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ULTRAPRODUCT FOR QUANTUM STRUCTURES

Abstract. Quantum Kripke frames are certain quantum structures recently

introduced by Zhong. He has defined certain properties such as Existence

of Approximation and Superposition for these structures. In this paper, we

define the ultraproduct for the family of quantum Kripke frames and show

that the aforementioned properties are invariant under ultraproduct. In

this way we prove that the ultraproduct of each family of quantum Kripke

frames is also a quantum Kripke frame. We also show the same results for

other related quantum structures.
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1. Introduction

Quantum logic was born in 1936 in a joint paper by John von Neumann
and Garrett Birkhoff [3]. The aim of their work was to find the logical
structure of quantum mechanics. The logic of quantum experimental
propositions is different from classical logic. The differences are related
to the properties which connect meet and join in classical logic, especially
the distributive law. They gave an example to show that this law may
fail for propositions related to quantum mechanics. They replaced the
distributive law with a weak version of it which is called modular law.
In [11], Piron defined a special kind of lattice later called a Piron lattice
and proved a representation theorem for them via generalized Hilbert
spaces. The quantum dynamic frame is the other important kind of
quantum structure which was proposed in [1]. In [2], a categorical duality
between quantum dynamic frames and Piron lattices was shown. In a

Received March 14, 2017. Revised January 16, 2018. Published online February 26, 2018

© 2018 by Nicolaus Copernicus University in Toruń

http://dx.doi.org/10.12775/LLP.2018.005


158 Morteza Moniri and Elahe Shirinkalam

quantum dynamic frame, each state corresponds to a one-dimentional
subspace of a fixed Hilbert space and the transitions between states are
modelled by binary relations.

A Kripke frame is a set equipped with a binary relation (to be referred
to later as the “non-orthogonality relation”) on it. In [12], Zhong intro-
duced special Kripke frames to study quantum phenomena. He chose
the non-orthogonality relation as a primitive notion. Then he defined
the orthogonality relation and indistinguishability relation in terms of
the non-orthogonality relation. Next, by defining notions such as ortho-
complement and bi-orthogonally closed subsets, he introduced five kinds
of special Kripke frames relating to quantum logic: state space, geomet-
ric frame, complete geometric frame, quasi-quantum Kripke frame and
quantum Kripke frame. He showed that there is a categorical duality
between quantum dynamic frames and quantum Kripke frames.

In 2017, Zhong published [13] in which he showed that geometric
frames, irreducible geometric frames, complete geometric frames and
quantum Kripke frames correspond to pure orthogeometries (or, equiva-
lently, projective geometries with pure polarities), irreducible pure ortho-
geometries, Hilbertian geometries and irreducible Hilbertian geometries,
respectively. The discovery of these correspondences raises interesting
research topics and will enrich the study of quantum logic.

The simplicity of these structures and their power to model quantum
systems are the main reasons to research these structures. The main goal
of this paper is to study the ultraproduct for these Kripke frames. The
books [4] and [5] are standard references for this model theoretic con-
struction for Kripke frames in the context of modal logic with additional
pointers to how they are to be constructed for special modal logics. [7]
and [10] are also useful.

The structure of the paper is as follows.
In Section 2, we recall the definition of the properties reflexivity, sym-

metry, separation, AL, AH, A and superposition, (see [1, 12]). Next, the
definition of state spaces, quantum Kripke frames and other structures
related to these properties are reviewed.

In Section 3, we recall the definition of the ultraproduct of a family
of Kripke frames. The obvious result is that this ultraproduct preserves
the properties of symmetry, reflexivity, separation, AL, AH and super-
position since they are first-order definable properties.

In Section 4, the main result is that the ultraproduct of each family of
quantum Kripke frames is a quantum Kripke frame. To do this, we show
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that the property A is preserved under ultraproduct. Finally, we state
Łós’s theorem for this product. For more details regarding ultrafilters
and ultraproducts, [4, 5, 6, 9] are useful references.

2. Some background

In this section we review the definitions of special Kripke frames such as
a quantum Kripke frame and a state space. We also recall some of their
basic properties. The main reference is [12].

Definition 2.1 (Kripke frame). A Kripke frame is a tuple F = (Σ, →)
such that Σ is a non-empty set (of states) and → ⊆ Σ × Σ is a binary
relation.

Below we give some terminology and notations concerning a Kripke
frame F = (Σ, →), (see [1] and [12]).

• Non-orthogonality relation: if (s, t) ∈ →, we write s → t and we say
that s and t are non-orthogonal.

• Orthogonality relation: if s 9 t, i.e., s → t does not hold, then we
say that s and t are orthogonal and write s ⊥ t.

