
Logic and Logical Philosophy
Volume 26 (2017), 473–508

DOI: 10.12775/LLP.2017.010

Ivo Pezlar

ALGORITHMIC THEORIES OF PROBLEMS
A constructive and a non-constructive approach

Abstract. In this paper we examine two approaches to the formal treat-
ment of the notion of problem in the paradigm of algorithmic semantics.
Namely, we will explore an approach based on Martin-Löf’s Constructive
Type Theory (CTT), which can be seen as a direct continuation of Kol-
mogorov’s original calculus of problems, and an approach utilizing Tichý’s
Transparent Intensional Logic (TIL), which can be viewed as a non-con-
structive attempt of interpreting Kolmogorov’s logic of problems. In the
last section we propose Kolmogorov and CTT-inspired modifications to TIL-
based approach. The focus will be on non-empirical (i.e., mathematical and
logical) problems only.

Keywords: logic of problems; algorithmic semantics; procedural semantics;
Constructive Type Theory; Transparent Intensional Logic

Introduction

In [17] Kolmogorov proposed his famous explanation of intuitionistic
propositions in terms of problems that later became known only as a
part of the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation
of intuitionistic logic. More specifically, he proposed to view intuition-
istic propositions as problems to which we try to find solutions (proofs,
constructions).

To this day, Kolmogorov constructive approach can be still viewed
as the prevalent way of logical explication of the notion of problem.
This dominance was also fuelled by the discovery of the so-called Curry-
Howard-de Bruijn (CHdB) correspondence (see [3, 13, 4], also [42, 9,
41]) between Gentzen’s intuitionistic Natural Deduction (ND, [8]) and

Received February 16, 2017. Revised April 13, 2017. Published online April 28, 2017

© 2017 by Nicolaus Copernicus University

http://dx.doi.org/10.12775/LLP.2017.010

474 Ivo Pezlar

Church’s simply-typed λ-calculus ([1]) and the cordial endorsement from
computer science that followed (see e.g. [35]). In hindsight, it was a
natural continuation of Kolmogorov’s original line of thought because
seeing some proof a as a general method (solution) to a certain problem
A is only a short step away from interpreting the method as a program or
an algorithm (giving answer to the question “How?”) and the problem as
its specification or type (expectation of what it should do, i.e., delivering
answer to the question “What?”). This all culminated into Constructive
Type Theory (CTT), developed by Martin-Löf (see [20, 21, 19, 22, 23]),
which championed interpreted formal syntax and algorithmic semantics
(meaning as computation). Thus, from this vantage point, CTT can
be considered to be the current leading theory of logical explication of
the notion of problem (see e.g. [33, 34, 45, 36, 10], this position was
lately also strengthened via Homotopy Type Theory and The Univalent
Foundations Program [51]).

There is, however, another non-constructivist tradition with different
roots that puts forward its own take on interpreted formal syntax and
algorithmic semantics and that is Transparent Intensional Logic (TIL)
developed by Tichý [49, 50] and based on λ-calculus and ramified many-
sorted type theory in the style of Russell and Church (see [55, 2]). TIL
also amounted considerable following (see e.g. [7, 5, 14, 37, 39] or [29, 38,
6] in this journal), although not as numerous nor influential as Martin-
Löf’s CTT. Up until recently TIL, however, offered no explication of the
notion of problem that would challenge the status quo of CTT as the
dominant explicational framework for non-empirical problems. This gap
tried to fill Materna with series of articles [26, 27, 28, 29] and a chapter
in a book [25].

Examination and comparison of these two theories will constitute the
main subject matter of this paper. More specifically, we will examine
two explications of the notion of problem: Martin-Löf’s propositions-as-
problems explication and rivalling Materna’s algorithms-as-problems ex-
plication. The comparison itself will be of practical nature and it will be
accomplished via analyses of two case studies, one aimed at mathematical
problems, the other focused on logical problems. In other words, we won’t
be directly comparing CTT and TIL from a formal point of view, rather
we will be interested in the overall accuracy of analyses they can provide.
The results gained from the comparison will be then utilized together
with Kolmogorov’s idea of dual system for both problems and proposi-

Algorithmic theories of problems 475

tions in the final section, where we sketch a modification of TIL-based ap-
proach alleviating some of the issues of the original Materna’s approach.

Why conduct this comparison if we already have what seems to be a
well-developed theory of non-empirical problems at our disposal in the
form of CTT? There are two reasons, one theoretical and one practical.
The theoretical reason is motivated by the following Materna’s question:

Can we have a procedural theory of problems such that it would not be
necessarily connected with intuitionism? [27, p. 297]

and we want to offer our own (positive) answer. The practical reason
stems from the fact that while CTT offers extensive framework for deal-
ing with non-empirical problems, it still lacks in terms of analysis of
empirical problems, or more generally, analysis of empirical discourse
and natural language.1 Contrary to this, TIL can provide a mature
framework for analysing natural language.2 Our hope is that the inter-
action between these two theories can enrich them both. First such fusion
will be demonstrated in this paper where we emulate in TIL the CHdB
correspondence style proof-tracking of ND proofs native to CTT. Thus,
although this paper is limited to non-empirical problems, our long-term
interest lies in developing a general theory of problems that can encom-
pass both non-empirical and empirical problems. From this perspective,
the present paper represents only the first step in that direction.

Structure of the paper. The paper is structured as follows: In the
first Section (1), we introduce two problems one mathematical, one
logical that will serve as a basis for our case studies and consider, in-
formally, what should generally count as a satisfactory solution to non-
empirical problems. In the second Section (2), we introduce CTT and try
to replicate in its framework as closely as possible the informal analysis
from the first section. In the third Section (3), we do the same as in
the previous section but from the TIL perspective. In the fourth Section
(4), we sketch a modification of TIL inspired by CTT and Kolmogorov.

1 Some exceptions are e.g. [40, 56]. For more recent developments, see also [43].
2 Aside from the already mentioned references, see also e.g. [12, 18].

476 Ivo Pezlar

1. Non-Empirical Problems: Preliminary Considerations

1.1. Case Study A: Mathematical Problems

Imagine that you are taking a math test where you are faced with the
following single assignment:

(P0) Find the root(s) of the equation x2 + 3x − 4 = 0.

Let’s imagine further that you simply write down the correct solution,
in this case the roots 〈−4, 1〉, and hand over the test. Despite giving the
correct answer the chances are that examiner would not be very pleased
with you. Of course, there is always the possibility that the examiner
would trust your mathematical genius and that she would require no
further proof of the result and how did you acquire it. It is, however,
much more likely that the examiner would also demand from you some
sort of mathematical construction that would lead to these two numbers.
In other words, she would also want to know how did you get to the
solution.

But why is the examiner dissatisfied? After all, we have found the
solution, didn’t we? Well no, not precisely. What we have found was
rather the result of the solution, not the solution itself. Recall that in
the previous section we have said in accordance with Kolmogorov
that a solution should provide some kind of a method for solving the
problem. And it is difficult to see how could a couple of numbers, i.e.,
〈−4, 1〉, provide any guidance to solving the problem x2 + 3x − 4 = 0.

Of course, the issue here is that the examiner is not really interested
in the two numbers themselves, she rather wants to know how did we
find them. In other words, the examiner wants us to present the proper
solution of the problem, not just the result of it. Thus, in order to
appease the examiner in the case of problem (P0), we would also have
to write down something like:

a.

x2 + 3x − 4 = 0
(x + 4)(x − 1) = 0
x+4 = 0 or x−1 = 0
x = −4 or x = 1

or

b.

x =
−3±

√
32−4×(1×−4)

2×1

= −3±
√

9+16
2 = −3±

√
25

2

= −3±5
2 = −3−5

2 or −3+5
2

= −8
2 , 2

2 = −4 or 1

Algorithmic theories of problems 477

To frame this issue in slightly different terms, we might say that
the examiner wants to see not only the solution-object, in this case the
couple 〈−4, 1〉 but also the solution-process, in this case represented by
a or b that led to the discovery of this particular solution-object.3 Note
that this distinction is applicable even to the most basic mathematical
problems. For example, simple case of addition 5 + 7 can be framed as
the following problem:

(P1) Find the natural number x such that 5 + 7 = x.

The solution-object of (P1) would be the number 12 and the solution-
process would consist of a series of steps, informally e.g. take 5, take 7
and then add them together.

