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DOES THE IMPLICATION ELIMINATION RULE
NEED A MINOR PREMISE?

Abstract. The paper introduces NJ g , a variant of Gentzen’s NJ natural
deduction system, in which the implication elimination rule has no minor
premise. The NJ g-systems extends traditional ND-systems with a new
kind of action in derivations, assumption incorporation, a kind of dual to
the assumption discharge action. As a result, the implication (I/E)-rules
are invertible and, almost by definition, harmonious and stable, a major
condition imposed by proof-theoretic semantics on ND-systems to qual-
ify as meaning-conferring. There is also a proof-term assignment to NJ g-
derivations, materialising the Curry-Howard correspondence for this system.
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1. Introduction

Ever since Gentzen’s seminal work [8, 7] inventing natural deduction,
NJ for intuitionistic logic and NK for classical logic, the traditional
introduction and elimination rules (I/E-rules) for the (material) impli-
cation connective (in both those systems) are the following (displayed in
Prawitz’s style).

[ϕ]i
...
ψ

ϕ ⊃ ψ
(⊃Ii)

ϕ ⊃ ψ ϕ

ψ
(⊃E)

The premise of (⊃I) is not a formula, but a sub-derivation, deriving
the consequent ψ from a discharged assumption of the antecedent ϕ.
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The square brackets indicate the discharge of the assumption, and the
index i indicates which application of (⊃I) discharges this instance of
the assumption. The possibility of discharging assumptions, possibly

vacuously, is a landmark of natural-deduction (ND) proof-systems.

The (⊃E)-rule is the rule known from antiquity as modus ponens.

Gentzen used also an equivalent logistic style, using sequents of the
form Γ → ϕ, where the context Γ is a collection1 of formulas, that makes
explicit the (open) assumptions on which the conclusion ϕ depends. The
sequent-separator ‘→’ separates the context Γ, the antecedent of the
sequent, from the succedent ϕ. Expressed in this style, those rules have
the following form2

Γ, ϕ → ψ

Γ → ϕ ⊃ ψ
(⊃I)

Γ → ϕ ⊃ ψ Γ → ϕ

Γ → ψ
(⊃E)

The notation ⊢N Γ → ϕ indicates the provability of the sequent Γ →

ϕ in some ND-system N (mostly NJ or its alternative NJ g proposed
below), expressing the derivability of ϕ from Γ.

The switch to presenting ND in the logistic format, besides having a
technical advantage (which will be seen below), also carries philosophical
significance. It stresses that ND-systems are concerned with hypothetical

reasoning, deduction from open assumptions, in contrast to categorical

reasoning, obtaining formal theses in a calculus. The latter is merely a
special case of the former where the context Γ is empty and notationally
dismissed. See [22] for an extensive discussion of this topic.

The question I would like to pose, and answer negatively, is the one
in the title of the paper:

Qmp: Does an implication elimination rule need a minor premise?

1 The exact nature of this collection is immaterial at this point.
2 Strictly speaking, this notation is not transparent regarding vacuous discharge.

One way out is to formulate another (I)-rule, namely

Γ → ψ

Γ → ϕ ⊃ ψ
(⊃I)

or to introduce a notation for optional occurrence of a formula in an antecedent of
a sequent. To avoid cluttering the notation, I will leave vacuity to be, here and
elsewhere, implicitly understood, similar to the Prawitz notation.
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This negative answer is accompanied by an alternative ND-system3 NJ g,
a grounds-retrieving variant of NJ , incorporating an (E)-rule for the
material implication without a minor premise. There are two issues I
want to point out:
• The system NJ g arises from a novel view of the role of E-rules in

ND-systems, switching from drawing immediate conclusions from a
formula to retrieving the grounds of assertion of a formula.

• The “price” of the above switch is the inclusion of a restricted form of
a (Cut)-rule, typical to sequent calculi, as a primitive, non-admissible
ND-rule, the task of which is to restore the transitivity of deduction.
The latter gets lost by the above switch.

The paper is structured as follows. Section 2 provides an analysis of tra-
ditional (⊃I/E)-rules, an analysis leading to a reanalysis of such rules in
Section 3. The system NJ g is introduced in Section 4. Section 5 extends
NJ g with λg proof-terms, a variant of the simply-typed λ-calculus. Nega-
tion (as a special case of implication) is considered in Section 6. Section
7 ends with conclusions.

2. Analysing the (⊃I/E)-rules

Before answering Qmp, let us consider the rationale and justification of
the (⊃I/E)-rules of NJ .

The idea behind the ND proof-systems was to mimic the reasoning
of a mathematician when proving theorems; hence the name of those
systems.

In case of implication, the (⊃I)-rule reflects the proof procedure
known as conditional proof. In order to prove that ϕ (with possibly
additional auxiliary assumptions) implies ψ, add ϕ temporarily to the
arsenal of already-made assumptions and prove ψ from this extended
arsenal. If succeeding, this constitutes a proof of the implication ϕ ⊃ ψ
no longer depending on the temporary assumption ϕ.