• For each P ⊆ Σ, we define the orthocomplement of P as P ⊥ := {t ∈
Σ : ∀s ∈ P, s 9 t}.

• The set LF = {P ⊆ Σ : P = (P ⊥)⊥} is the set of all bi-orthogonally
closed subsets of Σ.

• Two states s, t ∈ Σ are indistinguishable with respect to P ⊆ Σ,
denoted by s ≈P t, if s → x if and only if t → x for every x ∈ P .

• The state t ∈ Σ is an approximation of s ∈ Σ in P ⊆ Σ, if t ∈ P and
s ≈P t.

Remark 2.2. Here are some obvious properties of the indistinguishability
relation, see [12, 2.1.2].

• For each P ⊆ Σ, ≈P is an equivalence relation on Σ.
• We have ≈∅ = Σ × Σ.
• If P ⊆ Q ⊆ Σ then ≈Q ⊆ ≈P .

Here are some conditions on Kripke frames studied in [12] that we
will be concerned with throughout this paper.

Definition 2.3. Let F = (Σ, →) be a Kripke frame. Some properties
F may have are as follows.
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• Reflexivity: for each s ∈ Σ, s → s.
• Symmetry: for each s, t ∈ Σ, s → t implies t → s.
• Separation: for each s, t ∈ Σ, if s 6= t then there exists a w ∈ Σ such

that w → s and w 9 t.
• Existence of Approximation for Lines (AL): for any s, t ∈ Σ, if w ∈

Σ \ {s, t}⊥, then there is a w′ which is an approximation of w in
{s, t}⊥⊥, i.e., w′ ∈ P = {s, t}⊥⊥ and w ≈P w′.

• Existence of Approximation for Hyperplanes (AH): for any s ∈ Σ, if
w ∈ Σ \ {s}⊥⊥, then there is a w′ which is an approximation of w in
{s}⊥, i.e., w′ ∈ P = {s}⊥ and w ≈P w′.

• Existence of Approximation (A): for any P ⊆ Σ, if P = P ⊥⊥ and
w ∈ Σ \ P ⊥ then there is a w′ which is an approximation of w in P ,
i.e., w′ ∈ P and w ≈P w′.

• Superposition: for each s, t ∈ Σ, there exists a w ∈ Σ such that w → s
and w → t.

Below, some special Kripke frames satisfying certain conditions men-
tioned above are defined. Some of them were first introduced and studied
in [12].

Definition 2.4 (State space). A Kripke frame F = (Σ, →) which satis-
fies Reflexivity, Symmetry, and Separation is called a state space.

Definition 2.5. Let F = (Σ, →) be a Kripke frame. Some important
special Kripke frames are the following.

• A geometric frame is a state space satisfying properties AL and AH.
• A complete geometric frame is a state space satisfying property A.
• A quasi-quantum Kripke frame is a state space satisfying properties

AL, AH and superposition.
• A quantum Kripke frame is a state space satisfying properties A and

superposition.

We have the following two facts (see propositions 2.2.1 and 2.2.4 in
[12]).

Proposition 2.6. For each state space F = (Σ, →), we have the follow-

ing properties.

• For each A, B ⊆ Σ, if A ⊆ B then B⊥ ⊆ A⊥.

• For each A ⊆ Σ, the set A⊥ is bi-orthogonally closed.

• For each A ⊆ Σ, A ⊆ A⊥⊥.

• For each A ⊆ Σ, A ∩ A⊥ = ∅.
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Proposition 2.7. In every state space F = (Σ, →), the property A

implies both properties AL and AH. In the other words, every complete

geometric frame is a geometric frame, and every quantum Kripke frame

is a quasi-quantum Kripke frame.

In the rest of this section, we recall the definition of a Quantum
Dynamic Frame (QDF) and its relation to the definition of a quantum
Kripke frame (see [1, 2]).

Definition 2.8 (Dynamic frame). A dynamic frame is an ordered triple

F = (Σ, L, {
P ?
−−→}P ∈L) where

(1) Σ is a set (interpreted as the set of states),
(2) L ⊆ P(Σ) (the power set of Σ) and for each P ∈ L (called a testable

property),
P ?
−−→⊆ Σ × Σ is a binary relation.

Let F = (Σ, L, {
P ?
−−→}P ∈L) be a dynamic frame. To define QDF, we

need the following definitions and notations.

• Non-orthogonality relation →: s → t if and only if there exists a

P ∈ L such that s
P ?
−−→ t.

• Orthogonality relation ⊥: We have ⊥= (Σ × Σ)\ →. If (s, t) ∈⊥, we
write s ⊥ t or s 9 t.

• For each A ⊆ Σ, the orthocomplementation of A is defined as A⊥ =
{s ∈ Σ : s⊥t, ∀t ∈ A}.