1.2. Case Study B: Logical problems

Assume similar scenario as in the previous case but now you are given
the following assignment:

(P2) Find a proof that A ⊃ ((A ⊃ B) ⊃ B) is a theorem.

Notice that this assignment differs from the mathematical problem (P1)
in one key aspect you are given the result, in this case that A ⊃ ((A ⊃
B) ⊃ B) is a theorem but you are explicitly asked to present the process
that establishes it. In other words, we know from the very beginning
that (P2) is a theorem but we have to show why it is so. Thus, we have
to write down something like:

c.

A ⊃ B A
B

(A ⊃ B) ⊃ B

A ⊃ ((A ⊃ B) ⊃ B)

or

d.

A ⊃ B A
B

A ⊃ B A
B

(A ⊃ B) ⊃ B

A ⊃ ((A ⊃ B) ⊃ B)

So in the case of logical problem (P2) we might say that the examiner,
analogously to (P1), is not interested in the result (i.e., acquiring the

3 We borrow the object/process terminology from [44]. Although it was originally
devised for proofs, it is clear that solutions can be thought of as plagued with the
same ambiguity.

478 Ivo Pezlar

theorem A ⊃ ((A ⊃ B) ⊃ B)) but in the process (i.e. c or d) that leads
to it. This fact is even more evident in the logical case, since we are
given the result from the beginning.

1.3. Summary of Preliminary Considerations

Results of our preliminary informal discussion can be summed up as
follows: a problem is something to be done, a solution is something telling
us how to do it, i.e., a certain algorithm, method or a set of instructions.
We have also encountered a certain ambiguity in the term ‘solution’:
(i.) solution as a process, i.e., an act of determining the solution result,
and (ii.) solution as an object, i.e., the result determined by a solution
process. Thus, we can informally distinguish solution-object (e.g. 〈−4, 1〉
in the mathematical case and A ⊃ ((A ⊃ B) ⊃ B) in the logical case)
and solution-process (e.g. as represented by a or b in the mathematical
case and c or d in the logical case).

This concludes our introductory examination of the involved con-
cepts. In the upcoming sections, we try to analyse our problems (P1) and
(P2) and their solutions in both senses (i.) and (ii.) in the frameworks
of CTT and TIL, respectively.4

2. Martin-Löf’s Constructive Type Theory

Per Martin-Löf’s Constructive Type Theory (see e.g. [20, 21, 22, 23])
is based on the BHK interpretation of logical connectives and to full
extent utilizes the CHdB correspondence between propositions (or in
our case, problems) and types. The main motivating idea behind CTT
is essentially that logic and mathematics are not explicit enough, that
they leave too much information outside of their rules. For example, the
Implication Introduction Rule of Natural Deduction (ND):

A ⊢ B
A ⊃ B

keeps hidden away the information about the fact that A, B and A ⊃ B
are all propositions/problems and that we have to assume that A is

4 Both CTT and TIL will be presented only to the extent that is required by our
case studies. In other words, we omit those aspects of the respective theories that will
not be necessary for analysing (P1) and (P2).

Algorithmic theories of problems 479

true/solvable (i.e., that we have a proof of it) to derive that B is true,
and hence that A ⊃ B is derivable and true as well.5 So in its fully
exposed version the rule should look something more like this:

A problem B problem A ⊃ B problem A solvable ⊢ B solvable

A ⊃ B solvable

and CTT offers a framework that makes these general ideas more precise.

2.1. Problems and Judgements

CTT distinguishes between problems and judgements. Logical opera-
tions (e.g. ⊃, ∀, . . .) operate on problems, while logical inferences (e.g.
those carried out via ⊃-Introduction, ∀-Introduction,. . .) operate on
judgements.

A problem is defined by laying down what counts as a solution of the
problem and we say that problem is solvable if it has a solution. For sim-
plicity, we will consider implication, denoted ‘⊃’, to be our only logical
connective as our logical problem (P2) demands no other. Solution to
the problem of the form A ⊃ B will consist of a method which takes any
solution of A into a solution of B (this is where the BHK interpretation
comes in). To put it differently, the solution of A ⊃ B is a function
λx.b(x), where b(a) is a solution of B provided a is a solution of A, i.e.,
it is a function that takes any solution of A as an argument and returns
a solution of B (this is where the CHdB correspondence comes in). More
specifically, to obtain a solution of B, given solutions a and λx.b(x) of
A and A ⊃ B, respectively, all we have to do is apply the latter to the
former to get b(a) (= β-reduction).

There are four basic categorical judgements in CTT:

Judgement notation

declaring that A is a problem (proposition, type, . . .) A prob

declaring identity of problems A, B A = B

declaring that a is a solution of the problem A a : A

declaring identity of solutions a, b a = b : A

These four categorical judgements can be generalized into hypothetical
judgements, i.e., judgements depending on a certain assumption. For

5 We use the symbol ‘⊢’ to separate assumptions from the consequent.

480 Ivo Pezlar

example, the first one A prob can be generalized into x : A ⊢ B(x) prob,
which says that B(x) is a problem under the assumption that we have
a solution x for the problem A, i.e., x : A. Hypothetical judgements
can be extended to an arbitrary number n of assumptions, e.g. A prob
can be generalized into x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ⊢
A(x1, . . . , xn) prob.6

2.2. FIEC Rules

CTT relies on four kinds of rules: Formation rules, which tell us how to
form new problems, Introduction rules, that tell us what are the (canoni-
cal) solutions of those problems, Elimination rules, which tell us what we
can do with solutions, i.e., they show us how to define functions operating
on them, and Computation/Equality rules, which tell us how functions
operate on solutions, i.e., they relate Intro-rules and Elim-rules.7

Given a problem A and a family of problems B(x) over the problem
A, we can form the problem Πx:AB(x) utilizing the FIEC-style rules in
the following way:

A prob x : A ⊢ B(x) prob
Π-Form ∏

x:A

B(x) prob

x : A ⊢ b(x) : B(x)
Π-Intro

λx.b(x) :
∏

x:A

B(x)

c :
∏

x:A

B(x) a : A

Π-Elim
Ap(c, a) : B(a)

a : A x : A ⊢ b(x) : B(x)
Π-Comp

Ap(λx.b(x), a) = b(a) : B(a)

The Π-Form rule specifies the conditions under which we can judge
Πx:AB(x) to be a problem. The Π-Intro rule states the form of canoni-
cal solution to the problem Πx:AB(x) and the rules Π-Elim and Π-Comp
specify how can we use/compute with these canonical solutions (Ap is a
constant for a binary application operation).

With Cartesian product ready, we can define implication as A ⊃
B ≡ Πx:AB, where B does not depend on x.8 This should come as no
surprise given our earlier explanation of the connective ⊃. And with the

6 For more on CTT, see e.g. [23, 33, 10].
7 We presuppose that substitution and equality rules are defined in the usual

manner, see e.g. [23]. To further save some space, we also omit the identity rules
associated with FIEC-rules (see [23]).

8 The symbol ‘≡’ represents so-called definitional equality, i.e., equality between
linguistic expressions.

Algorithmic theories of problems 481

dependency gone, we can tailor new rules from the Π-rules specifically
for implication (recall that A solvable means a : A):

A prob A solvable ⊢ B prob ⊃-Form
A ⊃ B prob

A solvable ⊢ B solvable ⊃-Intro
A ⊃ B solvable

A ⊃ B solvable A solvable ⊃-Elim
B solvable

Now, we have not only everything necessary for capturing our moti-
vational example from the beginning of this section (specifically, judge-
ments of the form A prob, A solvable, implication and rules ⊃-Form,
⊃-Intro) but also all the essential tools required for the analysis of our
case studies A and B.