Thus, (⊃I) records the existence of a conditional proof of ψ from ϕ
(and the other assumptions).

As for the (⊃E)-rule, given the implication ϕ ⊃ ψ, understood as
recording the existence of the corresponding conditional proof, the con-
clusion ψ follows as an immediate conclusion by applying this implicit

3 I will focus on intuitionistic logic, or even on minimal logic [15] (without the
explosion rule for ⊥), but the arguments apply to classical logic as well.
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existing proof to ϕ, where the latter has itself been established (as a
minor premise) instead of assumed.

It is possible to summarise the deductive roles in traditional ND-
systems (and in NJ in particular) as follows:
I-rules: Establish a formula dominated by the introduced connective as

an immediate conclusion from other formulas or sub-derivations.
E-rules: Establish some formula as an immediate conclusion of a formula

dominated by the eliminated connective.
Note the asymmetry in the above roles of I/E-rules when formulated in
Prawitz’s style: a premise can be either a formula or a sub-derivation,
while a conclusion can only be a formula.

Consider the following typical example of a derivation using the
(⊃I/E)-rules, to be contrasted with another example presented later.

Example 2.1 (transitivity of ⊃). The following derivation establishes

⊢NJ ϕ ⊃ ψ, ψ ⊃ χ → ϕ ⊃ χ

[ϕ]i ϕ ⊃ ψ

ψ
(⊃E)

ψ ⊃ χ
χ (⊃E)

ϕ ⊃ χ (⊃Ii)

Note the forward chaining embodied in the above derivation.

The above-mentioned view of the (⊃I/E)-rules manifests itself via
the proof-theoretic justification embodied in the harmony (and stabil-

ity) [3], establishing a balance between the (⊃I/E)-rules, shown by the
following reduction and expansion [17].

[ϕ]i
D1

ψ

ϕ ⊃ ψ
(⊃Ii) D2

ϕ

ψ
(⊃E)

 r

D2
ϕ

D1

ψ

(relying on closures of NJ -derivations under composition, see Proposi-
tion 2.1 below), and

D
ϕ ⊃ ψ  e

D
ϕ ⊃ ψ [ϕ]i

ψ
(⊃E)

ϕ ⊃ ψ
(⊃Ii)
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The reduction is a step leading to (either weak or strong) normalisa-

tion of derivations in intuitionistic logic [17]. It also is, by the Curry-
Howard correspondence, the β-step in normalisation in the simply-typed
λ-calculus [10]. The expansion is the η-step in this calculus.

2.1. Transitivity of deduction

An important property of ND-systems is the transitivity of deduction,
expressed by4 closure under derivation composition. This composition
is obtained by “pasting” a derivation D2 with conclusion ϕ to a leaf
in a derivation D1 of ψ, a leaf labelled with an assumption ϕ. This
procedure does not necessarily produce a legal derivation for arbitrary
ND-systems. For example, if derivations are required to be normal, the
result of pasting two normal derivations need not be normal. For another
example, where some modification needs to be done before pasting in
order to get a legal derivation, in the context of relevant logic, see [5].
Thus, closure under derivation composition, expressing transitivity of
deduction, has to be proved whenever relied upon.

Proposition 2.1 (closure of NJ under derivation composition). If

Γ1, ϕ
D1

ψ and

Γ2
D2
ϕ

are NJ -derivations, so is

Γ,

Γ2
D2
ϕ

D1

ψ

Proof. See [16, p. 171] and the accompanying discussion.

When the Γs are left implicit, as in Prawitz−notation, the result of
the composition is depicted as (cf. the outcome of the reduction step in
(4.2)):

D2
ϕ

D1

ψ

4 Sometimes this operation is also called closure under substitution, since in the
λ-terms corresponding to the two-argument derivations of this operation, it is a sub-
stitution of a term for a variable.
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In the logistic style, such a composition of derivations can be depicted
in the form

Γ1, ϕ → ψ Γ2 → ϕ

Γ1,Γ2 → ψ (2.1)

which is the form of the (Cut)-rule the expressing transitivity of deriv-
ability in sequent calculi. By the closure of NJ -derivations under com-
position (Proposition 2.1), this rule is admissible in NJ , not needed as a
primitive rule. Relating to this depiction, the main reason stated in [16,
p. 172] as to why this pasting procedure works is explained below:

In natural deduction in sequent calculus style [logistic style – N.F.],
there are no principal formulas in the antecedent, and therefore the
substitution formula in the right premise also appears in at least some
premise of the rule concluding the right premise.

As will be realised in the next section, the important point is not the
absence of any principal formulas in the antecedent, but the absence of
incorporated assumptions, as defined below. The absence of the latter
enforces the occurrence of the substituted formula in a premise, so that
composition can be propagated upwards.