• Bi-orthogonal closure of A is defined as (A⊥)⊥ = A⊥⊥. If A = A⊥⊥,
we say that A is bi-orthogonally closed.

Definition 2.9 ([2, Definition 2.7]). A QDF is a dynamic frame F
which satisfies the following conditions. For any P ∈ L and s, t, v, w ∈ Σ:

(1) Closure under arbitrary conjunction: if L′ ⊆ L then
⋂

L′ ∈ L.
(2) Atomicity: states are testable, i.e., for each state s ∈ Σ, {s} ∈ L.
(3) Closure under orthocomplementation: if P ∈ L then P ⊥ ∈ L.

(4) Adequacy: if s ∈ P then s
P ?
−−→ s.

(5) Repeatability: any property holds after it has been successfully

tested, i.e., if s
P ?
−−→ t then t ∈ P .

(6) Proper superposition: every two states can be properly superposed
into a new state, i.e., for each s, t ∈ Σ there exists w ∈ Σ such that
s → w → t.
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(7) Self-Adjointness: if s
P ?
−−→ w → t, then there exists some element

v ∈ Σ such that t
P ?
−−→ v → s.

(8) Covering law: if s
P ?
−−→ w and t ∈ P such that w 6= t, then there

exists some v ∈ P such that t → v 9 s.

The following theorem, which gives a close relationship between quantum
Kripke frames and quantum dynamic frames, is proved in [12, 2.7.25]

Theorem 2.10. We have the following.

• For every quantum Kripke frame F = (Σ, →), X(F ) = (Σ, LF , {
P ?
−−→

}P ∈LF
) is a quantum dynamic frame where LF is the set of all bi-

orthogonally closed subsets of Σ and for every P ∈ LF ,
P ?
−−→⊆ Σ × Σ

is such that for any s, t ∈ Σ, s
P ?
−−→ t if and only if t ∈ P and s ≈P t.

• For each quantum dynamic frame F = (Σ, L, {
P ?
−−→}P ∈L), the struc-

ture Y (F ) = (Σ, →) is a quantum Kripke frame, where → is a binary

relation on Σ defined by: s → t if and only if s
P ?
−−→ t, for some P ∈ L.

3. Ultraproduct for quantum structures

In this section we review the definition of ultraproduct for Kripke struc-
tures and show that preserves symmetry, reflexivity, separation, AL, AH
and superposition.

Definition 3.1 (Ultraproduct of a family of Kripke frames).
Let {Fi = (Σi, →i)}i∈I be a family of Kripke frames, U be an ultrafilter
over I (a set of indexes), and

∏
i∈I Σi = {f : I →

⋃
Σi| f(i) ∈ Σi} be

the Cartesian product of {Σi}i∈I . For each two functions f and g, we
say that f and g are U -equivalent if {i ∈ I : f(i) = g(i)} ∈ U . The
ultraproduct

∏
U Fi of {Fi}i∈I modulo U is the frame

∏
U Fi = (ΣU , →)

such that

• The universe ΣU of
∏

U Fi is the set ΣU =
∏

U Σi = {⌈f⌉ : f ∈
∏

i∈I Σi}, i.e., the set of U - equivalence classes.
• → on ΣU is defined by: ⌈f⌉ → ⌈g⌉ if and only if {i ∈ I : f(i) →i

g(i)} ∈ U .

Note. For each family {Pi ⊆ Σi : i ∈ I}, we define
∏

U Pi := {⌈g⌉ : {i ∈
I : g(i) ∈ Pi} ∈ U}. We show that these sets are bi-orthogonally closed
(Corollary 3.3). This result shows how we can reach a bi-orthogonally
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closed set in the ultraproduct frame
∏

U Fi = (ΣU , →) from a family of
bi-orthogonally closed sets {Pi ∈ LFi

}i∈I .

We define orthogonality relation and bi-orthogonal closure of a subset
of ΣU as follows:

• Orthogonality relation: ⌈f⌉ ⊥ ⌈g⌉ if and only if {i ∈ I : f(i) ⊥i

g(i)} ∈ U .
We shall use henceforth the same symbol ⊥ for showing the orthog-
onality relation between two states in all models Fi and

∏
U Fi.

• The bi-orthogonal closure of each subset SU ⊆ ΣU is defined as
(SU)⊥⊥ = ((SU)⊥)⊥ where

(SU)⊥ = {⌈f⌉ : ∀⌈g⌉ ∈ SU , ⌈f⌉ ⊥ ⌈g⌉}.

By LU
F , we denote the set of all bi-orthogonally closed subsets of

∏
U Fi.

Lemma 3.2. Let Pi ⊆ Σi, for each i ∈ I. Then (
∏

U Pi)
⊥ =

∏
U(P ⊥

i ).