2.3. CTT-Driven Analysis: Case Study A (Mathematical Problems)

Our first goal is to capture the problem:

(P1) Find natural number x such that 5 + 7 = x.

together with its solution in the framework of CTT. Clearly, we are
dealing here with natural numbers, so we start by introducing a new
type of problems N prob via the already familiar FIEC-style rules:

N-Form
N prob

N-Intro 0 : N
a : N

succ(a) : N

N-Elim

c : N d : C(0) x : N, y : C(x) ⊢ e(x, y) : C(succ(x))

R(c, d, (x, y)e(x, y)) : C(c)

N-Comp

d : C(0) x : A, y : C(x) ⊢ e(x, y) : C(succ(x))

R(0, d, (x, y)e(x, y)) = d : C(0)

a : N d : C(0) x : N, y : C(x) ⊢ e(x, y) : C(succ(x))

R(succ(a), d, (x, y)e(x, y)) = e(a, R(a, d, (x, y)e(x, y))) : C(succ(a))

Short commentary is in order: the rule N-Form introduces new type of
problems N and the rule N-Intro tells us what are the canonical solutions
of these problems, specifically 0 and succ(a). These rules will generate
0 : N, succ(0) : N, succ(succ(0)) : N, . . . , for which we will use the

482 Ivo Pezlar

notation 0, 1, 2, The rule N-Elim defines the function R, which is a
primitive recursion/induction over natural numbers. To better explain,
first assume that C is a family of problems over N, which we can interpret
as some property of natural numbers. Then d is the solution of the base
case when c is 0 and e is a solution of the induction step, i.e., a solution
from C(x) to C(succ(x)). The conclusion then tells us that for any a : N
we have a solution for C(a), which is the R(c, d, (x, y)e(x, y)). Thus, the
N-Elim rule essentially gives us tools to define functions on N by cases.
And finally, the rule N-Comp tells us how the function R operates on the
canonical solutions introduced by N-Intro, i.e., the first rule is for the
case when c is 0, the second one for the case when c is succ(a).

Notice that under this approach the “non-canonical numbers” such as
e.g. 1, 2, 3, . . . can be considered to represent the most basic mathematical
problems, since they are neither 0, nor have the form succ(a) (see N-
Intro rule above). Thus, e.g. 12 represents the problem (e.g. “Find out a
construction that constructs number 12.”) whose solution is succ(11).9

With function R ready, we can now define addition, which is also
required for the analysis of our initial problem (P1):

a + b ≡ R(b, a, (x, y)succ(y)) : N.

Intuitively, this definition tells us that to perform the addition a + b is
the same as to apply the successor operation b times on a. Consequently,
familiar rules can be derived:

a : N b : N
a + b : N

a : N
a + 0 = a : N

a : N b : N
a + succ(b) = succ(a + b) : N

Now, we finally approach the analysis of the problem:

(P1) Find natural number x such that 5 + 7 = x.

This problem can be formalized simply as 5+7 : N since we already know
that 5 : N and 7 : N (see the first rule for + above). And thus we can
conclude that its solution as a process will be succ(5+6) : N (see the third

9 The reader might be wondering why don’t we evaluate the number 12 fully,
i.e., bring it to the form succ(. . . succ(0)) (so-called eager evaluation). We could, of
course, do that but there is no need for it, since (by N-Intro) everything in the form
succ(a) is already considered to be a canonical solution (so-called lazy evaluation).
More on this topic can be found in [10].

Algorithmic theories of problems 483

rule for + above) with the natural number 12, i.e., succ(. . . succ(0)), as
the solution as an object.10

2.4. CTT-Driven Analysis: Case Study B (Logical Problems)

Our second goal is to capture the problem:

(P2) Find a proof that A ⊃ ((A ⊃ B) ⊃ B) is a theorem.

together with its solution. In this case, our task will be much easier:
since we are dealing with simple “propositional” problems, we do not
need to introduce additional types as in the previous case. The theorem
itself can be captured in CTT in the following manner:

∏

x:A

∏

y:
∏

x:A

B

B

and the way we have defined implication allows us to write it simply as:
A ⊃ ((A ⊃ B) ⊃ B). Now, we get to the more interesting part, i.e., the
analysis of the solutions c and d:

c′.

x : A ⊃ B y : A
Π-Elim

Ap(x, y) : B
Π-Intro

λx.Ap(x, y) : (A ⊃ B) ⊃ B
Π-Intro

λyλx.Ap(x, y) : A ⊃ ((A ⊃ B) ⊃ B)

d′.

x : A ⊃ B y : A
Π-Elim

Ap(x, y) : B
Π-Intro

λy.Ap(x, y) : A ⊃ B y : A
Π-Elim

Ap(λy.Ap(x, y), y) : B
Π-Intro

λx.Ap(λy.Ap(x, y), y) : (A ⊃ B) ⊃ B
Π-Intro

λyλx.Ap(λy.Ap(x, y), y) : A ⊃ ((A ⊃ B) ⊃ B)

Thus, we conclude that the problem A ⊃ ((A ⊃ B) ⊃ B) has a solution
λy.λx.Ap(x, y) which can be understood both as a process (encoding of

10 Note that 5+7 : N corresponds, strictly speaking, rather to the problem “Find
the canonical form of non-canonical natural number 5 + 7” than to the original (P1).
However, by solving the former problem we get the solution for the latter problem as
well since the canonical form succ(5 + 6) : N also expresses the desired number 12.

484 Ivo Pezlar

the solution c′) and as an object (λ-term). Note that solutions of c′ and
d′ are equivalent.

2.5. Summary of CTT-Driven Analysis

We have shown that CTT can deal with both of our case study problems
(P1) and (P2) without any significant issues. Now, we turn our attention
to TIL.

3. Tichý’s Transparent Intensional Logic

Pavel Tichý’s Transparent Intensional Logic (see e.g. [49, 47, 46]) is based
on λ-calculus and ramified many-sorted type theory. Similarly to CTT,
the main motivating idea behind TIL is that mathematical languages
are, in general, not explicit and rigorous enough. For example, simple
equality statement:

2 × 2 = 2 + 2

conceals the fact that the number 2 is a certain construction, e.g. two
successive applications of the successor function. The similar can be also
said about +, ×, = and about the process of putting them all together.
Under this reading, it follows that the statement above expresses equality
between results of certain constructions as well. Thus, in the properly
“disclosed” version the above statement should look e.g. more like this:

apply = to the results of a) and b)

construct =b) apply + to 2 and 2

construct 2construct 2construct +

a) apply × to 2 and 2

construct 2construct 2construct ×

So it is a certain algorithmically structured process that can be read as
stating that the results of the two of its subprocedures (displayed as the
left and the right branch in the tree-scheme above) are equal. In other
words, it tells us that the calculations “multiplying two by two” and
“adding two and two together” produce the same result. TIL offers a
framework for making these basic insights more precise.

Algorithmic theories of problems 485

3.1. TIL-Constructions and Matches

In TIL, we will discern between TIL-constructions11 and matches, which
tell us what is constructed. Logical operations (e.g. ⊃, ∀, . . .) appear as
functions constructed by corresponding TIL-constructions, while logical
inferences (e.g. ⊃-Introduction, ∀-Introduction,. . .) operate on matches.

There are six fundamental TIL-constructions:

TIL-construction notation

Variable x, y, . . .

Composition [K L1 . . . Lm]

Closure λx1 . . . xm . K

Trivialization K, L, . . .

Single execution ↓K, ↓L, . . .

Double execution ⇓K, ⇓L, . . .

where K and Li are TIL-constructions. The first four TIL-constructions
should be recognizable to anybody familiar with applied/impure λ-calcu-
lus: Variables, Compositions, Closures and Trivializations roughly corre-
spond to variables, function applications, function abstractions and con-
stants, respectively. However, it is important to keep in mind that this
resemblance is mostly just a cosmetic matter. Although in many contexts
they can behave similarly (e.g. both λ-terms and TIL-constructions are
amenable to α-, β-, η-conversions), there are non-trivial philosophical as
well as technical differences. Most importantly, TIL-constructions are
not terms but abstract objects that can be carried out to construct some
other objects. This brings us to the last two TIL-constructions, Single
and Double execution, which can be thought of as procedures of execut-
ing corresponding TIL-constructions once or twice in a row, respectively.
What particular object TIL-constructions construct may further depend
on a valuation v, i.e., an assignment of values to free Variables. If that
is the case, we say that they v-construct that object.12 Furthermore,
if a TIL-construction v-constructs nothing at all, we will say that it is

11 In TIL, by “construction” is meant something different than what intuition-
ists/constructivists usually do. Most importantly, TIL-constructions are not effective
algorithmic computations [47] and partial functions can appear [46].

12 More precisely, TIL-constructions always construct with respect to some val-
uation v. However, since it is not always the case that the valuation effects the result

486 Ivo Pezlar

a v-improper TIL-construction. Otherwise, we say that it is a v-proper
TIL-construction. If we have two TIL-constructions K, L that both v-
construct the same object, or they are both v-improper, we will say that
K and L are v-congruent TIL-constructions, denoted as K ∼= L. And if
they are v-congruent for all valuations v, we will say that K and L are
equivalent, denoted as K ⇔ L.