3. A reanalysis of the roles of I/E-rules

In the theory of meaning known as Proof-Theoretic Semantics (see [23]
for a brief overview and [4] for a detailed exposition), the meaning of a
logical connective is intimately connected with the grounds for assertion

of sentences dominated by that connective, instead of with the truth-
conditions of such sentences. For the purpose of this paper, I will not
define in detail grounds for assertion. I will only assume that those
grounds are established by means of the premises of I-rules for the con-
nective considered. See see [6] or [4] for a specific definition of grounds
for assertion; see also [18, 19] for such an approach, based on a different
notion of grounds for assertion.

This leads to the following characterisation of the roles of I/E-rules
in ND-systems (in contrast with the roles specified in Section 2).

I-rules: Establish the grounds for assertion of formulas dominated by
the introduced connective.
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E-rules: Retrieve5 the grounds for assertion of formulas dominated by
the eliminated connective.

Thus, the role of an E-rule changes from its role in NJ of establishing
immediate consequences of formulas to a new role, that of retrieving the
grounds for introduction of those formulas.

These two tasks need not coincide!
Note, in addition, that as shown in the following section, the symme-

try between premises and conclusions is restored in the proposed system
NJ g: both are sub-derivations. In a sense, the kind of (E)-rule proposed
here could be considered a dual to the generalisation of ND-systems
in [20]: the latter allows rules as premises, while I allow also rules as
conclusions.

3.1. Assumption incorporation

In order to express the retrieved grounds for assertion, determined by
I-rules, that can be in the general case of the form of a sub-derivation
in addition to being formulas, I extend ND-systems with a notion of
assumption incorporation, a kind of dual operation to assumption dis-
charge. The discussion is in terms of logistic presentations of rules.
Assumption discharge manifests itself in a rule by a certain shrinking of
the context of the premise, to yield the context of the conclusion. The
rule thus has the form (in case of a one-premise rule, say an (∗I)-rule
for a generic connective ‘∗’).

Γ, α → β

Γ → γ
(∗I)

Above, the assumption α is present in the context of the premise but
not present in the context of the conclusion. This is the meaning of
discharging α by that rule.

Consider next the following form6 of an E-rule for the generic ‘∗’,
to which I refer as the (∗Eg)-rule. The superscript g alludes to the
grounds-retrieving role of an elimination rule.

Γ → γ

Γ, α → β
(∗Eg)

(3.1)

5 I share this view of E-rules with a similar view mentioned by Bruno Jacinto
and Stephen Read [12].

6 This form is clearly inspired by rule-form in a sequent calculus, though it acts
here the way ND-rules act.
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In this form of a rule, the context of the premise grows instead of shrink-
ing, to yield the context of the conclusion. The formula α is present
in the context of the conclusion while not being present in the context
of the premise. I refer to this phenomenon as the incorporation of the
assumption α (into the context of the conclusion) by the rule (∗Eg).

The form of the rule in (3.1) turns out to be convenient for expressing
grounds for assertion whenever those grounds constitute of the existence
of a sub-derivation. The conclusion of (∗Eg) exactly expresses the exis-
tence of a sub-derivation of β from the incorporated assumption α and
any lateral assumptions Γ.

A natural qualm has to be addressed at this point: is such a rule still

an ND-rule? It does not seem to be directly related to any step in an
informal proof of a mathematical theorem. Still, I want to claim that it
is an ND-rule, provided α is fully schematic, featuring no specific logical
constant!

A possible proof-theoretic-internal reason for doubting such a rule
being “ND-kosher” is that it adds material to the antecedent of a sequent.
However, by the above provision this addition is schematic only; no
logical constant is displayed in the expanded context of the conclusion
of such a rule. The essential characteristic of ND-rules, at least in their
capacity of constituting meaning-conferring definitional tools, is that
they only introduce and eliminate formulas featuring a constant in the
succedent of a sequent, and assumption incorporation forms no exception
to this essential characteristic.

The justification of classifying the proposed system as a natural-dedu-
ction system and not as a sequent-calculus can also be phrased in terms
of Schroeder-Heister’s [21] terminology. Schroeder-Heister distinguishes
between two ways of introducing an assumption into an antecedent of a
sequent: specific, i.e., according to the assumptions meaning, and non-

specific. The sequent-calculi left-rules all introduce assumptions into an
antecedent specifically. On the other hand, the incorporation operation
introduces an assumption into an antecedent non-specifically, indepen-
dently of the form (and, hence, of the meaning) of that assumption.

3.2. Invertibility

An advantage of the ground-retrieving (∗Eg)-rules is that the combina-
tion of the (∗I/Eg)-rules can be presented as one invertible rule, known
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also as a double-line rule.

