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VAGUENESS AND FORMAL FUZZY LOGIC:

Some criticisms

Abstract. In the common man reasoning the presence of vague predicates
is pervasive and under the name “fuzzy logic in narrow sense” or “formal
fuzzy logic” there are a series of attempts to formalize such a kind of phe-
nomenon. This paper is devoted to discussing the limits of these attempts
both from a technical point of view and with respect the original and prin-
cipal task: to define a mathematical model of the vagueness. For example,
one argues that, since vagueness is necessarily connected with the intuition
of the continuum, we have to look at the order-based topology of the interval
[0,1] and not at the discrete topology of the set {0, 1}. In accordance, in
switching from classical logic to a logic for the vague predicates, we cannot
avoid the use of the basic notions of real analysis as, for example, the ones
of “approximation“, “convergence“, “continuity“. In accordance, instead of
defining the compactness of the logical consequence operator and of the
deduction operator in terms of finiteness, we have to define it in terms of
continuity. Also, the effectiveness of the deduction apparatus has to be
defined by using the tools of constructive real analysis and not the one of
recursive arithmetic. This means that decidability and semi-decidability
have to be defined by involving effective limit processes and not by finite
steps stopping processes.

Keywords: vagueness; fuzzy logic; approximate reasoning; compactness;
effectiveness, locality

1. Introduction

In spite of the important and impressive literature on formal fuzzy logic,
several criticisms exist and are possible against the existing proposals.
Some of these criticisms arise from misunderstandings. Nevertheless,
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there are also well-based observations suggesting the opportunity of
some kind of reformulation of the paradigms dominant in the current
researches. Notice that the considerations in this paper do not call into
question the mathematical relevance of these researches. Rather, they
aim to discuss whether the main objective of this logic has been reached,
once we admit that

fuzzy set theory is a mathematical theory for modeling of the vagueness
phenomenon, similarly as probability theory is for uncertainty.

[Novák, 2005]

Notice that the word vagueness in this quotation and in literature is
used to denote the phenomenon of the presence in the natural language
of predicates whose valuation may vary from ‘false’ and ’true’ in a con-
tinuous way. This means that vagueness is strictly related to the real
number interval [0, 1] since the set of real number is almost universally
considered the adequate model of the continuum.

As an example of a misconception, I quote F. J. Pelletier [2000; 2004]
who, in answering a paper of C. W. Entemann [2002] and in reviewing
the basic book of P. Hájek [1998], disputes Entemann’s claim that fuzzy
logic is an extension of the classical one.

More relevant criticisms are related to compactness and effective-
ness. Indeed, Pelletier stresses that while classical logic is semantically
compact this is not the case of fuzzy logic

where there can be (for example) an unsatisfiable infinite set where
every finite set is satisfiable.

As a consequence,

since all proofs are by definition finite, there can therefore be no general
proof theory for fuzzy logic.

In addition, Pelletier observes that, while the set of valid formulas in clas-
sical logic is recursively enumerable, this falls for either the Łukasiewicz
or Goguen logics:

Hájek then shows that no similar result is possible for either the Łuka-
siewicz or Goguen logics: no recursive axiomatization for either of these
logics is possible [. . . ].

The importance of this fact is emphasized dramatically (ironically?):

Many observers might think this should the death knell for fuzzy logic.
[Pelletier, 2000]
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This paper is an attempt to give some answers to all these criticisms
and to discuss some further ones.

Namely, sections 2, 3, 4 are devoted to recalling some basic notions
and results in fuzzy logic. Namely, we concentrate our attention on the
two principal proposals. The approach of Hájek’s school which is char-
acterized by deduction apparatus which are crisp in nature, and the one
based on the ideas of J. A. Goguen [1968] and J. Pavelka [1979a; 1979b;
1979c] in which “approximate reasoning” are admitted. In the first case
to obtain completeness, and therefore compactness and effectiveness, one
considers a semantics which is not based on a fixed valuation algebra (as
in the tradition in logic) but on a class of algebraic structures [see Hájek,
1998, 2006]. In the latter, a Pavelka-style completeness theorem is ob-
tained firstly by Pavelka for propositional calculus [Pavelka, 1979c] and
successively for first order logic by Novák [see Novák, 1990a,b and also
Turunen, 1999]. In this case, the idea of approximate reasoning plays a
crucial role.

Section 5 is devoted to observing that fuzzy logic is not a philosophi-
cal alternative to classical logic but an attempt to extend this logic. This
is a rather evident fact, but I will emphasize it since is on the basis of
useless contrasts and unjustified enthusiasms.

In Sections 6 and 7 one considers the questions of compactness and
effectiveness. In particular, I argue that in the graded approach adequate
definitions of these notions need to be hunted in recursive analysis and
not in recursive arithmetic.

In Section 8 further criticisms are quoted against both the two ap-
proaches. Finally, in Section 9 we conclude expressing the opinion for
which a mechanical adaptation of the methods used in classical logic is
misleading. So, the enterprise of finding a mathematical model for a
logic admitting vague predicates has to search new alternatives.

2. Basic notions and notations

Given a nonempty set S and a bounded lattice L, then we call L-subset

or fuzzy subset of S any map s : S → L from S into L. We denote
by cod(s) the codomain {s(x) : x ∈ S} of s. Given a positive natural
number n, an n-ary L-relation or fuzzy relation in S is an L-subset of Sn.
We denote by LS the class of all the L-subsets of S and by P (S) the
class of all the subsets of S. Given λ ∈ L, the open λ-cut of s is the set
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{x ∈ S : s(x) > λ}, the closed λ-cut is the set {x ∈ S : s(x) ≥ λ}. We
say that s is finite if the open 0-cut Supp(s) := {x ∈ S : s(x) > 0} is
finite. Given two L-subsets s1 and s2, we set s1 ⊆ s2 and we say that
s1 is contained in s2 provided that s1(x) ≤ s2(x), for every x ∈ S. The
pair (LS, ⊆) is a bounded lattice whose meets and joins operators are
named intersection and union, respectively. We denote by ∩ and ∪ these
operations and therefore we set, for any s1 and s2 in LS and x ∈ S,

(s1 ∪ s2)(x) := s1(x) ∨ s2(x),

(s1 ∩ s2)(x) := s1(x) ∧ s2(x).

If 0 and 1 are the minimum and maximum bounds in L, we call crisp

any L-subset whose values are in {0, 1}. We identify the subsets with the
crisp subsets by the lattice embedding e : P (S) → LS defined by setting
e(X) = cX , where cX is defined by setting cX(x) := 1, if x ∈ X , and
cX(x) = 0, otherwise [see, e.g., Zadeh, 1965].

In this paper, S coincides with the set Form of well-formed formulas
of a first order language or with the set Form of the closed formulas of
this language. Also, we assume that in the lattice L there are operations
enabling us to interpret the logical connectives. In this case, we say that
L is a valuation algebra. An important class of valuation algebras is the
class of standard algebras, i.e., algebras ([0, 1], ∗, →) whose domain is the
real interval [0, 1] and whose operations are a continuous triangular norm
∗ together with the related residuum →. As we will see after, further
valuation algebras are the structures belonging to the class Var(∗) of all
the algebraic structures in the variety generated by ([0, 1], ∗, →). We call
∗-logic a logic which is based on a triangular norm ∗.