We will symbolize Trivialization by boldface font, with the excep-
tion of standard logical and mathematical symbols such as ‘+’, ‘=’,
‘∀’, ‘⊃’, etc. which will be left in normal font. For example, 1 is a
TIL-construction that constructs the number 1. The TIL-construction
[succ 0] also constructs the number 1 (TIL-constructions succ and 0,
intuitively, construct successor function and 0, respectively). TIL-con-
struction [+ 5 7] constructs the number 12 (where + constructs the ad-
dition function) and [+ 5 7] constructs [+ 5 7] (notice the appearance
of bold square brackets that represent Trivialization of Composition).
Thus, the basic idea behind TIL-constructions is that they are algorithms
for computing denotations of the corresponding expressions.13 Probably
the easiest way to digest TIL-constructions is to think of them as expli-
cations of Frege’s Sinn.14 To cast it in different terms, TIL-constructions
are embodying the conception of algorithm-as-proposition.

A problem (TIL-construction) is considered done once we reach a
solution. For example, 12 can be considered a basic mathematical prob-
lem, whose solution is the number 12. Note that the informal tree-scheme
from the beginning of this section can be captured as the following prob-
lem: [= [×2 2] [+ 2 2]].

We use the notion of a match for stating what objects TIL-construc-
tions v-construct (see [46, 48]). It has the general form K : k where
K is any TIL-construction and k is either Variable or Trivialization v-
constructing an object of the same type as does K. A match K : k
is said to be satisfied if K and k v-construct the same object. So e.g.
[+ 5 7] : 12 is a (satisfied) match and it can be read as “TIL-construction
[+ 5 7] constructs number 12” since we already know that 12 constructs
number 12. Analogously, [+ 5 7] : x can be read as “TIL-construction

we will on those occasions speak simply of constructing instead of v-constructing. For
a proper specification of TIL-constructions, see Appendix.

13 For similar conceptions, see also [31, 32].
14 Even more accurately, they try to explicate Frege’s notion of conceptual content

from Begriffschrift [53].

Algorithmic theories of problems 487

[+ 5 7] v-constructs some number x”, etc. Note that match essentially
states a special case of v-congruence between K and k, where k is either
Variable or Trivialization. Thus e.g. [+ 5 7] : 12 is a match, however
[+ 5 7] : [+ 6 6] is not a match even though both TIL-construction
are congruent, the TIL-construction on the right-hand side of : is neither
Variable nor Trivialization. With the concept of match at hand, we can
now represent assertions in TIL. For example, if we want to state that
some propositional TIL-construction/problem K constructs/resolves to
the truth value true, we can simply write K : true, which can be also
read as “the proposition constructed by K is true”.15

TIL relies on Church-like type theory. All entities including TIL-
constructions receive a type and if α and β1 . . . βm are types, then
(αβ1 . . . βm) is also a type. Specifically, a type of function from the
elements of type β1 . . . βm to the elements of type α. We will introduce
three base types o, ι, ν for truth values, individuals and natural numbers,
respectively. That way we can construct objects (e.g. via Trivializations
or Variables) of the following types:16

TIL-construction type of constructed
object

object description

true, false o truth values

A o non-empirical proposition

∧ (ooo) conjunction

⊃ (ooo) implication

+ (ννν) addition

=α (oαα) equality

∃α (o(oα)) existential quantifier

∀α (o(oα)) universal quantifier

ι

α (α(oα)) definite description

15 Materna does not employ Tichý’s concept of match in his TIL-based theory
of problems, nor any deduction system for that matter, however they can be both
incorporated without changing any fundamental principles of his theory. We do so to
allow for a smoother analysis of our case studies.

16 We diverge here from the traditional TIL nomenclature where a proposition
is considered a function from possible worlds and time moments to truth values, not
just something that can be true or false.

488 Ivo Pezlar

Note that we regard here the functions constructed by =α, ∃α, ∀α and

ι

α as polymorphic functions. Thus, e.g. =ν constructs equality function
of type (oνν) between natural numbers, =ι constructs equality function
of type (oιι) between individuals, etc. The ∀α constructs a function that
takes class of objects of type α and returns true if that class contains all
elements of that type, otherwise it returns false. Analogously for ∃α. The
definite description ι

α constructs a function that takes class of objects
of type α and returns the only element of that class if it is a singleton,
otherwise it is undefined.

Next, we introduce type ∗1 for so-called 1st-order TIL-constructions,
i.e., TIL-constructions constructing non-constructions. Then we have
type ∗2 for 2nd-order TIL-constructions constructing 1st-order TIL-con-
structions and so on (this is where the ramified type theory comes into
play). More properly defined (see [49] for the original formulation): let
B be a collection of base types o, ι, ν.

1. (a) Every member of B is a type of order 1 over B.
(b) If 0 < m and α, β1 . . . βm are types of order 1 over B then the collection

(αβ1 . . . βm) of all m-ary (total and partial) functions from β1 . . . βm

into α is also a type of order 1 over B.
(c) Nothing is a type of order 1 over B unless it follows from (a) and (b).

2. (d) Let χ be any type of order n over B. Every Variable ranging over χ is
a TIL-construction of order n over B. If K is of (i.e., belongs to) type
χ then K, ↓ K, ⇓ K are TIL-construction of order n over B. Every
Variable ranging over χ is a TIL-construction of order n over B.

(e) If 0 < m and K, L1, . . . , Lm are TIL-constructions of order n then
[K L1 . . . Lm] is a TIL-construction of order n over B.

(f) If 0 < m, χ is a type of order n over B and K as well as the distinct
Variables x1, . . . , xm are TIL-constructions of order n over B, then
λχx1 . . . xm.K is a TIL-construction of order n over B.

(g) Nothing is a TIL-construction of order n over B unless it so follows
from (d), (e) and (f).

Let ∗n be the collection of TIL-constructions of order n over B. The
collection of types of order n + 1 over B is defined as follows:

3. (h) ∗n and every type of order n is a type of order n + 1.
(i) If 0 < m and α, β1, . . . , βm are types of order n + 1 over B then the

collection (αβ1 . . . βm) of all m-ary (total and partial) functions from
β1, . . . , β into α is also a type of order n + 1 over B.

(j) Nothing is a type of order n+1 over B unless it follows from (h) and (i).

Algorithmic theories of problems 489

For example, 12 is a TIL-construction of order 1, written ∗1, constructing
the number 12, i.e., an object of type ν. Same goes for [+ 5 7]. But
note that [+ 5 7] is already a TIL-construction of order 2, written ∗2,
and it constructs other lower-order TIL-construction, in this case the
TIL-construction [+ 5 7] of type ∗1. TIL-construction ⇓ [+ 5 7] would
be then of order 3 and it would construct 12 again.17

We will write K/α to indicate that a TIL-construction K is of type
α (see the left column below) and we write K ⊲ α to say that a TIL-
construction K (v-)constructs object of type α (see the right column
below), e.g.

5 / ∗1

[+ 5 7] / ∗1

[+ 5 7] / ∗2

⇓ [+ 5 7] / ∗3

[=ν [× 2 2] [+ 2 2]] / ∗1

[¬ [=∗1
[× 2 2] [+ 2 2]]] / ∗2

5 ⊲ ν
[+ 5 7] ⊲ ν
[+ 5 7] ⊲ ∗1

⇓ [+ 5 7] ⊲ ν
[=ν [× 2 2] [+ 2 2]] ⊲ o
[¬ [=∗1

[× 2 2] [+ 2 2]]] ⊲ o

Note that / and ⊲ are used here as metalanguage symbols.

3.2. TIL Inference Rules and Conceptual Systems

Due to the “stipulation-based” nature of (Materna’s) TIL,18 we will in-
troduce only two inference rules as necessitated by our second case study,
namely Implication Introduction rule ⊃I and Implication Elimination
rule ⊃E in the traditional ND-style:

(A : true)
...

B : true
⊃I

[⊃ A B] : true

[⊃ A B] : true A : true
⊃E

B : true

17 For more on TIL’s ramified type theory, see [49].
18 Contrary to CTT, Materna’s system does not rest on explicit rules, rather on

stipulations of kinds of TIL-constructions, which roughly correspond to the specifica-
tion of well-formed terms (see Section 3.1). The same holds also for TIL as presented
in [7] (the lack of rules was later amended to some extent by [5]). This is, however,
not the case for all incarnations of TIL, for “TIL with rules”, see e.g. [46, 48] (earlier
versions of TIL without ramified hierarchy of types) or [39] (with ramified hierarchy).