Γ → γ

Γ, α → β
(∗I/Eg)

See [2] (and further references therein) for a similar presentation of the
rules for implication in a multiple-conclusion sequent calculus. The ratio-
nale for invertibility there, though, is different than the one put forward
here, a rationale based on the roles of I/E-rules with regards to grounds
for assertion. In particular, no appeal is made there to assumption in-
corporation as in ND-derivations.

The big advantage of such invertible rules is that they have trivial
reductions and expansions, being balanced by definition.

Γ, α → β

Γ → γ
(∗I)

Γ, α → β
(∗Eg)

 r Γ, α → β

and

Γ → γ  e

Γ → γ

Γ, α → β
(∗Eg)

Γ → γ
(∗I)

Thus, the proof-theoretic justification of double-line rules is obtained
“for free”.

4. A one-premise (⊃Eg)-rule

In this section, I show how these ideas are used for obtaining a one-
premise (Eg)-rule for implication.

4.1. Defining (⊃Eg)

A special case of the non-coincidence of the two roles of (E)-rules is that
of material implication. While the immediate consequence is indeed cap-
tured by Gentzen’s (⊃E)-rule (i.e., (MP)), the grounds for asserting the
conditional are not captured by this rule. The ground for asserting the
conditional is the existence of a conditional proof of the consequent from
the assumed antecedent, the premise of (⊃I), and not the consequent of
the conditional, ψ.
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Based on the above considerations, I propose to replace Gentzen’s
(⊃E)-rule (i.e., modus ponens) by the following (E)-rule (⊃Eg) for ma-
terial implication. The presentation here is in the logistic style, as there
is no convenient representation of the assumption incorporation involved
in the rule (and in derivations based on it) in Prawitz’ style.

Γ → ϕ ⊃ ψ

Γ, ϕ → ψ
(⊃Eg)

As is clearly manifested by (⊃Eg), its conclusion retrieves the ground
for assertion of ϕ ⊃ ψ, embodied in the premise of (⊃I), namely, the ex-
istence of a conditional proof of ψ from ϕ (and any lateral assumptions).

In accordance to the discussion in Section 3.2, we get an invertible,
double-line rule for ‘⊃’:

Γ, ϕ → ψ

Γ → ϕ ⊃ ψ
(⊃I/Eg)

(4.1)

This double-line rule exhibits the symmetry lacking in NJ . Both a
premise and a conclusion can be sub-derivations.

The relationship expressed in (4.1), in various analogical forms, is of
course not new.

• It is expressed by the deduction theorem in Hilbert-like axiomatic
systems.

Γ ⊢H ϕ ⊃ ψ iff Γ, ϕ ⊢H ψ

While in NJ only one direction of this theorem is internalised as a
rule, here both directions are.

• The view of an implication connective as an internalisation of the
structural meta-linguistic derivability relation ‘⊢’ is discussed in [2] as
well as in [24], where a coherence double-line rule called confusion (C)

A ⊢ B
⊢ A ⇒ B

(C)

is proposed as a means of such an internalisation.
• It is used by Avron [1] as a definition of a binary operator as an

internal implication of a logic.

What is new here is the use of this rule as a natural-deduction E-rule
(for material implication) and the motivation for doing so.
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The rules (⊃I/Eg) are trivially locally-sound and locally-complete,
i.e., enjoying both reduction and expansion. The form of the reduction is

Γ, ϕ → ψ

Γ → ϕ ⊃ ψ
(⊃I)

Γ, ϕ → ψ
(⊃Eg)

 r Γ, ϕ → ψ (4.2)

A natural question arising at his point is the following: what is the
status of the occurrence of ϕ in the sequent resulting by the reduction?
Clearly, this sequent looks like the premise of the (⊃I)-rule application in
the source derivation. However, the latter may be an open assumption,
not necessarily a result of an (⊃E)-rule application. In contrast, the
maximal sequent eliminated is the result of an application of an (⊃E)-
rule. Therefore, the occurrence of ϕ in its context is incorporated.

For a reason to become apparent below, the occurrence of ϕ in the
sequent in the reduced derivation needs to be considered also as incor-
porated. This leads to the following definition.

Definition 4.1 (incorporation). The occurrence of ϕ within a sequent
Γ, ϕ → ψ (in a derivation) is incorporated iff one of the following two
conditions holds:

1. ϕ entered the sequent as a result of an application of (⊃Eg).
2. The sequent is the outcome of a reduction as in (4.2).

Here is an example of a derivation using the proposed rule, having
only one open assumption (where the importance of this fact will be
revealed in the next section).