Given a first order language and a valuation algebra L, we call fuzzy

interpretation a pair (D, I), where
• D is a set we call the domain of the interpretation,
• I(r) is an n-ary L-relation in D for any n-ary relation name r,
• I(c) is an element in D for any constant c,
• I(f) in an n-ary function in D for any n-ary function name f .
Usually one assumes that in the language there are two logical constants
0 and 1 to represent the minimum 0 and the maximum 1 of L. Some-
times, one considers also languages in which there is a logical constant
r, for every rational number r. The intended meaning is that r is an
atomic formula whose truth value is r. In such a case we say that the
language is with rational constants. This is permitted by the fact that
in this paper we are interested only in valuation structures belonging
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to the class Var(∗) and therefore containing a copy of the set [0, 1]Q of
rational numbers in [0, 1].

Then, given a fuzzy interpretation (D, I), we can evaluate the for-
mulas in a truth-functional way as it is usual in multi-valued logic. In
addition, in the case the language is with rational constants, we inter-
pret a logical constant as r by the rational number r. The existential
quantifier is usually interpreted by the last upper bound and this gives
rise to some unusual and interesting phenomenon. For example, there
is a possibility that a formula as ∃x α(x) is true in a given model but
that there is no element (witness) in the domain satisfying α. Again, in
the case L is not complete, there is the possibility that some quantified
formulas cannot be evaluated.

Definition 2.1. Given an interpretation (D, I) and a formula α whose
free or bounded variables are among x1,. . . , xn, we denote by fα : (E −
{Q})n → [0, 1]∗ the function such that fα(d1, . . . , dn) is the truth-value
of α once the variables x1, . . . , xn are interpreted by d1, . . . , dn in D.
As usual, if α ∈ Form is a closed formula, fα is a constant we call the

truth value of α. Also, we denote by m(D,I) : Form → L the fuzzy subset
such that, for every α ∈ Form, m(D,I)(α) is the truth value of α.

Definition 2.2. We say that (D, I) is a model of a closed formula α
provided that m(D,I)(α) = 1. Given a set T of closed formulas, we say
that (D, I) is a model of T if (D, I) is a model of all the formulas in T .

3. Ungraded approach

As anticipated in Introduction, two main approaches to fuzzy logic ex-
ist [see Belohlavek et al., 2017]. We call ungraded the one of Hájek’s
school, and graded the one originates by Goguen and Pavelka (in brief,
U-approach and G-approach). I prefer such a terminology to the usual
one “with classical syntax” and “with evaluated syntax” since the differ-
ence is mainly in the way one represents the information. We initiate by
giving the basic notions of the ungraded approach.

Definition 3.1. Given a standard algebra ([0, 1], ∗, →), we call ∗-in-

terpretation an interpretation in ([0, 1], ∗, →) and Var(∗)-interpretation

an interpretation in a valuation algebra in Var(∗). Given T ⊆ Form,
the meaning of the expressions, ∗-model of T and Var(∗)-model of T is
evident. We write:
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• T |=∗ α provided that every ∗-model of T is a model of α,
• T |=Var(∗) α provided that every linear and safe Var(∗)-model of T is

a model of α.

We say that |=∗ and |=Var(∗) are the standard consequence relation and
the general consequence relation associated with ∗, respectively.

These relations are associated with two different notions of tautology.

Definition 3.2. We say that a formula α is a standard ∗-tautology if
∅ |=∗ α, that α is a general ∗-tautology if ∅ |=Var(∗) α, respectively.

Then a standard ∗-tautology is a formula satisfied in all the ∗-in-
terpretations and a general ∗-tautology is a formula satisfied in all the
Var(∗)-interpretations.

Examples. To illustrate the just given notions, we list some examples in
which the language is with rational constants and contains a sequence
P1, P2, . . . of constants and a monadic predicate symbol C. The intended
meaning is that these constants represent points of the Euclidean plane
and C the fuzzy predicate “to be close to Q”, where Q is a fixed point.
Also, we consider the theory

T = {q(1) → C(P1), q(2) → C(P2), . . . , q(n) → C(Pn, ), . . .},

where (q(n))n∈N is a strictly increasing sequence of rational numbers
such that limn→∞ = 1. It is evident that every ∗-model of T satisfies
∃x(C(x)), i.e. that T |=? ∃x(C(x)).

Example 1. Denote by M1 the interpretation whose domain is the set
E of points of the Euclidean plane and where, once a point Q ∈ E is
fixed, assume that

• C is interpreted by the fuzzy subset c : E → [0, 1] such that, for every
P ∈ E, c(P ) = 2−d(P,Q),

• P1, P2, . . . are interpreted by a sequence (Pn)n∈N of points in E −{Q}
such that d(Pn, Q) ≤ − log2(q(n)).

Then, for every n ∈ N , c(Pn) ≥ q(n) and therefore M1 is a model of
T . Also, since c(Q) = 1, in this model there is a witness for the formula
∃x(C(x)).

Example 2. Denote by M2 the interpretation obtained by modifying M1

only in assuming that the domain is E − {Q}. In a sense, we interpret
Q as a small hole and C(P ) as the closeness of P to this hole. It is
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immediate that M2 is a model of T satisfying ∃x(C(x)) in spite of the
fact that no witness exists for this formula.

Example 3. Denote by M3 an interpretation coinciding with M2 but
whose valuation structure is an extension of the standard algebra ([0, 1],
∗, →) of M2, namely is a non-standard extension ([0, 1]∗, ∗, →) of ([0, 1],
∗, →). This extension belongs to Var(∗), obviously. Then, we obtain
a model of T in which it is not possible to assign a truth value to
∃x(Close(x)). This since the set of the upper bounds of {c(P ) : P ∈
E − {Q}} coincides with the set of elements in [0, 1]∗ infinitely close
to 1 and in this set there is no minimum. So, no last upper bound of
{c(P ) : P ∈ E − {Q}} exists and M3 is a model of T which is not safe.

Example 4. Let δ be an upper bound of the set {d(Pi, Q) : i ∈ N}, let
δ1,. . . ,δh be positive real numbers such that 0 < δ1 < δ2 < · · · < δh = δ
and let uh < · · · < u1 be elements of [0, 1]∗ infinitely close to 1. Then
an interpretation M4 is obtained in the domain E − {Q} by setting

• c(P ) = 0, if d(P, Q) > δh,
• c(P ) = ui, if δi−1 < d(P, Q) ≤ δi,
• c(P ) = u1, if 0 < d(P, Q) ≤ δ1.