490 Ivo Pezlar

Finally, we will use Materna’s so-called conceptual systems,19 which,
roughly put, delimit the “area of operation” of TIL. Conceptual system
is essentially a tuple

〈Pr , Type, Var , C, Der〉
where Pr is finite class of primitive concepts P1, . . . , Pk, i.e., basic objects
of the system, Type is an infinite class of types generated over a finite
base (e.g. o, ι, ν), Var is an infinite set of variables, countably infinite for
each type from Type, C is the definition of kinds of TIL-constructions
(recall Section 3.1) and Der is an infinite class of compound concepts
derived from Pr and Var utilizing C (see also Definition 2.14 in [7]).
There are generally no restrictions as to what types, concepts and TIL-
constructions we can choose to build our conceptual systems from. The
use of conceptual systems is straightforward and will be obvious once we
get to a more concrete example below.

Now, we have all the essential tools required for analysing our case
studies A and B. But before we start it is important to reiterate that
the explication of problems in the framework of TIL was undertaken by
Materna. Thus, strictly speaking, we will be comparing Martin-Löf’s
CTT and Materna’s take on TIL, denoted by TILM, rather than Tichý’s
TIL itself, as originally presented in [49]. There are not many crucial
differences but it is beneficial to keep them apart.

3.3. TILM-Driven Analysis: Case Study A (Mathematical Problems)

Analogously to the previous section dedicated to CTT, our goal will be
to formalize the problem:

(P1) Find natural number x such that 5 + 7 = x.

and its solution in the framework of TILM. To that purpose we utilize
a conceptual system “hand-crafted” specifically for our case study such
that Pr = {0, succ, ∧, =ν, ∀ν , ι

(ννν)} and Type will be generated over the
base {o, ν}. In other words, the primitive concepts of our toy conceptual
system are: (TIL-construction of) the number zero, successor function,
conjunction, equality between natural numbers, universal quantifier for
natural numbers and definite description for binary functions on natural
numbers, i.e., a function of type ((ννν)(o(ννν))), respectively (recall
Section 3.1).

19 We rely here on conceptual systems as presented in [7]. For earlier versions,
see [24, 25]. Their critique can be found in [38].

Algorithmic theories of problems 491

In such conceptual system, assuming natural numbers were defined
in a standard way via zero and the successor function, we can define new
compound concept of addition operation + of type (ννν) in the following
way (see e.g. [7, p. 167]):

+ =def.

[

ι

(ννν) λf
[

∀ν λxy
[

∧
[

=ν [f x 0] x
] [

=ν

[

f x [succ y]
][

succ [f x y]
]]

]

.

Now, we have everything we need for the analysis of the problem (P1).
It can be formalized simply as [+ 5 7], i.e., as a Composition that applies
the addition operation (see above) to the arguments 5 and 7. Such Com-
position constructs (solution as a process) the natural number 12, which
constitutes the solution (solution as an object) to the problem (P1).

3.4. TILM-Driven Analysis: Case Study B (Logical Problems)

Our next goal is to formalize the problem:

(P2) Find a proof that A ⊃ ((A ⊃ B) ⊃ B) is a theorem.

and its solution. For simplicity, we skip the specification of the corre-
sponding conceptual system and head straight for the analysis, since the
needed inference rules, i.e., ⊃I and ⊃E, have been already introduced.

The theorem itself can be captured in TILM in the following manner:

[⊃ A [⊃ [⊃ A B] B]] : true.

Solution wise we get:

c′′.

([⊃ A B] : true) (A : true)
⊃E

B : true
⊃I

[⊃ [⊃ A B] B] : true
⊃I

[⊃ A [⊃ [⊃ A B] B]] : true

d′′.

([⊃ A B] : true) (A : true)
⊃E

B : true
⊃I

[⊃ A B] : true (A : true)
⊃E

B : true
⊃I

[⊃ [⊃ A B] B] : true
⊃I

[⊃ A [⊃ [⊃ A B] B]] : true

At first glimpse, everything might seem fine but the problematic part
is that in Materna’s framework the solutions to the logical problem [⊃

492 Ivo Pezlar

A [⊃ [⊃ A B] B]] are not the respective proofs c′′ and d′′ but the truth
value true.

Materna states that “. . . [problem]. . . [⊃ [∧ A B] A] [has the solution]
true. . . ” [25, p. 100]. Of course, from a certain point of view it sounds
reasonable. After all, [⊃ A [⊃ [⊃ A B] B]], as well as [⊃ [∧ A B] A]
in the quotation above, is indeed a TIL-construction of a theorem, so it
seems only natural that it would lead into the truth value true. However,
it is not immediately obvious in what sense can be a mere truth value
considered a solution. Remember that at the beginning of this paper we
have said that solution should be something that tells us how to solve a
problem and it is difficult to see how can a truth value accomplish such
a job. In other words, the solution true tells us nothing about how to
actually solve the corresponding problem. If the examiner asks us to
prove that [⊃ A [⊃ [⊃ A B] B]] is a theorem and we give back the truth
value true (“Yes, it is a theorem”), the examiner would probably not
consider the problem solved. Thus, we effectively end up with solutions
that do not solve anything.20

But there is another possibly even more problematic issue that might
not be apparent in our analysis since both of the proofs c′′ and d′′ are
essentially the same (d′′ normalizes into c′′). However, if we consider
different problems, and consequently different solutions, the issue will
become immediately obvious. Specifically, on Materna’s approach all
logical theorems share the same solution and thus they are all indistin-
guishable from each other. To put it differently, there is only one “big
solution” true for all logical problems. Such conception of solutions is
not very informative, especially when compared directly with CTT.

20 Later, Materna proposes a more refined account of solutions of logical problems
that replaces the initial one, which we have discussed above. However, the same
criticism still applies. More specifically, the preliminary solution “true” in case of
[⊃ [∧ A B] A] is replaced by “The result of applying a function to the function given
by the given GNPI” [25, p. 103], where GNPI are so-called general problems, i.e.,
problems that contain λ-bound Variables and construct some function. But if we put it
all together, this leads to the same outcome: the fully disclosed form of [⊃ [∧ A B] A]
in TILM is [∀ λ.A[∀ λB.[⊃ [∧ A B] A]]] (see e.g. [7, p. 49]) and if we carry this
TIL-construction out, we get the value true again. Also note that re-classifying it
into so-called singular problems, i.e., problems that do not contain λ-bound Variables
and are not singular concepts (i.e., Trivializations of non-constructions or Variables),
would not help either since its solution would be still true (see [25, p. 103]). The “re-
classification” can be achieved by removing the λ-binding and the quantifiers, hence
[⊃ [∧ A B] A] would become its fully disclosed form.

Algorithmic theories of problems 493

Let’s consider e.g. the theorem A ⊃ ((A ⊃ B) ⊃ B) again. From the
CTT perspective, its solution would be:

λy.λx.Ap(x, y)

which can be seen as a step by step instruction how to compose the
corresponding ND proof (reading backwards): we see two variables x, y,
hence two assumptions will be needed, then we see the function Ap, hence
one instance of Implication Elimination rule will take place, and then we
see two consecutive λ-abstractions, hence two consecutive applications of
Implication Introduction rule withdrawing assumptions x and y, respec-
tively. In other words, CTT’s solution λy.λx.Ap(x, y) tells us exactly
what it should, i.e., how to solve the problem A ⊃ ((A ⊃ B) ⊃ B),
unlike TILM’s solution true.

Now, let’s consider a different theorem A ⊃ (B ⊃ A) to demonstrate
our second issue with TILM, i.e., the conflation of all solutions. In the
CTT paradigm its solution would be:

λx.λy.x

which is clearly a different term from λy.λx.Ap(x, y). Of course, it should
come as no surprise, after all different problems should generally have
different solutions. But in TILM paradigm the corresponding solution
to the above problem would be again the truth value true. Thus, both
theorems (and all others for that matter) have the same solution.