Proof. First we show that (
∏

U Pi)
⊥ ⊆

∏
U(P ⊥

i ). Let ⌈f⌉ ∈ (
∏

U Pi)
⊥.

If ⌈f⌉ /∈
∏

U(P ⊥
i ) then A = {i ∈ I : f(i) ∈ P ⊥

i }c ∈ U . So for each
i ∈ A, there exists an ri ∈ Pi such that f(i) →i ri. Let g : I →

⋃
Σi be

a function such that g(i) = ri for each i ∈ A. Therefore there exists a
⌈g⌉ ∈

∏
U Pi such that {i ∈ I : f(i) →i g(i)} ∈ U . This is a contradiction.

Therefore ⌈f⌉ ∈
∏

U (P ⊥
i ).

Now we show that
∏

U(P ⊥
i ) ⊆ (

∏
U Pi)

⊥. Let ⌈f⌉ ∈
∏

U(P ⊥
i ) and

⌈g⌉ ∈
∏

U Pi.

So A = {i ∈ I : f(i) ∈ P ⊥
i } ∈ U and B = {i ∈ I : g(i) ∈ Pi} ∈ U .

Therefore for each i ∈ A ∩ B, f(i) 9i g(i). So ⌈f⌉ 9 ⌈g⌉. Therefore
⌈f⌉ ∈ (

∏
U Pi)

⊥. ⊣

Corollary 3.3. For each family of bi-orthogonally closed sets {Pi ∈
LFi

}i∈I , the set
∏

U Pi is a bi-orthogonally closed set (so
∏

U Pi belongs

to LU
F ).

Kripke frames can be viewed as first-order relational structures with one
binary relation. The conditions reflexivity, symmetry, separation, AL,
AH and superposition are also first-order properties and hence by Łós’s
theorem, they are preserved under ultraproduct (see, e.g., [6, 9]). So we
have the following theorem immediately. We will only give a proof of
one part of the theorem directly.
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Theorem 3.4. Let {Fi = (Σi, →i)}i∈I be a family of Kripke frames and
∏

U Fi = (ΣU , →) be the ultraproduct of them. Then

(1) If for each i ∈ I, Fi is reflexive, then
∏

U Fi is reflexive.

(2) If for each i ∈ I, Fi is symmetric, then
∏

U Fi is symmetric.

(3) If for each i ∈ I, Fi is separated, then
∏

U Fi is separated.

(4) If for each i ∈ I, Fi has the property AL, then
∏

U Fi has the property

AL.

(5) If for each i ∈ I, Fi has the property AH, then
∏

U Fi has the

property AH.

(6) If for each i ∈ I, Fi has the property of superposition, then
∏

U Fi

has the property of superposition.

Proof. We just give the proof of part 4. Let ⌈f⌉, ⌈g⌉ ∈ ΣU and ⌈h⌉ /∈
{⌈f⌉, ⌈g⌉}⊥. So ⌈h⌉ /∈ {⌈f⌉}⊥ or ⌈h⌉ /∈ {⌈g⌉}⊥. If ⌈h⌉ /∈ {⌈f⌉}⊥ then
A = {i ∈ I : h(i) →i f(i)} ∈ U . For each i ∈ A, h(i) /∈ {f(i), g(i)}⊥

and Kripke frame Fi that has the property AL there exists an ri ∈
{f(i), g(i)}⊥⊥ such that for each si ∈ {f(i), g(i)}⊥⊥, h(i) → si if and
only if ri → si. We define the function r : I →

⋃
Σi such that for each

i ∈ A, r(i) = ri. For each ⌈t⌉ ∈ {⌈f⌉, ⌈g⌉}⊥ , we have {i ∈ I : t(i) ∈
{f(i), g(i)}⊥} ∈ U . Since {i ∈ I : r(i) ∈ {f(i), g(i)}⊥⊥} ∈ U , we can
conclude that ⌈r⌉ ⊥ ⌈t⌉. So ⌈r⌉ ∈ {⌈f⌉, ⌈g⌉}⊥⊥ . Now we show that for
each ⌈s⌉ ∈ {⌈f⌉, ⌈g⌉}⊥⊥, ⌈r⌉ → ⌈s⌉ if and only if ⌈h⌉ → ⌈s⌉.

If ⌈s⌉ ∈ {⌈f⌉, ⌈g⌉}⊥⊥, then C = {i ∈ I : s(i) ∈ {f(i), g(i)}⊥⊥} ∈ U .
If ⌈r⌉ → ⌈s⌉, then B = {i ∈ I : r(i) →i s(i)} ∈ U . So for each

i ∈ A ∩ B ∩ C, h(i) →i s(i). So ⌈h⌉ → ⌈s⌉. In the same way we can see
that if ⌈h⌉ → ⌈s⌉, then ⌈r⌉ → ⌈s⌉. ⊣

Corollary 3.5. We have the following results.