In other words, c : E − {Q} → [0, 1]∗ is the fuzzy circle whose closed
cut at level ui is the circle {P : d(P, Q) ≤ δi}. In particular, the points
internal to the circle {P : d(P, Q) ≤ δh} are considered infinitely close
to the Q while the remaining points are not considered close to Q at all.
In particular, all the points in the sequence (Pn)n∈N are infinitely close
to 1 and therefore c(Pn) ≥ q(n), for every n ∈ N . This means that that
M4 is a model of T . I claim that

(a) For any formula α and any d1, . . . , dn in E − Q, fα(d1, . . . , dn) is
well defined and cod(fα) is finite.

Indeed, (a) is trivial in the case α is an atomic formula. Assume that (a)
is satisfied by α and β, then fα∧β(d1, . . . , dn) is well defined and, since
cod(fα∧β) is contained in the finite set {xy : x ∈ cod(fα), y ∈ cod(fβ)},
cod(fα∧β) is finite. The same argument holds true for fα→β . Assume
that (a) is satisfied by α, then since cod(fα) is finite, there is no difficulty
to calculate the truth value of ∃xi α (which is a maximum) and it is
evident that cod(f∃xiα) is finite. So, ∃xi α satisfies (a), too.

As a consequence of (a), M4 is a safe model of T such that the
valuation of ∃x(Close(x)) is u1 6= 1 and this shows that T |=Var(∗)

∃x(Close(x)) is false.
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The notion of deduction apparatus in U -approach is defined by adopt-
ing the same paradigm of classical logic, i.e., by fixing a suitable set
of logical axioms and suitable inference rules. Also, the structure of
a proof is the same as in classical logic. Unfortunately, an adequate
deduction system for the standard semantics exists only in the case ∗ is
the minimum. Then, to obtain a completeness theorem for all the main
triangular norms, in the U -approach we have to consider the relation
|=Var(∗). Indeed, the following theorem holds true.

Theorem 3.3 (Completeness theorem for the U -approach). Let ∗ be any
of the basic triangular norms, then there is a deduction system defining
a relation ⊢Var(∗) such that for every set T of formulas and every formula
α we have

T ⊢Var(∗) α ⇐⇒ T |=Var(∗) α,

4. The graded approach

In accordance with the ideas of Pavelka, in the G-approach, fuzzy logic
is defined in an abstract way [Pavelka, 1979a,b,c]. Notice that both the
semantics and the deduction apparatus are defined by assuming that
[0, 1] is fixed as the set of truth values.

Definition 4.1. An abstract fuzzy semantics is a class M of fuzzy sub-
sets of Form. The elements in M are named interpretations or models.

The point of view is that we can identify a model with the valuation
of the formulas it determines, i.e., with a particular fuzzy subset of for-
mulas. The truth-functional semantics given in Section 2 is a particular
case. Indeed, given a valuation structure, we obtain an abstract fuzzy
semantics M by setting M = {m(D,I) : (D, I) is an interpretation}.

Notice that very interesting semantics exist which are not truth-
functional. The following definition is on the basis of the G-approach.

Definition 4.2. A fuzzy theory is a fuzzy subset of formulas τ , m ∈ M
is a model of τ , in brief m � τ , provided that m ⊇ τ . The logical

consequence operator Lf : [0, 1]Form → [0, 1]Form is defined by setting,
for every τ ∈ [0, 1]Form,

Lf (τ)(α) := inf{m(α) : m ∈ M, m � τ}.
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The fuzzy subset of tautologies Tau : Form → [0, 1] is defined by
putting Tau := Lf (∅), i.e.,

Tau(α) = inf{m(α) : m ∈ M, m � τ}.

Observe that the value τ(α) is not interpreted as the truth value of
α but as a piece of information on this value. Namely, it represents
the constraint [τ(α), 1] on the possible truth value of α. In accordance,
Lf (τ)(α) is the best constraint on the truth value of α we can obtain
given τ . Notice that while in the U -approach one defines the set of the
∗-tautologies and the set of general ∗-tautologies in the G-approach one
defines only the fuzzy subset of tautologies. This fact remarks the strong
difference between the two approaches.

Definition 4.3. A fuzzy Hilbert system is a pair (la, R), where la :
Form → [0, 1] is a fuzzy subset of formulas, the fuzzy subset of logical

axioms, and R is a set of fuzzy inference rules. In turn, a fuzzy inference

rule is a pair r = (r′, r′′), where

• r′ is a partial n-ary operation on Form,
• r′′ is an n-ary operation on [0, 1] preserving the least upper bounds

(continuity hypothesis).

We indicate an application of an inference rule r by a picture as

α1, . . . , αn

r′(α1, . . . , αn)
. . . ; . . .

λ1, . . . , λn

r′′(λ1, . . . , λn)

whose meaning is that: IF you know that α1, . . . , αn are true (at least)
to the degree λ1, . . . , λn, respectively, THEN the formula r′(α1, . . . , αn)
is true (at least) to the degree r′′(λ1, . . . , λn).

An important example of an inference rule is the graded modus ponens

in which the firs component is the usual modus ponens and the second
component is the triangular norm.

Definition 4.4. A proof π of a formula α is a sequence α1, . . . , αm of
formulas such that αm = α, together with the related “justifications”.
This means that, for any formula αi, we must specify whether

(i) αi is assumed as a logical axiom; or
(ii) αi is assumed as an hypothesis; or

(iii) αi is obtained by the first component of a rule (in such a case we
have to specify the rule and the formulas in the list α1, . . . , αi−1

used by the rule).
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Definition 4.5. Let τ be a fuzzy theory (the available information) and
π a proof α1, . . . , αm. Then the valuation Val(π, τ) of π with respect to

τ is defined by induction on the length m of π as follows:

• Val(π, τ) = la(αm), if αm is assumed as a logical axiom,
• Val(π, τ) = τ(αm), if αm is assumed as an hypothesis,
• Val(π, τ) = r′′(Val(π(i(1)), τ), . . . , Val(π(i(n)), τ)), if αm = r′(αi(1),

. . . , αi(n)), where i(1), . . . , i(n) are in {1, . . . , m − 1}.

If α = αm is the formula proven by π, the meaning of Val(π, τ)
is that given the information τ , the proof π ensures that α holds true

at least at level Val(π, τ). Let me note that Val(π, τ) is not a truth
value but a constraint on a truth value, i.e., the constraint represented
by the (crisp) interval [Val(π, τ), 1]. Otherwise should be contradictory
the existence of two proofs π1 and π2 of the same formula α such that
Val(π1, τ) 6= Val(π2, τ). Instead, we can interpret this existence by the
constraint [sup{V al(π1, τ), V al(π2, τ)}, 1] and therefore by the fusion of
the information given by the two proofs. This means that expression as
“α is a theorem in the degree Val(π, τ)” or “α is provable in the degree
Val(π, τ)” are misleading. This interpretation gives also a justification
to the maximality principle which is on the basis of the next definition.

Definition 4.6. Given a fuzzy Hilbert’s system (a, R), we define the
function Df : [0, 1]Form → [0, 1]Form by setting

Df(τ)(α) := Sup{Val(π, τ) : π is a proof of α}. (†)

We say that Df is the deduction operator of (a, R).