3.5. Summary of TILM-Driven Analysis

TILM analysis of mathematical problems was on par with CTT (at least
to the extend of (P1)), however, we have encountered two drawbacks in
TILM analysis of logical problems, as witnessed upon closer examination
of the problem (P2). Namely, uninformative solutions (a mere truth
value does not provide any guidance solution wise) and the fact that all
logical theorems have the same solution (all solutions of logical problem
are conflated together and therefore indistinguishable). So TILM’s logi-
cal solutions do not tell us how to solve the corresponding problems and
further we cannot distinguish one solution from another. In the remain-
der of the paper, we will try to remedy these two issues, which are, of
course, closely related. It is not difficult to see where the main cause for
these troubles lies: TILM treats problems as ordinary true/false state-
ments. But, as demonstrated in our case study B, this approach does

494 Ivo Pezlar

not yield good results when applied to logical problems. For inspiration
on how to deal with this situation, we will turn to Kolmogorov.

4. TIL+
M Modification

4.1. Kolmogorov’s Insight: Problems and Propositions

At the beginning of this paper, we have said that Kolmogorov suggested
to interpret intuitionistic propositions as problems. That much is true
but it is only the first half of the story, so to speak. The other half, which
is often omitted, is that Kolmogorov actually didn’t want to remove the
notion of proposition from the intuitionistic vocabulary completely, he
just had different intended meaning for it in mind. What’s more, one
of his ambitions was to establish some sort of dual-calculus operating
simultaneously with both problems and propositions.

To put it shortly, Kolmogorov saw a difference between propositions
and problems. In commentary section of Selected Works of A. N. Kol-
mogorov he states:

Paper No. 19, “On the interpretation of intuitionistic logic” (IIL) [i.e.
[15]] was written with the hope that the logic of solutions of problems
would later become a regular part of courses on logic. It was intended to
construct a unified logical apparatus dealing with objects of two types
propositions and problems. [17, p. 452]

and, if we go even more to the past, in his correspondence with Heyting
he elaborates little bit more [16]:

Each ‘proposition’ in your framework belongs, in my view, to one of
two sorts:

(α) p expresses hope that in prescribed circumstances, a certain exper-
iment will always produce a specified result. (For example, that
an attempt to represent an even number n as a sum of two primes
will succeed upon exhausting all pairs (p, q), p < n, q < n.) Of
course, every “experiment” must be realizable by a finite number of
deterministic operations.

(β) p expresses intention to find a certain construction.
[. . .] I prefer to keep the name proposition (Aussage) only for proposi-
tions of type (α) and to call “propositions” of type β simply problems
(Aufgaben). Associated to a proposition p are the problems ∼ p (to
derive contradiction from p) and +p (to prove p).

Algorithmic theories of problems 495

Although these two quotes are quite vague (Kolmogorov never offered
fully satisfactory account of his position), we can get from them at
least the general idea of the relation between problems and propositions.
Specifically, that we can have them both in one system but we need to
distinguish the two, keep them apart.

We will accept this Kolmogorov’s distinction as a starting point of
our upcoming modification of TILM, called TIL+

M, and consider a system
that deals with both problems, i.e., something that can be solved, and
propositions, i.e., something that can be true or false, and views them as
entities of different types.21 This dual system setup allowing the intro-
duction of propositions alongside problems will, however, constitute only
the first part of our TIL+

M modification. The second part will rest upon
the idea of viewing proofs as objects of higher-order than the objects
they are proving.

4.2. Proofs as Higher-Order Objects

The main idea behind above mentioned change of perspective is quite
simple. If we state: a : A, with the traditionally intended meaning “a is
a proof establishing A”, then a is usually understood as a proof-term or
generally some sort of a justification to the truth of A. We intend to
keep this general interpretation but with a slight twist inspired by TIL.

Recall that in TIL, due to its ramified type hierarchy, we can have
2nd-order TIL-constructions operating on 1st-order TIL-constructions,
3rd-order TIL-constructions operating on 2nd-order TIL-constructions
and so on. With this in mind, we propose to understand the statement
a : A as claiming that a is some nth-order TIL-construction constructing
(n − 1)th-order TIL-construction A. In other words, we will take justi-
fications to be objects on a different level than the objects they justify.
This seems to be in line with some of our basic intuitions about justify-
ing. After all, to justify something we have to provide the corresponding
grounds for it. Metaphorically speaking, there has to be something we
can put it on, something that will carry its weight.

Of course, in this context talking about higher-order TIL-construc-
tions as “beneath positioned” justifications might be slightly confusing.

21 In a sense, our effort can be considered as continuation of Kolmogorov’s original
unfulfilled desire of building a dual system. However, we will not try to reconstruct
what Kolmogorov had in mind, rather we build upon his ideas. Similar task was
recently undertaken also by Melikhov, see [30].

496 Ivo Pezlar

However, we can just as easily think of them as “deeper”-order TIL-
constructions, i.e., mentally flip the ramified hierarchy upside down and
we will get the more familiar picture of ever deeper going justifications.
Thus, under this reading, e.g. x : A will not mean that A is an assumption
in some ND proof but rather that A is a propositional TIL-construction
v-constructed by some other higher-order TIL-construction x. But, of
course, it can still be interpreted in that way. This is the basic intuition
we utilize in our approach.

It is important to note that the idea of constructions operating on
other constructions is nothing new. Recall e.g. probably one of the most
famous explanations of implication given by Heyting:

The implication p ⊃ q can be asserted, if and only if we possess a
construction r, which, joined to any construction proving p (supposing
that the latter be effected), would automatically effect a construction
proving q. In other words, a proof of p, together with r, would form a
proof of q [11, p. 98]

Here the construction r definitely seems to be acting as some sort of
higher-order construction that takes construction proving p as an input
and returns construction proving q as an output.

This, of course, didn’t go unnoticed, e.g. van Dalen commented:

In the case of implication we are faced with a construction which oper-
ates on construction [Sic!]. . . [52, pp. 133–134]

or recently even Howard himself stated in correspondence with Wadler
the following [54]:

I was not familiar with the work of Brouwer or Heyting, let alone Kol-
mogorov but, from what Kreisel had to say, the idea was clear enough: a
construction of p ⊃ q was to be a construction F which, acting on a con-
struction A of p, gives a construction B of q. So we have constructions
acting on constructions, rather like functionals acting on functionals.

This will be the general spirit of our approach as well. The only dif-
ference will be that for us constructions (or rather TIL-constructions)
will be always operating on other constructions, not just in the case of
implication.

4.3. Problem Assignment and Solution Constructor

Adopting Kolmogorov’s ideas and thus moving away from “propositions-
as-problems” conception towards “propositions-and-problems” concep-

Algorithmic theories of problems 497

tion, we now introduce TIL+
M modification, which is TILM extended with

additional TIL-construction called Problem assignment and new version
of match called solution constructor.

We start with Problem assignment. It will be denoted as: ?K, where
K is a TIL-construction. ?K can be read as “Find a solution for K”,
“Prove that K”, “Construct K”, etc. Typewise, if K is a construction
of order n over B then ?K is a construction of order n + 1 over B.

The basic idea is that while the TIL-construction K of some theorem
will result in a truth value, i.e., true, TIL-construction ?K of a problem
will result in a proper, i.e., non-boolean, solution. In other words, if K is
a TIL-construction then ?K is a TIL-construction v-constructing a TIL-
construction that v-constructs the K, e.g. in the scope of a certain ND
proof. This, of course, opens up the issue of how to actually establish
such proper solution.

To this purpose, we introduce a solution constructor that will be
exclusively assigned to TIL-constructions of the form ?K. It will be
denoted as: x :: K, where x is a higher-order TIL-construction and K is
a lower-order TIL-construction v-constructed by x. x :: K can be read
as “x is a solution of K”, “x solves K”, “x is a proof of K” or generally
“x is a TIL-construction of K”.22

The thought process behind the introduction of solution constructor
is the following: even though in TILM all solution-objects to logical prob-
lems are the same (i.e., true), the solution-processes still differ (compare
c′′ and d′′). Thus the solution constructor will not keep track of what the
TIL-constructions are constructing as did the notion of match23 but
will rather record what was used to construct these TIL-constructions
in the first place, i.e., it will track the overall solution-process itself. To
put it differently, we utilize higher-order TIL-constructions to track the
“logical moves” done with the lower-order TIL-constructions.

22 Of course, not everything that counts as a TIL-construction of K can be
immediately also considered as a proof of K. In other words, it has to be recognizable
as such. For example, while [+ 5 7] constructs [+ 5 7], the former can be hardly
thought of as a solution to the latter.