(1) If for each i ∈ I, Fi is a state space, then
∏

U Fi is a state space.

(2) If for each i ∈ I, Fi is a geometric frame, then
∏

U Fi is a geometric

frame.

(3) If for each i ∈ I, Fi is a complete geometric frame, then
∏

U Fi is a

complete geometric frame.

(4) If for each i ∈ I, Fi is a quasi-quantum Kripke frame, then
∏

U Fi is

a quasi-quantum Kripke frame.
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4. Ultraproduct of Quantum Kripke frames

In this section we show that the ultraproduct of each family of quantum
Kripke frames is a quantum Kripke frame. To do this, using Theorem 3.4,
it is enough to show that the property A is preserved under ultraproduct.
First we need some preliminaries from [8].

Let ⊥ be a binary relation on a non-empty set S. For A ⊆ S, we
define A⊥ = {y ∈ S : x ⊥ y, for all x ∈ A}. If A = {x}, then we write
x⊥ for A⊥.

Definition 4.1. Let S be non-empty set and ⊥ be a symmetric relation
on S. The relational structure (S, ⊥) is an orthogonality space if satisfies
the following conditions:

(1) For each x ∈ S, x ⊥ x implies x ⊥ y, for every y ∈ S,
(2) For each x, y ∈ S , if y /∈ S⊥ and x⊥ ⊆ y⊥, then x⊥ = y⊥.

Definition 4.2. Let S be non-empty set and ⊥ be a symmetric relation
on S.

• By L(S, ⊥), we denote the set of all bi-orthogonally closed subsets of
S, i.e., we have L(S, ⊥) = {A ⊆ S : A = A⊥⊥}.

• By K(S, ⊥), we denote the set of all linear subsets of S, i.e., we have
K(S, ⊥) = {A ⊆ S : ∀x, y ∈ A; {x, y}⊥⊥ ⊆ A}.

The following theorem is immediate from Proposition 2.2.1 of [12].

Theorem 4.3. Let (Σ, →) be a state space. Then (Σ, ⊥) is an orthogo-

nality space.

Definition 4.4. Let L = (L, ≤) be a partially ordered set with a top I
and a bottom O. An orthocomplementation on L is a function (.)′ : L →
L such that the following conditions hold:

(i) for every P ∈ L, P ∨ P ′ = I and P ∧ P ′ = O;
(ii) for every P, Q ∈ L, P ≤ Q implies that Q′ ≤ P ′;

(iii) for every P ∈ L, P = P ′′.

Definition 4.5. An orthocomplemented lattice is an algebra L = (L, ∧,
∨,′ , 0, 1) such that L = (L, ∨, ∧, 0, 1) is a bounded lattice and ′ is an
orthocomplementation.

Here, we bring Proposition 2.2.3 of [12].
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Proposition 4.6. Let F = (Σ, →) be a state space. Then the set LF

of all bi-orthogonally closed subsets of F forms a complete atomistic

orthocomplemented lattice with ⊆ as the partial order and ∼(.) : LF →
LF as the orthocomplementation. In particular,

(1) For every {Pi : i ∈ I} ⊆ LF ,
⋂

i∈I Pi is bi-orthogonally closed and

is the greatest lower bound, or the meet, of {Pi : i ∈ I}.

(2) For each s ∈ Σ, {s} is bi-orthogonally closed, and is the atom of this

lattice.

(3) For {Pi : i ∈ I} ⊆ LF ,
∨

i∈I Pi :=
⋂

{Q ∈ LF : Pi ⊆ Q for each

i ∈ I} is bi-orthogonally closed and is the least upper bound, or the

join, of {Pi : i ∈ I}.

(4) For every P ∈ LF , P =
∨

{{s} ∈ LF : s ∈ P}.

(5) For each P ∈ LF , ∼ ∼ P = P .

(6) For any P, Q ∈ LF , P ⊆ Q implies that ∼ Q ⊆ ∼ P .

(7) For each P ∈ LF , P ∧ ∼ P = ∅ and P ∨ ∼ P = Σ.

(8) De Morgan’s laws hold, i.e.,
⋂

i∈I ∼ Pi = ∼
∨

i∈I Pi and
∨

i∈I ∼ Pi =
∼

⋂
i∈I Pi for every {Pi : i ∈ I} ⊆ LF .

In the rest of this section we assume that {Fi = (Σi, →i)}i∈I is a
family of quantum Kripke frames and

∏
U Fi = (ΣU , →) is its ultraprod-

uct with respect to an ultrafilter U . Since this product is a state space
(Corollary 3.5), we have the following result.