Observe that the choice of fusing the pieces of information furnished
by the proofs of α by (†) is imposed by the fact that

⋂
{[Val(π, τ), 1] : π is a proof of α} = sup{Df (τ)(α), 1}.

Definition 4.7. A fuzzy semantics is axiomatizable provided that there
is a fuzzy Hilbert system such that Lf = Df . In such a case, we say also
that a completeness theorem holds true.

Unfortunately, a completeness theorem looks to be possible only if
the conjunction connective ∗ is interpreted by Łukasiewicz’s product.

Theorem 4.8 (Completeness theorem for the G-approach). Given the
fuzzy semantics associated with Łukasiewicz first order logic with ratio-
nal constants, a completeness theorem holds true.
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Note. Usually the deduction apparatus is defined by “evaluated formu-

las”, i.e., pairs as 〈λ, α〉, where λ is a truth value and α is a formula.
I prefer a clear distinction between the linguistic level in a deduction and
the valuation level. This since the linguistic level is conscious, explicit,
and plays its main role in the communication. The valuation level, to the
extent that vagueness is involved, is not conscious and it is the result
of a rather obscure process developed by an individual. Moreover, it
is continuously adapted in a pragmatic way. Perhaps, this distinction
facilitates an extension of the spirit of fuzzy control to the whole fuzzy
logic. In fact, if we introduce parameters in the valuation part of the
inference rules and in the available information τ , then (†) becomes a
parameterized function and this would make possible tuning, learning,
negotiation and so on (see also Section 9).

5. Examples of misunderstanding

We start this section by quoting a criticism in [Pelletier, 2000, 2004]:

Most logicians think that one logic is an extension of another if it con-
tains all the theorems of the other [. . . ]. But this is not a sense in which
fuzzy logic is an extension of classical logic; for, (A ∨ ¬A) is a theorem
of classical logic but not of fuzzy logic. Indeed, it can be shown that
there is no theorem of fuzzy logic (in ∧, ∨, ¬) which is not already a
theorem of classical logic. So classical logic in fact is an extension of
fuzzy logic, in the usual use of the term ‘extension‘, and not the other
way around.

Moreover, in speaking about the solution of the Heap paradox proposed
by fuzzy logic [see Goguen, 1968; Hájek and Novák, 2003; Sorensen, 2001]
claims

I am a logical conservative in that I deny that vagueness provides any
reason to reject any theorem or inference rule of standard logic.

In accordance

instead of changing logic, we should change our opinions about how
language works.

The expression used is “changing logic” and not “extending logic” and
this emphasizes author’s idea about the alternative nature of fuzzy logic
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with respect to the classical one. It is evident that this idea is a misun-
derstanding of the nature of fuzzy logic. Nevertheless I will spend some
words on this question since this misunderstanding originates several
prejudices and excessive enthusiasms. In fact, a look at the just given
definitions shows that every fuzzy logic is completely built up inside
second order classical logic. Indeed, in this logic we can define the real
numbers structure as a model of the theory of ordered complete fields
and therefore the interval [0, 1]. Moreover, we can define the operations
usually used to interpret the logical connectives and, in the G-approach,
the operations associated with the inference rules. This leads to the
following (trivial) claim.

Claim 1. Since second order classical logic is an adequate meta-theory
for fuzzy logic, fuzzy logic is “included” in classical logic.

At the same time, there is also a sense in claiming that all the fuzzy
logics are an extension of classical logic.

Claim 2. Since in a fuzzy logic the logical connectives and the quantifiers
are interpreted extending the classical interpretations, classical logic is
“included” in this fuzzy logic.

The fact that there are classical tautologies which are not a theo-
rem of a fuzzy logic is not surprising since if we enlarge the class of
interpretations it is natural to restrict the class of tautologies.

In conclusion a fuzzy logic cannot be alternative to classical logic
since it is a construct of this logic and, at the same time fuzzy logic
is an attempt to extend classical logic. Should this construct a contri-
bution to the understanding of the phenomenon of the vagueness, that
would be a further success of classical logic and therefore even a “logical

conservative” person should be happy.

Obviously, there are several further misunderstandings. For example,
Hájek, in the very interesting paper [Hájek, 1999] quoted the following
argument of the philosopher R. Parikh [1991]:

If fuzzy logic says that there is an x such that President de Klerk is
x-African, then it must tell us how to measure x and how to resolve the
conflict between one person who says that de Klerk is 0.8-African and
another that he is 0.2-African. It must also tell us how the correct value
x such that he is x-African is related to these two conflicting reports
and what it means to say that x is the correct value.
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An immediate answer to the first question is that the truth degree of
the atomic formula “President de Klerk is African” is not a problem of
fuzzy logic.

Is there something like the “real” interpretation (actual possible world)?
This question is asked about the classical logic and about the fuzzy logic
as well  and for both the answer is outside the scope of logic.

Question 5 in [Hájek, 1999]

Indeed, in a logic:
• the aim of the semantics is to define the truth value of a composed

formula from the truth values of the atomic components,
• the aim of the deduction apparatus is to calculate the information

we can derive from the available information.
How we can obtain the truth value of the atomic components or the
information expressed by the theory is out of the scope of logic.

We conclude this section by emphasizing that in [Belohlavek et al.,
2009] one exhibits an impressive list of misunderstandings on fuzzy logic
appearing in the literature on the psychology of concepts.

6. Compactness

To give an answer to Pelletier’s observations on compactness and effec-
tiveness, we consider at first the answer given by the U -approach. To
do this, we have to distinguish the standard semantics from the general
semantics.

Definition 6.1. We say that the logic associated with a standard al-
gebra ([0, 1], ⊗, →) is compact in standard sense, provided that, given a
set T of formulas and a formula α,

T |=∗ α =⇒ there is a finite part Tf of T such that Tf |=∗ α.

We say that a logic is compact in a general sense, provided that

T |=Var(∗) α =⇒ there is a finite part Tf of T such that Tf |=Var(∗) α.

Then we can avoid Pelletier’s criticisms by referring to compactness in
general sense. Indeed, in accordance with the fact that axiomatizability
entails compactness, we have the following very important theorem.

Theorem 6.2. All the ∗-logics are compact in general sense.
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A different notion of compactness is necessary in the case we refer
to the G-approach. Indeed in such a case the compactness is a property
of the logical consequence operator Lf : [0, 1]Form → [0, 1]Form and in
defining it is necessary to take in account the difference between the
topological structures of {0, 1}Form and the one of [0, 1]Form. This sug-
gests to look at a continuity property and not at a finiteness property [see
Gerla, 2000]. Recall the limit of an upward directed class C in an ordered
set is defined as its least upper bound of this class, i.e., lim C = sup C.
Also, observe that the imagine H(C) of an upward directed class C by
a monotone map H is an upward directed class.

Definition 6.3. For any (λ, ≤) a complete lattice, a function H : L → L
is continuous itf provided that H(lim C) = lim H(C), for any upward
directed class C of elements in L. Given a nonempty set S, we call
compact an operator H : LS → LS which is continuous in the lattice LS.