23 Recall that match K : k tracked a special kind of congruence between K

and k. From this perspective, we can think of solution constructor x :: K as tracing
another special case of congruence between x and K on the proviso that we double
execute (recall Section 3.1) the TIL-construction on the left-hand side of ::. Take e.g.
[+ 5 7] :: [+ 5 7], while these two TIL-constructions are not congruent, ⇓ [+ 5 7]
and [+ 5 7] are because they both construct the number 12.

498 Ivo Pezlar

Therefore, e.g. x :: K can be read as either “TIL-construction K
has been constructed by some higher-order TIL-construction x” or, and
this is where the important part comes, as “K has been introduced
as an assumption” in the scope of some ND proof. And, of course,
TIL-constructions Closure and Composition can be used as well in a
similar manner to CHdB correspondence, i.e., as tracking Implication
Introduction and Implication Elimination rules, respectively.

Let’s start with Implication Introduction rule. Assume we have some
TIL-construction x of type ∗2 that v-constructs A of type ∗1 and we de-
rive from it another TIL-construction y of type ∗2 that v-constructs B of
type ∗1.24 Hence, we have effectively established the premise for the Im-
plication Introduction rule. Next, we introduce the higher-order function
ii of type (∗1∗1) that will model the behaviour of the required rule. More
specifically, it is a higher-order function that takes one 1st-order TIL-
construction as an argument (constructing a function that represents the
above mentioned deduction of y from x) and returns another 1st-order
TIL-construction as the conclusion, otherwise it is undefined. Conse-
quently, ii/∗2. The resulting TIL-construction [ii λx.y] also of type ∗2

then v-constructs [⊃ A B] of type ∗1. Note that with some slight varia-
tions what we have just described is essentially an instance of Implication
Introduction rule with CHdB correspondence attached. In other words,
we are emulating the proof-tracking behaviour of CHdB correspondence
within the toolset of TIL+

M, i.e., via higher-order TIL-constructions and
functions.

So changing the rule ⊃I accordingly and integrating the above men-
tioned function ii, we get:

(x :: A)
...

y :: B
⊃I+

[ii λx.y] :: [⊃ A B]

Recall that A and B are TIL-constructions (of type ∗1) v-constructing
non-empirical propositions of type o, i.e., TIL-constructions of truth val-
ues. Also note that the inference rule operates on solution constructors,
not on matches.25

24 Of course, we do not need to limit ourselves just to 1st- and 2nd-order TIL-
constructions, we only do so to keep the presentation simple.

25 We can observe that the rules ⊃-Intro and ⊃-Elim (or rather Π-Intro and
Π-Elim) of CTT correspond to the rules ⊃I+ and ⊃E+ of TIL+

M
.

Algorithmic theories of problems 499

Now, to the Implication Elimination rule. Suppose we have some
TIL-constructions x and y both of type ∗2 that v-construct [⊃ A B] and
A both of type ∗1, i.e., premises of Implication Elimination rule. Next,
we introduce a higher-order function that will emulate the behaviour
of this particular rule. Specifically, we introduce the function ie of type
(∗1 ∗1 ∗1) that takes two 1st-order TIL-constructions of the form [⊃ A B]
and A as premises and returns another 1st-order TIL-construction of the
form B as their conclusion, otherwise it is undefined. It follows that
ie/∗2. Then the TIL-construction [ie x y] also of type ∗2 v-constructs B
of type ∗1.

Again modifying the ⊃E rule accordingly, we get:

x :: [⊃ A B] y :: A
⊃E+

[ie x y] :: B

Note that ie appears to be equivalent to the operator Ap from CTT
(recall Section 2.2). Strictly speaking, however, this is not the case.
First of all, Ap is the operator for general function application and it
is only due to the CHdB correspondence (not present in TIL) that we
can use it for capturing the Implication Elimination rule as well. From
this perspective, Ap rather corresponds to the TIL-construction Com-
position itself which takes care of function application. But if that is
the case, why then not use simply [x y] instead of [ie x y]? The reason
for this is the following: [x y] is a Composition and as such it requires
that its first component, x in this case, v-constructs a function, other-
wise it is an improper TIL-construction, i.e., a TIL-construction that
v-constructs nothing (see Appendix). Assume that x and y v-construct
[⊃ A B] and A, respectively, as the rule demands. Then we effectively
end up with an improper TIL-construction [[⊃ A B] A] because [⊃ A B]
does not v-construct a function but a truth value. Hence, we need to
introduce ie to circumvent this issue. Secondly, recall that the rule for
computing Ap is essentially a β-reduction (the rule Π-Comp in Section
2.2). This is not the case for ie in TIL, where β-reduction is a rule for
equivalent transformation of TIL-constructions (see e.g. [7, 39]) and as
such it cannot be used to compute the value of [ie x y], i.e., determine
what it v-constructs. Thus, roughly put, while Ap in CTT captures
the behaviour of Implication Elimination rule (among other things), ie
captures in TIL+

M only the behaviour Implication Elimination rule.
Now, we possess everything necessary to solve the theorems A ⊃

((A ⊃ B) ⊃ B) and A ⊃ (B ⊃ A) in a satisfactory manner. For

500 Ivo Pezlar

comparison, we first produce their proofs using match (i.e., solving K):

([⊃ A B] : true) (A : true)
⊃E

B : true
⊃I

[⊃ [⊃ A B] B] : true
⊃I

[⊃ A [⊃ [⊃ A B] B]] : true

(A : true)
⊃I

[⊃ B A] : true
⊃I

[⊃ A[⊃ B A]] : true

Now, if we use the solution constructor instead of match (i.e., solving
?K) and the corresponding set of rules, we get:

(x :: [⊃ A B]) (y :: A)
⊃E+

[ie x y] :: B
⊃I+

[ii λx.[ie x y]] :: [⊃ [⊃ A B] B]
⊃I+

[ii λy.[ii λx.[ie x y]]] :: [⊃ A [⊃ [⊃ A B] B]]

(x :: A)
⊃I+

[ii λy.x] :: [⊃ B A]
⊃I+

[ii λx.[ii λy.x]] :: [⊃ A[⊃ B A]]

which is finally the result we were looking for, i.e., different solution-
objects ([ii λy.[ii λx.[ie x y]]] and [ii λx.[ii λy.x]]) for different problems
(?[⊃ A [⊃ [⊃ A B] B]] and ?[⊃ A[⊃ B A]]). Hence, we have successfully
unscrambled Materna’s conflated solutions true into proper and distin-
guishable solution-objects.

Note that while [⊃ A [⊃ [⊃ A B] B]] results in true, ?[⊃ A [⊃
[⊃ A B] B]] results in [ii λy.[ii λx.[ie x y]]]. So, in a sense, the former
outcome can be seen as an answer to the question “Is A ⊃ ((A ⊃ B) ⊃ B)
a theorem?”, while the latter as an answer to the question “Why is
A ⊃ ((A ⊃ B) ⊃ B) a theorem?”, i.e., it presents a proof. Or to put
it differently, [⊃ A [⊃ [⊃ A B] B]] can be seen as a (construction of)
proposition and ?[⊃ A [⊃ [⊃ A B] B]] as a problem. Hence, we have
both problems and propositions in our system, as Kolmogorov envisioned
it, the latter serving as sort of “derived” versions of the former. Note that
while we can get from [ii λy.[ii λx.[ie x y]]] to the truth value true, i.e., we
can reconstruct the proof and see that it indeed establishes a theorem,
the opposite direction is not possible: from true alone we cannot get to
[ii λy.[ii λx.[ie x y]]]. So, in a sense, problems are more fundamental
than propositions.