Corollary 4.7. The lattice (LU
F , ∧, ∨,⊥ , ∅, ΣU) where P ∧ Q := P ∩

Q, P ∨ Q := (P ∪ Q)⊥⊥, for P, Q ∈ LU
F , is orthocomplemented and

satisfies all the properties mentioned in Proposition 4.6.

Note. In [8], the authors mentioned the following two conditions.

(∗) For each x ∈ S, x 6⊥ x.
(∗∗) If x, y ∈ S, then x⊥ ⊆ y⊥ implies x = y.

The following theorem is immediate from Proposition 2.2.1 of [12].

Theorem 4.8. Let (Σ, →) be a state space. Then (Σ, ⊥) satisfies con-

ditions (∗) and (∗∗).

We now state some parts of the Theorem 2.2 of [8] that we will need.

Theorem 4.9. Let (S, ⊥) be an orthogonality space satisfying (∗) and

(∗∗). Then the following conditions are equivalent.
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(i) L(S, ⊥) satisfies the covering law, i.e., for each y ∈ L(S, ⊥) and

atom x ∈ L(S, ⊥), if x ∧ y = ∅ then x ∨ y covers y which means

that for each z ∈ L(S, ⊥) such that y ⊆ z ⊆ x ∨ y, we have y = z
or x ∨ y = z. If x covers ∅, we call it an atom.

(ii) (S, ⊥) satisfies the condition of 3-minimal dependence, i.e., for each

x, x1, x2, x3 ∈ S such that x ∈ {x1, x2, x3}⊥⊥ and for each u, v ∈
{x1, x2, x3}, if x /∈ {u, v}⊥⊥ then {x, x1}⊥⊥ ∩ {x2, x3}⊥⊥ 6= ∅.

(iii) K(S, ⊥) is modular, i.e., for each x, y, z ∈ K(S, ⊥), if z ⊆ y then

(x ∧ y) ∨ z = (x ∨ z) ∧ y.

As mentioned before, by LU
F , we mean the set of all bi-orthogonally

closed subsets of ΣU . Let KU
F be the set of linear subsets of ΣU , i.e.,

KU
F = {A ⊆ ΣU : ∀⌈f⌉, ⌈g⌉ ∈ A; {⌈f⌉, ⌈g⌉}⊥⊥ ⊆ A}. By using Theo-

rems 4.3, 4.8 and 4.9, we have the following result.

Proposition 4.10. The following conditions are equivalent.

(i) LU
F satisfies the covering law.

(ii)
∏

U Fi (with the relation ⊥) satisfies the condition of 3-minimal

dependence.

(iii) KU
F is modular.

Proposition 4.11. The structure
∏

U Fi satisfies the condition of 3-

minimal dependence.

Proof. Let ⌈f⌉, ⌈f1⌉, ⌈f2⌉, ⌈f3⌉ ∈ ΣU , ⌈f⌉ ∈ {⌈f1⌉, ⌈f2⌉, ⌈f3⌉}⊥⊥ and
for each ⌈g⌉, ⌈h⌉ ∈ {⌈f1⌉, ⌈f2⌉, ⌈f3⌉}, we have ⌈f⌉ /∈ {⌈g⌉, ⌈h⌉}⊥⊥. Then

• α = {i ∈ I : f(i) ∈ {f1(i), f2(i), f3(i)}⊥⊥} ∈ U .
• β = {i ∈ I : f(i) /∈ {f1(i), f2(i)}⊥⊥} ∈ U .
• γ = {i ∈ I : f(i) /∈ {f2(i), f3(i)}⊥⊥} ∈ U .
• δ = {i ∈ I : f(i) /∈ {f1(i), f3(i)}⊥⊥} ∈ U .

Let i ∈ α ∩ β ∩ γ ∩ δ be arbitrary. Since the frame Fi = (Σi, →i) is a
quantum Kripke frame so by Theorem 2.10, the set of all bi-orthogonally
closed subsets of Σi, i.e., LFi

, satisfies the covering law. By using Theo-
rems 4.3, 4.8 and 4.9, we conclude that each Fi = (Σi, →i) satisfies the
condition of 3-minimal dependence. So there exists ai ∈ {f(i), f1(i)}⊥⊥∩
{f2(i), f3(i)}⊥⊥. We define function a : I →

⋃
Σi such that for each

i ∈ α ∩ β ∩ γ ∩ δ, a(i) = ai.
Since α ∩ β ∩ γ ∩ δ ⊆ {i ∈ I : ai ∈ {f(i), f1(i)}⊥⊥ ∩ {f2(i), f3(i)}⊥⊥},

we have ⌈a⌉ ∈ {⌈f⌉, ⌈f1⌉}⊥⊥ ∩ {⌈f2⌉, ⌈f3⌉}⊥⊥. So {⌈f⌉, ⌈f1⌉}⊥⊥ ∩
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{⌈f2⌉, ⌈f3⌉}⊥⊥ 6= ∅. Therefore
∏

U Fi satisfies the condition of 3-minimal
dependence. ⊣

Theorem 4.12. The orthocomplemented lattice LU
F is orthomodular,

i.e., for each P, Q, R ∈ LU
F , if P ⊆ Q then P ∨ (P ⊥ ∧ Q) = Q.