Example 4.1. ⊢ ϕ ⊃ (ψ ⊃ χ) → ψ ⊃ (ϕ ⊃ χ)

ϕ ⊃ (ψ ⊃ χ) → ϕ ⊃ (ψ ⊃ χ)

ϕ ⊃ (ψ ⊃ χ), ϕ → ψ ⊃ χ
(⊃Eg)

ϕ ⊃ (ψ ⊃ χ), ψ, ϕ → χ
(⊃Eg)

ϕ ⊃ (ψ ⊃ χ), ψ → ϕ ⊃ χ
(⊃I)

ϕ ⊃ (ψ ⊃ χ) → ψ ⊃ (ϕ ⊃ χ)
(⊃I)

In this derivation, ϕ, and then ψ, are incorporated as assumption during
successive eliminations of conditionals, and then discharged in the reverse
ordering.
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4.2. But what about transitivity of deduction?

Recall that for NJ , transitivity was obtained by pasting derivations,
relying on closure under composition (proposition 2.1). Furthermore,
recall the comment of [16] as to why pasting derivations is possible.
Does the same remain true for the new rule? Unfortunately not!

To see this, consider the following two derivations D1 and D2

D1 :

ϕ ⊃ ψ → ϕ ⊃ ψ

ϕ, ϕ ⊃ ψ → ψ
(⊃Eg)

D2 :

ψ ⊃ χ → ψ ⊃ χ

ψ, ψ ⊃ χ → χ
(⊃Eg)

These two derivations ought to be composable, as they are instances of
the premises of the rule in (2.1): they have ψ both as a (succedent of
a) conclusion of D1 and an open assumption in the antecedent of the
conclusion of D2. Composing them according to (2.1) yields:

ϕ ⊃ ψ → ϕ ⊃ ψ

ϕ, ϕ ⊃ ψ → ψ
(⊃Eg)

ψ ⊃ χ → ψ ⊃ χ

ψ, ψ ⊃ χ → χ
(⊃Eg)

ϕ, ϕ ⊃ ψ, ψ ⊃ χ → χ
()

However, attempting to propagate this “cut” upwards results in failure!
The assumption ψ, incorporated in the conclusion of D2, does not occur

anymore as a premise of (⊃Eg). This leads to the following conclusion.

Proposition 4.1 (non-closure under composition). The system with

(⊃Eg) is not closed under composition.

In order to regain the transitivity of deduction, we have to introduce
the non-admissible (Cut)-rule as a primitive rule. Recall that the general
form of such a rule is:

Γ, ϕ → ψ Γ → ϕ

Γ → ψ
(Cut)

(4.3)

Refer to the occurrence of the cut-formula ϕ in the second premise as
the concluded occurrence of ϕ and to the other occurrence the assumed

occurrence. The restricted (Cut)-rule needed here, (Cuti), adheres to
the following restriction, the importance of which is the assurance of the
subformula property (cf. Proposition 4.3):

(A): the assumed occurrence of the cut-formula is an incorporated as-
sumption.

We now can see why the outcome of a reduction removing a maximal
sequent needs to be considered incorporated. Consider the following
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initial sequents:

Γ, ϕ → ϕ
(Ax)

I/E-rules:
Γ, ϕ → ψ

Γ → ϕ ⊃ ψ
(⊃I)

Γ → ϕ ⊃ ψ

Γ, ϕ → ψ
(⊃Eg)

Cut-rule:

Γ1, ϕ → ψ Γ2 → ϕ

Γ1,Γ2 → ψ
(Cuti)

, ϕ incorporated in the first premise

Figure 1. The system NJ g

derivation.
Γ, ϕ → ψ

Γ → ϕ ⊃ ψ
(⊃I)

Γ, ϕ → ψ
(⊃Eg)

Γ → ϕ

Γ → ψ
(Cuti)

By a reduction removing the maximal sequent Γ → ϕ ⊃ ψ, the remainder
is just the instance of Cuti. For this instance to be a legal application
of the rule, the assumed occurrence of ϕ in the first premise has to be
an incorporated occurrence of ϕ. Otherwise, the reduction would result
in an illegal derivation.

4.3. The system NJ
g

We now can summarise the above discussion by defining the natural-
deduction proof-system NJ g in Figure 1. An immediate conclusion from
the structure of the above reduction is the following.

Proposition 4.2 (strong normalizability). NJ g is strongly normalis-

able.

Proof. Immediate, since a reduction involves no substitution of deriva-
tions, every reduction reduces the number of maximal sequents.

Proposition 4.3 (subformula property). If ⊢NJg Γ → ϕ, then any

formula χ occurring in an NJ g-derivation of Γ → ψ is either a subformula

of ϕ or of some ψ ∈ Γ.

Proof. Immediate by induction on the NJ g-derivation, as each rule,
including Cuti, preserves this property.
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4.4. More examples

Next, consider an example with two open assumptions, putting the prim-
itive (Cuti)-rule to work. For convenience, although (Cuti) is formulated
as a context-sharing rule, I apply it also in different contexts in the two
premises, leaving out an implicit adjustment of the initial sequents. Re-
call that weakening is admissible in NJ and NJ g. Contrast this example
with Example 2.1.