We emphasize that this notion, which is different from the one pro-
posed by Pavelka, is long time known in logic programming (and it is a
basic one in domain theory). A useful feature of the continuity is that
it enables us to define the least Herbrand model of a program as a fixed
point of the immediate consequence operator. There are several reasons
to assume the continuity as the correct counterpart of the notion of com-
pactness in fuzzy logic. Firstly, in the case of the lattice of all subsets of
a given set, this notion coincides with the usual compactness. Moreover,
we can characterize the continuity in the lattice of the fuzzy subsets of
a given set in terms of finite fuzzy subsets.

Theorem 6.4. Define the relation ≺ by setting, for any s1, s2 ∈ LS ,

S1 ≺ s2 ⇐⇒ s1(x) < s2(x), for every x ∈ Supp(s1).

Then an operator H : LS → LS is continuous if and only if, for every
fuzzy subset s of S,

H(s) =
⋃

{H(sf) : sf is finite and sf ≺ s}.

Once we admit Definition 6.3, the following theorem gives an answer
to Pelletier’s criticism [see Gerla, 2000].

Theorem 6.5. The deduction operator of a fuzzy Hilbert system (in a
countable language) is compact. In particular, the logical consequence
operator of Łukasiewicz logic with evaluated syntax is compact.
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7. Effectiveness

The effectiveness of fuzzy logic is a further crucial question. Again, the
answer of Hájek’s school is to refer to the entailment relation |=Var(∗)

and therefore to the notion of general ∗-tautology. In fact, one proves the
following very important and surprising result [Hájek, 1995; Montagna,
2001]:

While the set of standard tautologies in Łukasiewicz first order

logic is not recursively enumerable, the set of general ∗-tautologies

is recursively enumerable.

So, it is sufficient to refer to the notion of general tautology to remove
Pelletier’s criticism.

A totally different apparatus is necessary if we will consider the G-
approach. Indeed, in this case we have to define in a suitable way the
notions of semi-decidable and decidable fuzzy subset. We examine this
question in the next subsections.

7.1. Fuzzy Turing machines

Classical computability theory originated from Turing’s definition of
computing machine. It is thus not surprising that in fuzzy literature there
are many papers devoted to extend this notion to the fuzzy framework.
The following definition is sufficiently representative of the existing ones.

Definition 7.1. A nondeterministic fuzzy Turing machine, in brief a
FTM, is a structure F = (Q, T, I, b, q0, qf , µ, ⊗) such that

• Q, T , I are nonempty finite sets such that I ⊆ T ,
• b ∈ T − I and q0, qf ∈ Q,
• µ : ∆ → [0, 1]Q is a fuzzy subset of ∆, where ∆ := Q × T × Q × T ×

{−1, 0, +1},
• ⊗ is a t-norm in [0, 1] such that the product of two rational numbers

is a rational number.

The elements in Q, T , and I are named, internal states, tape symbols,
and input symbols, respectively. Also, b is the blank symbol, q0, qf are the
initial and the accepting state, respectively. As it is usual, the intended
meaning of −1, 0, +1 is “move one cell to the left”, “not move”, “move
one cell to the right”. An element δ = (qi, ti, qi+1, ti+1, d) in ∆ is called
a transition rule. Its intended meaning is that when the machine F is in
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state qi and the current symbol has been read is ti, then this machine is
authorized to print ti+1 on the current cell, to move the scanning head
according with d and to enter in the state qi+1. Then a FTM is like a
classical nondeterministic Turing machine in which instead of a subset
of the set ∆ of transition rules one considers a fuzzy subset of ∆. The
role of the operation ⊗ will be evident in Definition 7.3. One defines the
notions of configuration and of accepting configuration as usual. Given
an input w ∈ I+, we denote by C0(w) the configuration in which the
characters of w are printed on tape starting from the leftmost cell, the
scanning head is placed atop the leftmost cell, and the machine enters
state q0.

Definition 7.2. Given two configurations C and C, a computational

path from C to C is a sequence Z = (〈C0, δ(1)〉, . . . , 〈Cn−1, δ(n)〉, Cn),
where δ(i) ∈ ∆, such that C0 = C, Cn = C and Ci+1 is obtained from
Ci, by δ(i+1) for i = 0, . . . , n−1. We denote by PATH(C, C) the class of
all the computational paths from C to C and we say that C is reachable

from C provided that PATH(C, C) 6= ∅. In the case C is an accepting
configuration, we say that Z is an accepting computational path.

Definition 7.3. Given two configurations C and C, and a computa-
tional path Z = (〈C0, δ(1)〉, . . . , 〈Cn−1, δ(n)〉, Cn), from C to C we put

• D(Z) := µ(δ(1)) ⊗ · · · ⊗ µ(δ(n)).

Assume that C is reachable from C then we put

• d(C, C) = sup{D(Z) : Z ∈ PATH(C, C)}.

Definition 7.4. Let F be a FTM, then the fuzzy subset eF : I+ → [0, 1]
of I+ associated with F is defined by setting, for every w ∈ I+,

EF(w) = sup{d(C0(w), C) : C is an accepting configuration}.

A fuzzy subset e of I+ which is associated with a fuzzy Turing machine
is called FT-semidecidable. We say that e is FT-decidable if both e and
its complement are FT-semidecidable.

As usual, while this definition refers to a fuzzy subset of the set I+

of words in an alphabet I, there is no difficulty to extend it to every set
admitting a coding, for example the set of natural numbers, the set of
formulas of a logic and so on.
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Unfortunately, the class of FT-semidecidable subsets has proved in-
adequate to give a basis for a general theory of effectiveness in fuzzy
logic. This fact is a consequence mainly of the following Lemma on the
ordered monoids which is rather known in the literature [see, e.g., Gerla,
2016].

Lemma 7.5. Let (A, ⊗, ≤, 0, 1) be a finitely generated totally ordered
commutative monoid with minimum 0 and maximum 1. Then every
nonempty subset of A admits a maximum.

Now, it is immediate to see that a FT-machine works with the monoid
generated by the codomain cod(µ) of µ and therefore with a finitely
generated commutative monoid. This means that the conditions of this
lemma are satisfied and therefore that the following theorem holds true.

Theorem 7.6. Let e : I+ → [0, 1] be a FT-semidecidable fuzzy subset,
then cod(e) is a set of rational numbers such that every subset of cod(e)
admits a maximum (equivalently, the dual of the natural order in code(e)
is a well order).

An immediate consequence of this theorem, several fuzzy subsets
which are decidable from an intuitive point of view cannot be FT-
semidecidable. The following theorem gives an example.

Theorem 7.7. Let e : I+ → [0, 1] be a fuzzy subset whose co-domain
has no maximum, then e is not FT-semidecidable. In particular, denote
by length(w) the length of a word w and consider the fuzzy subset of big
world big : I+ → [0, 1] defined by setting

big(w) :=
length(w)

length(w) + 1
. (‡)

Then big is a Turing-computable fuzzy subset which is not FT-semi-
decidable.

Proof. It is evident that big is computable and that, since cod(big) has
no maximum, big is not recognizable by a FTM.

