, W., and F. Pfenning, “Note by the guest editors”, Studia Logica 60
(1998): 1. DOI: 10.1023/A:1005065031956

[53] Słupecki J., G. Bryll, and T. Prucnal, “Some remarks on the three-valued
logic of J. Łukasiewicz”, Studia Logica 21 (1967): 45–70. DOI: 10.1007/

BF02123418

[54] Steen, A., and C. Benzmüller., “Sweet SIXTEEN: Automation via embed-
ding into classical higher-order logic”, Logic and Logical Philosophy 25, 4
(2016): 535–554. DOI: 10.12775/LLP.2016.021

[55] Tamminga, A., “Correspondence analysis for strong three-valued logic”,
Logical Investigations 20 (2014): 255–268.

http://dx.doi.org/10.1007/BF00258428
http://dx.doi.org/10.1007/BF01053037
http://dx.doi.org/10.1023/A:1005091418752
http://dx.doi.org/10.1023/A:1005091418752
http://dx.doi.org/10.21146/2074-1472-2017-23-1-83-104
http://www.mathnet.ru/links/573d2c9a26538eb817452537a0e26733/rm6197.pdf
http://www.mathnet.ru/links/573d2c9a26538eb817452537a0e26733/rm6197.pdf
http://dx.doi.org/10.1023/A:1005065031956
http://dx.doi.org/10.1007/BF02123418
http://dx.doi.org/10.1007/BF02123418
http://dx.doi.org/10.12775/LLP.2016.021

Automated proof-searching for strong Kleene logic . . . 257

[56] Tomova, N. E., “A lattice of implicative extensions of regular Kleene’s
logics”, Report on Mathematical Logic 47 (2012): 173–182. DOI: 10.4467/

20842589RM.12.008.0689

[57] Tomova, N. E., “Erratum to: Natural implication and modus ponens prin-
ciple”, Logical Investigations 21, 2 (2015): 186–187.

[58] Tomova, N. E., “Natural implication and modus ponens principle”, Logical
Investigations 21, 1 (2015): 138–143.

[59] van Benthem, J., “Modal correspondence theory”, PhD Thesis, Univer-
siteit van Amsterdam, Amsterdam, 1976.

[60] van Benthem, J., “Correspondence theory”, pages 325–408 in D. M. Gab-
bay and F. Guenthner (eds), Handbook of Philosophical Logic, vol. 3,
second edition, Dordrecht, Kluwer Academic Publishers, 2001. DOI: 10.

1007/978-94-017-0454-0

Yaroslav Petrukhin and Vasilyi Shangin

Department of Logic
Lomonosov Moscow State University
Moscow, Russia
yaroslav.petrukhin@mail.ru, shangin@philos.msu.ru

http://dx.doi.org/10.4467/20842589RM.12.008.0689
http://dx.doi.org/10.4467/20842589RM.12.008.0689
http://dx.doi.org/10.1007/978-94-017-0454-0
http://dx.doi.org/10.1007/978-94-017-0454-0

	Introduction and motivation
	Semantics of strong Kleene logic
	The notion of correspondence analysis
	Implicational extensions of K3
	Peirce's arrow and Sheffer's stroke as extensions of K3

	Natural deduction systems
	Proof search for NDK3 and NDK3
	Proof-searching algorithm ALGK3

	Algo-Proof Examples
	Termination, soundness, and completeness
	Related work
	Conclusion
	References