Example 4.2 (transitivity of implication – again).

⊢NJg ϕ ⊃ ψ, ψ ⊃ χ → ϕ ⊃ χ

ψ ⊃ χ → ψ ⊃ χ

ψ ⊃ χ, ψ → χ
(⊃Eg)

ϕ ⊃ ψ → ϕ ⊃ ψ

ϕ ⊃ ψ, ϕ → ψ
(⊃Eg)

ϕ, ϕ ⊃ ψ, ψ ⊃ χ → χ
(Cuti)

ϕ ⊃ ψ, ψ ⊃ χ → ϕ ⊃ χ
(⊃I)

(4.4)

This example exhibits the backward chaining, typical to NJ g, in con-
trast to the forward chaining exhibited in NJ . Note that the application
of (Cuti) in the above example adheres to the restriction (A), as the
assumed occurrence of ψ is indeed an incorporated assumption.

Below is another example, of a formal proof in NJg (with no open
assumptions).

Example 4.3 (an Hilbert axiom). Below is a derivation for

⊢NJg → ((ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))

(ϕ ⊃ (ψ ⊃ χ)) → (ϕ ⊃ (ψ ⊃ χ))

(ϕ ⊃ (ψ ⊃ χ)), ϕ → (ψ ⊃ χ)
(⊃Eg)

(ϕ ⊃ (ψ ⊃ χ)), ϕ, ψ → χ
(⊃Eg)

ϕ ⊃ ψ → ϕ ⊃ ψ

ϕ ⊃ ψ, ϕ → ψ
(⊃Eg)

ϕ, (ϕ ⊃ ψ), ((ϕ ⊃ (ψ ⊃ χ)) → χ
(Cuti)

(ϕ ⊃ ψ), ((ϕ ⊃ (ψ ⊃ χ)) → (ϕ ⊃ χ))
(⊃I)

(ϕ ⊃ (ψ ⊃ χ)) → ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
(⊃I)

((ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ ⊃ (ϕ ⊃ χ))
(⊃I)

4.5. Deductive equivalence of NJ and NJ
g

A natural question to ask at this stage is, what is the relative deductive
strength of NJ g in comparison to NJ . In particular, what about modus-
ponens? One would hate to lose such a fundamental rule.
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The answer is given by the following propositions, establishing the
deductive equivalence of the two system. The two systems share their
initial sequents and their (⊃I)-rules. Therefore, to show deductive equiv-
alence, what is needed is:
• To show that the rules (⊃E) and (⊃Eg) are each derivable in the

other system.
• To show that (Cuti) is derivable in NJ .
Thus, while (MP) is no longer the “official” (E)-rule for ‘⊃’, it is a
derivable rule, and the ability to infer the consequent of an implication
when given its antecedent is not lost.

Proposition 4.4 (derivability of (MP) in NJ g). The rule

Γ → ϕ ⊃ ψ Γ → ϕ

Γ → ψ
(MP)

is derivable in NJg.

Proof. The derivation is:

Γ → ϕ ⊃ ψ

Γ, ϕ → ψ
(⊃Eg)

Γ → ϕ

Γ → ψ
(Cuti)

Note the dependency of this derivation on (Cuti), observing restric-
tion (A).

Proposition 4.5 (derivability of (⊃Eg) in NJ ). The rule

Γ → ϕ ⊃ ψ

Γ, ϕ → ψ
(⊃Eg)

is derivable in NJ .

Proof. The derivation is

Γ → ϕ ⊃ ψ

Γ, ϕ → ϕ ⊃ ψ
(W )

Γ, ϕ → ϕ
(Ax)

Γ, ϕ → ψ
(MP)

Proposition 4.6 (derivability of (Cuti) in NJ ). The rule

Γ1, ϕ → ψ Γ2 → ϕ

Γ1,Γ2 → ψ
(Cuti)

is derivable in NJ . Actually, the stronger Cut (without the restriction

(A)) is derivable.
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Proof. The derivation is

Γ1, ϕ → ψ

Γ1 → ϕ ⊃ ψ
(⊃I)

Γ1,Γ2 → ϕ ⊃ ψ
(W )

Γ2 → ϕ

Γ1,Γ2 → ϕ
(W )

Γ1,Γ2 → ψ
(MP)

Note the use of (W ) (Weakening), admissible in NJ , in the above
derivations.

5. Term assignment to NJ
g

5.1. Introduction

In this section, I propose a term-assignment system λg-terms for NJ g.
Traditionally, term-systems are essentially viewed in two ways, both in-
corporating the Curry-Howard correspondence:
proof-terms: Under this view, terms encode derivations, so that given

a context assigning variables to the open assumptions and a term,
possibly having free occurrences of the variables in the context, for
the conclusion, it is possible to reconstruct a derivation of the con-
clusion from the assumptions (in the proof-system to which terms
are assigned). The assignment of a term M to a formula ϕ under
this view is denoted ϕ : M .

typing system: Under this view, the formulas are viewed as types, and
the terms are inhabitants of the type. The judgement is usually
expressed as M : ϕ, and understood as M having the type ϕ in the
context assigning types (of assumptions) to the free variables of M .