Notice that this theorem is not based on the particular definition of
big in (‡). Indeed, it is evident that given any reasonable interpretation
big : I+ → [0, 1] of the notion of “big word”, we have that big(w) is
less than big(wlength(w)) and therefore that cod(big) has no maximum.
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Thus the notion of FT-semi-decidability is not in accordance with our
intuition.

Several further criticisms on the fuzzy Turing machines are possible.
For example, we list the following ones [see, e.g., Gerla, 2016].

1. The notion of FT-semidecidability completely depends on the choice
of the triangular norm.

2. The one of FT-decidability depends also on the choice of the opera-
tion to interpret the negation and it is questionable in the case this
operation is not involutory.

3. The FT-semidecidability is not compatible with the application of
computable linguistic modifiers.

4. There is no universal FT-machine in the case the valuation structure
is not finite.

These criticisms suggest a different notion of effectiveness for fuzzy logic.

7.2. Computation as an effective approximation process

In a series of papers, L. Biacino and G. Gerla proposed a limit-based ap-
proach to fuzzy computability [see, e.g., Biacino and Gerla, 2002; Gerla,
1982, 2000, 2007]. Their proposal is based on the following observations.
In classical logic the effectiveness is based on finite-steps terminating
processes as a consequence of the discrete topological structure of the
two elements Boolean algebra {0, 1}. Instead, fuzzy logic refers to [0, 1]
and this suggests basing the effectiveness by endless approximation pro-
cesses and by the notion of limit. In other words, the effectiveness in
fuzzy logic has to be based on the topological structure of the contin-
uum. On the other hand, a limit-based notion of computability is also
possible in classical logic provided we refer to the discrete topology of
{0, 1}. Indeed, it is easy to prove that a subset X of a set S is effectively

enumerable (co-enumerable) provided that, there is a computable map
h : S ×N → {0, 1} which is increasing (decreasing) with respect to n and
such that limn→∞ h(x, n) = cX(x). If we refer to the natural topology
in [0, 1], we obtain the following definitions where we prefer the words
“semi-decidable” and “dually semi-decidable” in the place of “effectively
enumerable” and “effectively co-enumerable”.

Definition 7.8. Let S be a nonempty set with a coding. Then we call
semi-decidable (dually semi-decidable) a fuzzy subset s : S → [0, 1] of
S provided that a computable map h : S × N → [0, 1]Q exists which
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is order-preserving (order-reversing) with respect to the second variable
and such that,

s(x) = lim
n→∞

h(x, n), (⋆)

for every x ∈ S. We say that s is decidable if it is both semi-decidable
and dually semi-decidable. Then s is decidable provided that for any
x ∈ S, s(x) is the limit of a nested effectively computable sequence of
intervals with rational bounds.

There are several reasons supporting these definitions. The first one
is that they are in accordance with the classical ones for crisp subsets
of S. Another reason is that the existing definitions of computability
in fuzzy set theory are all in accordance with Definition 7.8. Moreover,
differently from the existing definitions, the proposed definition does not
depend on the choice of the triangular norm. Obviously, as in the case of
Church thesis, it is not possible to give a definitive proof of adequateness.

As a consequence of (⋆) we have the following theorem.

Theorem 7.9. Assume that s is semi-decidable. Then for any λ ∈ [0, 1]Q
the open λ-cut of s is recursively enumerable while the closed λ-cut
belongs to the Π2-level of the arithmetical hierarchy.

The notion of semi-decidability enables us to extend the classical
notion of enumeration operator [see Rogers, 1967] to an operator on the
lattice of fuzzy subsets of a given nonempty set [see Gerla, 2007]. We
put SEQ = Ff (S) × S, where Ff (S) is the class of finite fuzzy subsets
of S.

Definition 7.10. We say that a fuzzy operator H : [0, 1]S → [0, 1]S is an
enumeration operator or a left computable operator if a semi-decidable
fuzzy subset w : SEQ → [0, 1] exists such that

H(s)(x) = sup{w(sf , x) : sf ≺ s}.

This notion coincides with the one of computable operator in effective
domains theory.

Proposition 7.11. Let H be an enumeration operator. Then H is
continuous and, for every semi-decidable fuzzy subset s, the fuzzy subset
H(s) is semi-decidable.

In [Gerla, 2000] one proves the following theorem where a fuzzy de-
duction system is called effective provided that the fuzzy subset of logical
axioms is decidable and the inference rules are computable.



450 Giangiacomo Gerla

Theorem 7.12. The deduction operator of an effective fuzzy Hilbert sys-
tem (in a countable language) is an enumeration operator. Conversely,
given an enumeration operator H, an effective fuzzy Hilbert system exists
whose deduction operator coincides with H.

In the following corollary we call e complete a theory τ such that
Df(τ)(¬α) + Df(τ)(α) = 1.

Corollary 7.13. Given an effective fuzzy Hilbert system, if a fuzzy set
of axioms τ is decidable, then the related fuzzy set Df(τ) of consequences
is semi-decidable. If τ is complete and decidable, then Df(τ) is decidable.

In account of the axiomatizability of Łukasiewicz first order logic
with countable language, we obtain the following corollary.

Corollary 7.14. The logical consequence operator DŁ in Łukasiewicz
first order logic with countable evaluated syntax is computable. In par-
ticular, the fuzzy subset of tautologies TauŁ is semi-decidable.

Observe that the criticized non effectiveness of fuzzy logic is based on
the fact that the (classical) set of standard tautologies, i.e., the closed
1-cut {α ∈ Form : DŁ(∅)(α) = 1}, is not recursively enumerable. In
accordance with Theorem 7.9, this does not contradict the fact that the
fuzzy subset TauŁ of tautologies is semi-decidable. It means only that,
given any formula α,

while we are able to produce an increasing sequence of rational
numbers converging to TauŁ(α), we are not able to decide if the
limit of this sequence is equal to 1 or not.

This phenomenon is not a characteristic of fuzzy logic since it emerges
whenever a constructive approach is proposed for a notion involving
real numbers. Indeed, in recursive analysis one proves the following
proposition:

In the class of computable real numbers it is not decidable whether

two recursive real numbers are equal or not. In particular, it is

not decidable whether a recursive real number is equal to 1 or not.

Theorem 7.9 explains also why in the case we assume the set of designed
values is an interval like (λ, 1], the set of tautologies is semi-decidable
while in the case we assume this set is a closed interval [λ, 1], the set of
tautologies is not semi-decidable.
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We conclude this section by observing that since Corollary 7.15 is
a consequence of the axiomatizability of Łukasiewicz logic, it refers to
a (countable) language in which there is a logical constant for every
element in [0, 1]Q. In spite of that, this corollary holds true also if we
refer to a language whose unique logical constants are 0 and 1.

Corollary 7.15. Let L∗
Ł be the Łukasiewicz logic with evaluated syn-

tax in a language with only the constants 0 and 1. Then the related
logical consequence operator D∗

Ł is computable. Consequently, this logic
is effectively axiomatizable and the fuzzy subset of tautologies is semi-
decidable.