Proof. By using Proposition 4.10 and Proposition 4.11, we conclude
that LU

F satisfies the covering law or equivalently that KU
F is modular.

Therefore LU
F is modular. So for each P, Q, R ∈ LU

F , if P ⊆ Q then
P ∨ (R ∧ Q) = (P ∨ R) ∧ Q. Let R = P ⊥. Since P ⊥ ∈ LU

F , we have

P ∨ (P ⊥ ∧ Q) = (P ∨ P ⊥) ∧ Q = ΣU ∧ Q = Q

So the orthocomplemented lattice LU
F is orthomodular. ⊣

Corollary 4.13. The frame
∏

U Fi = (ΣU , →) satisfies the following

two conditions.

• Exchange property: for each E ⊆ ΣU and ⌈f⌉, ⌈g⌉ ∈ ΣU if ⌈f⌉ ∈
(E ∨ {⌈g⌉}) \ E⊥⊥, then we have ⌈g⌉ ∈ (E ∨ {⌈f⌉}).

• Straightening property: for each E ⊆ ΣU and ⌈f⌉ ∈ ΣU if ⌈f⌉ /∈
E⊥⊥, there exists a ⌈g⌉ ∈ E⊥ such that ⌈f⌉ ∈ (E ∨ {⌈g⌉}).

Proof. First we establish the exchange property. Let E ⊆ ΣU and
⌈f⌉, ⌈g⌉ ∈ ΣU be arbitrary. If ⌈f⌉ ∈ (E ∨ {⌈g⌉}) \ E⊥⊥, then we show
that ⌈g⌉ ∈ (E ∨ {⌈f⌉}). If ⌈g⌉ ∈ E⊥⊥, since E⊥⊥ ⊆ (E ∨ {⌈f⌉}), we
have ⌈g⌉ ∈ (E ∨ {⌈f⌉}). If ⌈g⌉ /∈ E⊥⊥, then {⌈g⌉} ∩ E⊥⊥ = ∅. So by
Corollary 4.7 and the covering law for LU

F , (E⊥⊥ ∨ {⌈g⌉}) covers E⊥⊥.
Since ⌈f⌉ ∈ (E∨{⌈g⌉}), so (E∪{⌈f⌉}) ⊆ (E∨{⌈g⌉}) ⊆ (E⊥⊥∨{⌈g⌉}). So
(E ∨ {⌈f⌉}) ⊆ (E⊥⊥ ∨ {⌈g⌉}). Therefore we have E⊥⊥ ⊆ (E ∨ {⌈f⌉}) ⊆
(E⊥⊥ ∨ {⌈g⌉}). Since ⌈f⌉ /∈ E⊥⊥, we conclude that (E ∨ {⌈f⌉}) =
(E⊥⊥ ∨ {⌈g⌉}). So ⌈g⌉ ∈ (E ∨ {⌈f⌉}).

For the straightening property, let E ⊆ ΣU and ⌈f⌉ ∈ ΣU be arbitrary
such that ⌈f⌉ /∈ E⊥⊥. By the orthomodularity of LU

F , since E⊥⊥ ⊆
(E ∨ {⌈f⌉}) we conclude that E⊥⊥ ∨ (E⊥ ∩ (E ∨ {⌈f⌉})) = (E ∨ {⌈f⌉}).
If E⊥ ∩ (E ∨ {⌈f⌉}) = ∅, then E⊥⊥ = (E ∨ {⌈f⌉}). It is impossible
since ⌈f⌉ /∈ E⊥⊥. So there exists ⌈g⌉ ∈ E⊥ ∩ (E ∨ {⌈f⌉}). Since ⌈f⌉ /∈
E⊥⊥, by Corollary 4.7 and the covering law for LU

F , we conclude that
(E⊥⊥ ∨ {⌈f⌉}) covers E⊥⊥. Also we know that ⌈g⌉ ∈ (E ∨ {⌈f⌉}) and
(E ∨ {⌈f⌉}) ⊆ (E⊥⊥ ∨ {⌈f⌉}). So E⊥⊥ ⊆ (E ∨ {⌈g⌉}) ⊆ (E⊥⊥ ∨ {⌈f⌉}).
Since ⌈g⌉ ∈ E⊥, so ⌈g⌉ /∈ E⊥⊥.