I am interested here in the first view and therefore use the notation
ϕ : M for specifying term-assignments.

5.2. λg-terms

The λg-terms differ from the traditional λ-terms in the simply-typed λ-
calculus [11] (the latter serving as proof-terms for NJ ) in the employment
of an additional term-constructor κ (corresponding to (Cuti)) and an
additional reduction rule. Application terms, while present, serve a role
somewhat different than in the λ-calculus.

We are given a set of variables, V , ranged over by x, y etc., possibly
subscripted. I use M, N as meta-variables over λg-terms.
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Definition 5.1 (λg-terms). The set T g
λ of λg-terms is the smallest set

satisfying the following clauses.

1. If x ∈ V then x ∈ T g
λ .

2. If M ∈ T g
λ and x ∈ V , then λgx.M ∈ T g

λ .
3. If M,N ∈ T g

λ , then (MN) ∈ T g
λ .

4. If M,N ∈ T g
λ and x ∈ V , then κ(M,x,N) ∈ T g

λ .

Free and bound occurrences of variables in λg-terms is like the usual
definition in the λ-calculus, with the extra provision that free occurrences
of x in M are bound by κ(M,x,N).

Definition 5.2 (term association, context). 1. A term-association is a
pair ϕ : M , where M ∈ T g

λ . The term M is the subject of the term-
association.

2. A context Γ is a finite (possibly empty) collection of term-associations
ϕ1 : x1, · · · , ϕn : xn, n > 0, with pairwise distinct xis.

Definition 5.3 (term equalities). The following term-equation is added
in T g

λ to the usual equalities for λ-terms.

• κ(M,x,N) = M [x := N ], substituting N for all free occurrences of x
in M .

5.3. Term-decorated NJ
g-rules

Below are the term-decorated rules of NJ g. Here Γ is a context. An
initial sequent is of the form

Γ, ϕ : x → ϕ : x

Γ, ϕ : x → ψ : M

Γ → ϕ ⊃ ψ : λgx.M
(⊃I)

Γ → ϕ ⊃ ψ : M

Γ, ϕ : z → ψ : (Mz)
(⊃Eg)

, z fresh

Γ1, ϕ : x → ψ : M Γ2 → ϕ : N

Γ1,Γ2 → ψ : κ(M,x,N)
(Cuti)

Note how the decoration of the premises with proof-terms respects the
restriction (A) on (Cuti). I use NJ g ambiguously for both the original
ND-system and its term-decorated version.

Below I repeat the previous example derivations, this time with the
associated proof-terms.

Example 5.1.

⊢NJg ϕ ⊃ (ψ ⊃ χ) : x → ψ ⊃ (ϕ ⊃ χ) : λgv.λgu.((xu)v)
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ϕ ⊃ (ψ ⊃ χ) : x → ϕ ⊃ (ψ ⊃ χ) : x

ϕ ⊃ (ψ ⊃ χ) : x, ϕ : u → ψ ⊃ χ : (xu)
(⊃Eg)

ϕ ⊃ (ψ ⊃ χ) : x, ϕ : u, ψ : v, → χ : ((xu)v)
(⊃Eg)

ϕ ⊃ (ψ ⊃ χ) : x, ψ : v → ϕ ⊃ χ : λgu.((xu)v)
(⊃I)

ϕ ⊃ (ψ ⊃ χ) : x → ψ ⊃ (ϕ ⊃ χ) : λgv.λgu.((xu)v)
(⊃I)

Example 5.2 (transitivity of implication – with proof-terms).

⊢NJg ϕ ⊃ ψ : x, ψ ⊃ χ : y → ϕ ⊃ χ : λgz.(y(xz))

Abbreviate ϕ ⊃ ψ : x, ψ ⊃ χ : y to Γ.

Γ → ψ ⊃ χ : y

Γ, ψ : v → χ : (yv)
(⊃Eg)

Γ → ϕ ⊃ ψ : x

Γ, ϕ : z → ψ : (xz)
(⊃Eg)

Γ, ϕ : u → χ : κ((yv), v, (xu))
(Cuti)

ϕ ⊃ ψ : x, ψ ⊃ χ : y → ϕ ⊃ χ : λgz.κ((yv), v, (xz)))
(⊃I)

The required final term associated with the conclusion, λgz.(y(xz)), re-
sults after simplification of the κ-subterm according to the equality from
Definition 5.3.