Proof. Taking in account the coincidence of the class of interpretations
in the two logics, we have that D∗

Ł is the restriction of DŁ to the fuzzy
subsets of formulas in L∗

Ł, i.e., the set of formulas whose unique constants
are 0 and 1. Then D∗

Ł is computable.

My hypothesis is that a large part of the negative results on decid-
ability for fuzzy logic cannot be proved if one accepts the limit-based
definition of decidability.

8. Further criticisms

The answers to the criticisms on compactness and effectiveness in both
the U -approach and in the G-approach are correct from a technical point
of view, obviously. Nevertheless, we can consider these answers satisfac-
tory only if we admit that the related apparatus is adequate to formalize
the phenomenon we are interested in: the human everyday rational ac-
tivity in which the vagueness is constantly involved. As in the case of
Church Thesis, a definitive verdict on this question is not possible, dif-
ferently from Church Thesis, there are again several arguments against
this adequateness. In the following subsections we list some of them.

8.1. Criticisms of the ungraded approach

C1. The standard semantics has difficulties with the completeness the-

orem. Indeed, the unique possible completeness theorem is for a logic
in which ∗ is the minimum. Now, while the resulting logic is interesting
from a mathematical point of view, it looks to be inadequate to rep-
resent the vagueness phenomenon. For example, it is not able to face
the heap paradox. Moreover, it is not able to express the transitivity of
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basic binary vague relations as “to be close”, “to be similar” and so on.
This is in contrast with our intuition suggesting that some kind of weak
transitivity holds true for these relations.

C2. The general semantics is not intuitive. The general semantics en-
able us to have a satisfactory completeness theorem for a large class of
triangular norms. Unfortunately, this is obtained by involving the class
Var(∗) in which there are too many unusual structures. In contrast, the
notion of vagueness is strictly connected with the idea of the continuum
and this idea is universally modelled by the set of real numbers.

C3. The general semantics is not connected with the actual applications

of fuzzy set theory. Indeed, far as I am aware, in these applications
there is no presence of structures whose domain is different from [0, 1].
This departure from the existing technique of fuzzy logic should not
be underestimated. In fact, the task of a logic is to give a rigorous
justification the existing activities and not to invent a semantics ad hoc
to obtain a completeness theorem.

C4. Unsafe interpretations. The simple examples of fuzzy interpreta-
tions M2 and M3 in Section 3 allow to highlighting further difficulties.
Indeed, we have that every time a model interpreted in [0, 1] admits a
predicate α such that ∃xi(α) holds true without a witness, this model is
safe if considered in [0, 1] and becomes unsafe if it is considered in a non-
standard extension of [0, 1]. This is not in contrast with the completeness
theorem, obviously, but is rather disturbing. Indeed, there is something
wrong in the fact that the valuation of a formula in an interpretation
depends on the choice of the valuation structure and not on the intrinsic
nature of the interpretation. Again, in referring to Var(∗), we have
to handle valuation algebras which are not complete and, consequently,
we have to exclude unsafe valuations. Are we authorized to make this
exclusion? If we admit non-standard truth values, then there is not a
reason to exclude a rather natural interpretation as M3. Again
• there is a way to decide in advance whether an interpretation origi-

nates a safe interpretation or not?

C5. The questionable meaning of the completeness theorem. I have some
doubts about the meaning of the completeness theorem for the general
semantics. For example, once we consider the very simple structure M1 in
Section 3, we aspect the possibility of deducing from T a simple formula
as ∃x(Close(x)). Now, M4 is a safe model of T in which ∃x(Close(x)) is
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not satisfied. So, since T |=Var(∗) ∃x(Close(x)) does not hold, no proof
of this formula exists. On the other hand, in accordance with Pelletier
criticisms related to the compactness, a deduction apparatus cannot exist
able to prove this formula from T . Indeed, every finite part of T admits
a model in which ∃x(Close(x)) assumes a value different from 1.

Instead, observe that in the G-approach, it is possible to substitute T
by the fuzzy theory τ defined by setting τ(C(Pi)) = q(i), for every i ∈ N
and by admitting the formulas α(x/t) → ∃x α(x) as logic axioms, where
t is a closed term. Once we admit a graded modus ponens as inference
rule, from C(Pi) and C(Pi) → ∃x(Close(x)) we obtain ∃x(Close(x)) at
degree q(i). So, in accordance with (†) of Definition 4.6, we are able to
prove ∃x(Close(x)) at degree sup{q(i) : i ∈ N} = 1.

C6. Approximate reasoning. What’s new in fuzzy logic (with respect
to the tradition of multi-valued logic) is the acceptance of approximate
reasonings as in Goguen’s solution of Heap paradox. In these reasonings
the available information is not necessarily a crisp set and the conclusions
are not necessarily at degree 1.

C7. The presence of a logical constant for every rational number in [0, 1].
This presence is unnatural since no one adopts in its language sentences
as 3/4 or small(c) → 3/4 or more complex formulas as (small(c) →
3/4) → 6/7. On the other hand, in the U -approach this presence is a
necessary one since the absence of rational constants in the language
entails that no vague predicate can be managed.

8.2. Criticisms of both the approaches

The G-approach avoids the above criticisms in my opinion. Mainly, it
shows that also in the case the valuation structure is fixed and the truth
values are real numbers, a logic with a related completeness theorem is
possible and that reasonable properties of compactness and effectiveness
are obtainable. In addition, it enables us to give a notion of approx-
imate reasoning which is very important from a philosophical point of
view. It is also important for applications, as an example for fuzzy
logic programming [see Vojtáš, 2001] and fuzzy control once we observe
that fuzzy control is only an example of an application of fuzzy logic
programming [see Gerla, 2005]. I quote also fuzzy equational and impli-
cational logics, see [Belohlavek, 2002; Belohlavek and Vychodil, 2005] as
further fragments of Pavelka-style predicate fuzzy logics and a logic of
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dependencies in data with fuzzy attributes [see Belohlavek and Vychodil,
2005, 2015].

Unfortunately, there are criticisms of both the approaches. The first
two are related to the truth-functionality.

C8. Difficulties for the truth-functionality: the connectives. The lin-
guists claim that there is empirical evidence against truth-functionality
in fuzzy logic. For example, U. Sauerland claims:

When I started interacting with logicians, I was surprised to learn that
fuzzy logic is still a big and active field of basic research. This surprise
stemmed from my experience with fuzzy logic in my own field, linguistic
semantics: In semantics, fuzzy logic . . . has been regarded as unsuitable
for the analysis of language meaning at least since the influential work
of Kamp in 1975. [Sauerland, 2011]

Namely, Sauerland emphasizes that a large series of experiments show
that a claim as “Luise is both tall and not tall” sounds not as nonsensical
as in classical logic. Indeed, a high percentage of people interpret this
claim as a way to communicate that we are in presence of a borderline
case. This means that it is not excluded at all that a formula as A ∧ ¬A
assumes the value 1 and this contrasts with the formalizations proposed
by the main fuzzy logics. Indeed, assume that in a fuzzy logic this
formula assumes value 1, and therefore that there is λ ∈ [0, 1] such that
λ ∗ ∼ λ = 1, where ∗ and ∼ are the operations interpreting ∧ and ¬,
respectively. Then, since it is easy to prove that λ ∗ µ ≤ min{λ, µ},
we have that min{λ, ∼ λ} ≥ λ ∗ ∼ λ ≥ 1 and therefore that λ = 1 and
∼ λ = 1 and this is impossible.