Therefore (E ∨ {⌈g⌉}) = (E⊥⊥ ∨ {⌈f⌉}). So ⌈f⌉ ∈ (E ∨ {⌈g⌉}).
Therefore there exists a ⌈g⌉ ∈ E⊥ such that ⌈f⌉ ∈ (E ∨ {⌈g⌉}). ⊣
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Finally, by using the exchange and straightening properties, we show
that the ultraproduct frame satisfies the property A.

Theorem 4.14. Let {Fi = (Σi, →i)}i∈I be a family of quantum Kripke

frames. Then
∏

U Fi has the property A.

Proof. By Corollary 4.13,
∏

U Fi satisfies the exchange and straighten-
ing properties. Now let P be a bi-orthogonally closed set and ⌈f⌉ /∈ P ⊥

be arbitrary. If we define E⊥ = P , then ⌈f⌉ /∈ E⊥⊥.
By the straightening property, there exists ⌈g⌉ ∈ P such that ⌈f⌉ ∈

(E ∨ {⌈g⌉}). We show that ⌈f⌉ ≈P ⌈g⌉. Let ⌈r⌉ ∈ P = E⊥ be arbitrary.
We show ⌈g⌉ ⊥ ⌈r⌉ if and only if ⌈f⌉ ⊥ ⌈r⌉. Let ⌈g⌉ ⊥ ⌈r⌉ and ⌈f⌉ 6⊥
⌈r⌉. Since ⌈f⌉ ∈ (E ∨ {⌈g⌉}) we have (E ∪ {⌈g⌉})⊥ ⊆ {⌈f⌉}⊥. So
⌈r⌉ /∈ (E ∪ {⌈g⌉})⊥. This is a contradiction because we assumed that
⌈r⌉ ∈ (E ∪ {⌈g⌉})⊥. So ⌈f⌉ ⊥ ⌈r⌉.

Now, let ⌈f⌉ ⊥ ⌈r⌉ and ⌈g⌉ 6⊥ ⌈r⌉. Since ⌈f⌉ ∈ (E ∨{⌈g⌉}) \E⊥⊥, by
the exchange property we have ⌈g⌉ ∈ (E ∨ {⌈f⌉}). So (E ∪ {⌈f⌉})⊥ ⊆
{⌈g⌉}⊥. So ⌈r⌉ /∈ (E ∪ {⌈f⌉})⊥. This is a contradiction since ⌈r⌉ ∈
(E ∪ {⌈f⌉})⊥. So ⌈g⌉ ⊥ ⌈r⌉. ⊣

Corollary 4.15. If for each i ∈ I, Fi is a quantum Kripke frame, then
∏

U Fi is a quantum Kripke frame.

In the rest of this section, we use a modal language equipped with
conjunction and negation and a unary modal operator � which denotes
the non-orthogonality relation in quantum Kripke frames. One can de-
fine a Kripke model by adding an interpretation function ‖.‖ to a Kripke
frame F = (Σ, →). The same can be done to the other quantum struc-
tures studied in this paper. The last result of this section is Łós’s theorem
for the ultraproduct of a family of quantum Kripke frames. The proof
is similar to the one in the standard reference books on modal logic and
is omitted.

Definition 4.16. Let {Mi = (Σi, →i, ‖.‖i)}i∈I be a family of quantum
Kripke models. We add an interpretation function ‖.‖U to the Kripke
frame

∏
U Fi = (ΣU , →) as follows.

For each atomic proposition p,

⌈f⌉ ∈ ‖p‖U ⇔ {i ∈ I : f(i) ∈ ‖p‖i} ∈ U

For negation, conjunction and unary modal operator �, the definition is
as usual. We denote this new model by

∏
U Mi = (ΣU , →, ‖.‖U).
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Note. For convenience, we use the notation M, s � ϕ instead of s ∈ ‖ϕ‖
in the following.

Theorem 4.17 (Łoś’s Theorem). Let
∏

U Mi = (ΣU , →, ‖.‖U) be the

ultraproduct of a family of quantum Kripke models. For each formula

ϕ,
∏

U Mi, ⌈f⌉ � ϕ if and only if {i ∈ I : Mi, f(i) � ϕ} ∈ U .

Corollary 4.18. Let
∏

U M be the ultrapower of a of quantum Kripke

model M . For each formula ϕ, M, w � ϕ if and only if
∏

U M, ⌈fw⌉ � ϕ.

Here fw is the constant function such that for each i ∈ I, fw(i) = w.
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