The following subject construction theorem7 expresses the matching
between the structure of a λg-term M with a derivation of a conclusion ψ
decorated with M from a context determined by the variables in M . In
other words, M allows for the reconstruction of the NJ g-derivation from
Γ. The theorem is an extension of the corresponding theorem for TAλ,
modifying the ‘⊃’-elimination case and adding a clause for κ-terms.

Theorem 5.1 (subject construction). Consider an NJ g-derivation D es-

tablishing ⊢NJg Γ → ψ : M for some M ∈ T g
λ . Then:

1. If M is x ∈ V , then for some Γ1, Γ = Γ1,ψ : x and D is the initial

sequent Γ1, ψ : x → ψ : x.

2. If for some N ∈ T g
λ , x ∈ V and Γ in which x is not free, it holds that

M is λgx.N , then for some ϕ, χ it holds that ψ = ϕ ⊃ χ and the last

rule applied in D is

Γ, ϕ : x → ψ : N

Γ → ϕ ⊃ ψ : λgx.N
(⊃I)

7 I preserve the name of the theorem to keep the analogy with the simply-typed
λ-calculus.
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3. If for some N ∈ T g
λ and x ∈ V M is (Nx), then for some Γ′, ϕ, χ it

holds that Γ = Γ′, ϕ : x and the last rule applied in D is

Γ′ → ϕ ⊃ ψ : N

Γ′, ϕ : x → ψ : (Nx)
(⊃Eg)

4. If for some P,Q ∈ T g
λ and x ∈ V it holds that M is κ(P, x,Q), then

for some Γ1,Γ2, ϕ s.t. x is not free in Γ1Γ2, it holds that Γ = Γ1,Γ2,

and the last rule applied in D is

Γ2, ϕ : x → ψ : P Γ1 → ϕ : Q

Γ1,Γ2 → ψ : κ(P, x,Q)
(Cuti)

The proof is routine and is left out. Note that in the absence of
(MP) as an E-rule, the terms (MN) for N not a variable do not code
derivations.

6. Adding negation

Recall the usual NJ -strategy of defining negation by

¬ϕ := ϕ ⊃ ⊥

This definition leads to the following (¬I/E)-rules.

[ϕ]i
...
⊥

ϕ ⊃ ⊥
(¬Ii)

¬ϕ ϕ

⊥
(¬E)

where (¬E) is an instance of (MP).
By adopting this convention into NJ g, we get the following double-

line (¬I/Eg)-rule, again avoiding a minor premise for (¬E):

Γ, ϕ → ⊥

Γ → ¬ϕ
(¬I/Eg)

where the (¬Eg)-rule retrieves the grounds for asserting ¬ϕ: the exis-
tence of a derivation of absurdity from ϕ, as expressed by the (¬I)-rule.

Clearly, the deductive equivalence of NJ g and NJ is preserved by
this inclusion of negation.

With the above definition of negation, the rule Modus-Tollens (MT)
is derivable in NJg.
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Proposition 6.1 (derivability of (MT )). The rule

Γ → ϕ ⊃ ψ Γ → ¬ψ

Γ → ¬ϕ
(MT )

is derivable in NJg.

Proof. The derivation is an instance of (4.4) with χ being ⊥.

7. Conclusions

The paper introduces NJ g, a variant of Gentzen’s NJ natural deduction
system, in which the implication elimination rule has no minor premise.
The NJ g-systems extend a traditional ND-system with a new kind of
action in derivations, assumption incorporation, a kind of dual to the
assumption discharge action. As a result, the implication (I/E)-rules
are invertible and, almost by definition, harmonious and stable, a ma-
jor condition imposed by PTS on ND-systems to qualify as meaning-
conferring. There is also a proof-term assignment to NJ g-derivations,
materialising the Curry-Howard correspondence for this system.

There is a more general observation emerging from NJ g about ND-
systems in general. Traditionally, they are seen (according to Gentzen
himself) as a wish to embody in formal system the activity of a math-
ematician informally proving theorems. However, since the emergence
of PTS, according to the Dummett-Prawitz methodological view, ND-
systems are now seen as a meaning-conferring, definitional tool. Their
role as such need not coincide with their role as a formalisation of math-
ematical reasoning. For example, Gentzen’s strict partition of ND-rules
to I-rules and E-rules is not so essential for formalising mathematical
proof, but is of the utmost methodological importance for conferring
meaning. This can be seen by comparing Gentzen’s ND-systems with
those of Jaśkowski [13, 14], where the latter are not so strictly divided
into (I/E)-rules. For a detailed discussion of those differences (viewed
only from the traditional view of formalising mathematics), see [9].

It is possible to extend the current work to the full intuitionistic
propositional logic. However, the natural grounds-retrieving (∨Eg)-rule,
assuming Gentzen’s (∨I)-rules, would be

Γ → ϕ∨ψ

Γ → ϕ, ψ
(∨Eg)
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involving a transition to a logistic multiple-conclusions ND-system which
I will not do here.
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