C9. Further difficulties for the truth-functionality: the quantifiers. The
interpretation of the existential quantifier is questionable from an onto-
logical point of view. Indeed, the validity of a formula as ∃xC(x) does
not imply the existence of an element in which C is satisfied at degree 1
(see Example 2 in Section 3). In other words, it is possible to claim
the existence of non-existent objects. This phenomenon, which is well-
known in literature, and it is rather far from the meaning of the word
“existence” in a natural language.

C10. Information arising from the structure of a formula. A further crit-
icism is related to the way the information on the truth value of the for-
mulas is stored. In classical logic we can obtain information arising from
the structure of the formulas. This is obtained by the notion of tautology
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and the one of contradiction. In fuzzy logic there are difficulties to make
this. For example, consider a propositional logic in [0, 1] in which the
unique rational constants are 0 and 1, ∗ is the minimum and the negation
is interpreted by the function 1 − x. Then, given any formula α whose
propositional variable are among p1, . . . , pn the associated interpretation
tα(x1, . . . , xn) has 0.5 as a fixed point, i.e., tα(0.5, . . . , 0.5) = 0.5. This
means that in the U -approach no tautology or contradiction exists. In
the G-approach Tau(p ∨ ¬p) = 0.5, i.e., p ∨ ¬p is a tautology at degree
0.5 while Tau(p ∧ ¬p) = 0 and this gives no information on p ∧ ¬p. This
is unsatisfactory since the structure of p ∨ ¬p (of p ∧ ¬p) enables us to
claim that this formula satisfies the constraint [0.5, 1] (the constraint
[0, 1 0.5]). Obviously, in the case the logical constant 0.5 is admitted, we
can express such a kind of information by claiming that of 0.5 → p ∨ ¬p
and p ∧ ¬p → 0.5 are tautologies. This suggests to extend fuzzy logic
in such a way that constraints as “the truth value of α is between 0.4
and 0.6” are admitted [see the attempts in Carotenuto and Gerla, 2013;
Genito and Gerla, 2014].

C11. The lack of flexibility. Both the approaches are not sufficiently
flexible and this makes the existing formalizations of fuzzy logic incom-
patible with the role played by the vagueness in our language. This role
refers to concepts as “negotiation”, “learning”, “tuning”, “testing” as
fuzzy control shows.

For example, in the G-approach one admits a fuzzy subset of hypothe-
ses and therefore precise lower-bound constraints to the truth value of
the formulas while it should more natural to assign fuzzy interval con-
straints. A lack of flexibility is also apparent in the proposed notion of
fuzzy model of a fuzzy theory which is based on Zadeh’s crisp inclusion.
Indeed, let m be a fuzzy model of a fuzzy theory τ . It is evident that both
the assignments defined by m and τ cannot be considered definitive and
precise. This since m depends on the subjective modeling of the vague
predicates and τ depends on the subjective valuation of the truth degree
of the formulas. Now assume that either m or τ is subject to a slight
variation as a consequence of a tuning process, an essential component
in all the applications in fuzzy mathematics. Then it is possible that m
ceases completely to be a model of τ while it should be natural to expect
m is again a model of τ at some degree. This suggests that it should be
opportune to reformulate the notion of fuzzy model of a fuzzy theory by
substituting the crisp inclusion with a graded inclusion.
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9. Conclusions

My persuasion is that we are rather far from a satisfactory answer to the
question of formalizing the inferential processes in which vague notions
are involved. This in spite of the increasing number of mathematically
sophisticated papers devoted to this enterprise. In this regard I share
the following opinion expressed by Belohavek who, by referring mainly
to the U -approach, says:

most of these contributions were in fact developing systems of many-
valued logic which were, however mathematically sophisticated, some-
what sterile. [Belohlavek, 2015]

Indeed I am convinced that the main difficulties will be resolved by
redefining in a more flexible way the basic formalisms and by abandoning
some taboo of Hilbert approach to logic. An example is the Turing’s
notion of computability and the compactness notion. At this purpose
the ideas expressed by M. E. Tabacchi and S. Termini look to be rather
interesting. Indeed, in [Tabacchi and Termini, 2017b] one claims that:

what we are heralding here is that for truly understanding the notion
of reasoning, we must have a completely new start, not an adaptation
of the technical results of classical mathematical logic. The crucial
points of the latter are not motivated by genuine general aspects of the
informal notion of reasoning. Its agenda was different, and was different
since it was dictated by the needs of Hilbert program [. . . ]. The same
can be said also for ‘fuzzy mathematical logic‘ which has modelled itself
on the same standards of classical mathematical logic.

and again

If in a conceptual and programmatic scheme in which there was the
hope to reduce semantics to (finitary) syntax the two central notions
to control and develop were rightly coherence and completeness, what
role can they play in a context in which, uncertainty and imprecision
play not only central but also an unavoidable one? At the moment,
we can only say that coherence and completeness become surely less
important, and certainly not crucial.

We cannot even exclude that the research for a general theory is an
impossible task and that we have to be satisfied in fragments of fuzzy
logic able to formalize processes in which, for example, the involved
pieces of information are not too complicate (a local approach, in a
sense).
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More in general, perhaps vagueness entails a semantics in which,
differently from Tarski’s paradigm, notions as:

“linguistic game”, “logic game”, “evolutionary meaning”, “negotiation”,
“distance between models”, “flexibility”, “learning”, “tuning”

play a crucial role.

On the other hand, it is not only for technical reasons that these
notions are present in all the applications of fuzzy logic and, in particular,
in fuzzy control. Again, I quote Hájek:

I (very fuzzily) imagine a conversation as a game [. . . ] in which both my
and your meaning of fuzzy words may change: the cooperative conversa-
tion may (possibly) be imagined as a kind of ‘tuning‘ the characteristic
functions of fuzzy sets involved. By the way, tuning the characteristic
functions is a very important part of building a fuzzy controller: here
the good semantics is that which makes the controller to behave well.

Question 7: How do we communicate? in [Hájek, 1999]

Concluding, I agree with Trillas’s idea for which:

[. . . ] fuzzy logic is, [. . . ] closer to an experimental science than to a
formal one. [Trillas, 2006]

Indeed, an experimental science starts from a provisional framework and
it is continuously open to amend or to change this framework in ac-
cordance with the results of new experiments. So people interested in
defining a formal system for a logic of vagueness have to spend their
energies not only for “hard technical work inside a well-known and es-
tablished formal framework”, but mainly for “the effort of constructing
an innovative formal framework” [Termini, 2002].
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