Algorithmic theories of problems 501

Of course, once equipped with solution constructor, there is no need
to stop at ⊃I+ and ⊃E+ and we can easily introduce rules for additional
logical connectives. Although our case studies do not require it, we
show how we can formulate solution-tracking rules for conjunction in an
analogous manner:

x :: A y :: B
∧I+

[ci x y] :: [∧ A B]
z :: [∧ A B]

∧E+

l[prl z] :: A

z :: [∧ A B]
∧E+

r[prr z] :: B

where ci constructs the “Conjunction Introduction rule” function in a
similar way as did ii previously for Implication Introduction rule. The
components prl and prr construct the familiar left and right projection
functions. Types of all these functions can be easily inferred: ci has type
∗2 and constructs a higher-order function of type (∗1 ∗1 ∗1) and prl/prr

are also of type ∗2 and construct higher-order functions of type (∗1∗1).
With these rules ready, we can e.g. prove ?[⊃ [∧ A B] A] as follows:

(z :: [∧ A B])
∧E+

l[prl z] :: A
⊃I+

[ii λz.[prl z]] :: [⊃ [∧ A B] A]

But it is important to reiterate that, strictly speaking, CHdB corre-
spondence is not present here (or anywhere else in TIL+

M), we are just
emulating its solution-tracking aspect via TIL’s native tools (see the
table below).

typed λ-calculus natural deduction TIL+
M

term variable assumption higher-order Variable

term proof higher-order TIL-construction

type proposition lower-order TIL-construction

type constructor connective function

type inhabitation provability constructibility via higher-order
TIL-construction

Thus, although it might look similar “on paper”, the underlying no-
tions as well as the technical scaffolding are different. Most notably,
while in CTT we work with judgements “term : type” in TIL+

M we have
“TIL-construction :: TIL-construction”. In other words, TIL+

M does not
incorporate CHdB correspondence but it can simulate it in order to catch

502 Ivo Pezlar

up with CTT in terms of a finger-grained analysis of logical problems,
which was our goal.

That is not to say, however, that TIL+
M does not have anything inter-

esting to offer on its own. Most importantly, given the ramified hierarchy
of types, we can consider not only proofs of TIL-constructions that v-
construct propositions (as in x :: A, which can be read as “assume A”)
but also proofs of those proofs (as in z :: x, which can be interpreted
as “assume that x :: A is an assumption”) and so on. Furthermore, we
could introduce two-dimensional match of the form x :: A ≃ y :: B
that would track the congruence between solution constructors more
specifically, between the respective proofs (the first dimension) and the
proved objects (the second dimension). Recall e.g. the proofs d and c,
with the two-dimensional match we could capture their relationship as
follows:

[ii λy.[ii λx.[ie λy.[ie x y] y]]] :: C ≃ [ii λy.[ii λx.[ie x y]]] :: C

where C is [⊃ A [⊃ [⊃ A B] B]]. This two-dimensional match (if satis-
fied) would then state that the proofs d and c are congruent/equivalent.
This naturally leads to the topic of equality of proofs in TIL+

M. That is,
however, worthy of its own investigation and it is far outside the scope
of this paper.

5. Final Remarks

We have surveyed two different conceptions of problems utilizing some-
thing that can be generally described as algorithmic or procedural se-
mantics, namely CTT relying on “propositions-as-problems” approach
and TIL/TILM relying on “TIL-constructions-as-problems” approach.

Both approaches dealt with mathematical problems (case study A
with the problem (P1)) in a satisfactory manner, however, logical prob-
lems (case study B with the problem (P2)) posed difficulties for TILM.
More precisely, TILM offered insufficient “boolean” solutions and con-
flated all solutions together. Further, we tried to show that TILM-based
approach is feasible, although significant modifications (i.e., TIL+

M in-
spired by Kolmogorov and CTT) were needed, specifically, the introduc-
tion of new TIL-construction called Problem assignment and adoption
of solution constructor, which were used to mimic the CHdB correspon-
dence in order to avoid TILM’s original shortcomings.

Algorithmic theories of problems 503

Also note that from the CTT perspective the problems (P1) and
(P2) although similar in form at first glance are of a different nature.
More specifically, the problem 5 + 7 : N is really a problem of checking
whether 5+7 evaluates to a natural number, namely 12 (i.e., succ(5+6) :
N). On the other hand, the problem A ⊃ ((A ⊃ B) ⊃ B) prompts us not
for a mere evaluation but for a construction of a certain object, namely,
λyλx.Ap(x, y).26

Observe, however, that these are not really two distinct kinds of
problems, rather two different stages of solving them, which can be per-
haps called establishing and evaluative stage. Take e.g. the problem
A ⊃ ((A ⊃ B) ⊃ B). At the first establishing stage, we present ei-
ther λyλx.Ap(x, y) or λyλx.Ap(λy.Ap(x, y), y) as a solution. And at the
second evaluative stage, we check their correctness, i.e., whether they
are in/reducible to canonical form. Analogously in the case of problem
(P1): first, we come up with the number 12 as a solution, then we check
whether it is a natural number.

In TILM, no such two phases can be identified and both (P1) and
(P2) are considered only at the evaluative stage. In other words, TILM,
in a sense, skips the inventive aspect of problem solving, i.e., the part of
“coming up with a solution”, and deals only with its correctness checking
aspect. This is why TILM yielded such similar results with CTT in the
case study A in comparison to the case study B: both CTT and TILM

dealt with the problem (P1) only from the evaluative perspective. Given
the difficulties TILM had encountered with logical problems, we have
to conclude that in the overall contest of CTT vs. TILM, it was the
former that won the first round dedicated to non-empirical problems.27

However, as we have also shown, these difficulties can be rectified by
adopting TIL+

M. Future work, the second round so to speak, will be
focused on empirical problems.

Appendix

TIL-constructions are defined as follows (originally defined by [49], we
adopt it here from [7] with slight changes):

26 I would like to thank Ansten Klev for bringing this point to my attention.
27 This was to be expected after all CTT was devised primarily as a framework

for constructive mathematics, while TILM or TIL in general was designed with a
heavy emphasis on natural language analysis.

504 Ivo Pezlar

1. The Variable x is a TIL-construction that constructs an object O of the
respective type dependently on a valuation. We say that it v-constructs O.

2. Where X is any object, X is the TIL-construction Trivialization. It con-
structs X without any change.

3. The Composition [K L1 . . .Lm] is the following TIL-construction. If K v-
constructs a function f of a type (αβ1 . . . βm) and L1 . . . Lm v-construct
objects b1, . . . , bm of types β1, . . . , βm, respectively, then the Composition
[K L1 . . . Lm] v-constructs the value (an object of type α, if any) of f
on the tuple-argument 〈b1, . . . , bm〉. Otherwise, it is a v-improper TIL-
construction, i.e., TIL-construction that does not construct anything.

4. The Closure λx1 . . . xm . K is the following TIL-construction. Let x1, . . . xm

be pairwise distinct Variables v-constructing objects of types β1, . . . , βm

and K a TIL-construction v-constructing an object of type α. Then
λx1 . . . xm . K is the TIL-construction Closure. It v-constructs the following
function f of type (αβ1 . . . βm): let 〈b1, . . . , bm〉 be a tuple of objects of type
β1 . . . βm, respectively, and v′ be a valuation that associates xi with bi and
is identical to v otherwise. Then the value of function f on argument tuple
〈b1, . . . , bm〉 is the object of type α v′-constructed by K. If K is v′-improper,
then f is undefined on 〈b1, . . . , bm〉.

5. The Single execution ↓ K is the TIL-construction that either v-constructs
the object v-constructed by K or, if K v-constructs nothing, is v-improper.

6. The Double execution ⇓K is the following TIL-construction: let K be any
object, the Double execution ⇓ K is v-improper if K is a non-construction
or if K does not v-construct a TIL-construction or if K v-constructs a v-
improper TIL-construction. Otherwise, let K v-construct a TIL-construc-
tion K ′ and let K ′ v-construct and object K ′′, then ⇓K v-constructs K ′′.

7. Nothing other is a TIL-construction, unless it follows from 1–6.

Acknowledgements. An early version of this paper was presented at the
“Oberseminar Logik und Sprachtheorie”, held at Universität Tübingen
(December 2014), and I want to thank the audience for discussion and
helpful comments. Also I would like to thank Ansten Klev and Jiří
Raclavský for various notes regarding earlier drafts of this paper. And
finally, I would like to thank anonymous reviewers for their extensive
and most helpful remarks and suggestions.

The work on this paper was supported by the grant of the Czech
Science Foundation (GAČR) “Semantic Notions, Paradoxes and Hyper-
intensional Logic Based on Modern Theory of Types”, registration no.
GA16-19395S.

Algorithmic theories of problems 505

References

[1] Church, A., “A set of postulates for the foundation of logic”, Annals of
Mathematics 33, 2 (1932): 346–366. DOI: 10.2307/1968337

[2] Church, A., “A formulation of the simple theory of types”, The Journal
of Symbolic Logic 5, 6 (1940): 56–68. DOI: 10.2307/2266170

[3] Curry, H. B., and R. Feys, Combinatory Logic, volume 1 of “Combinatory
Logic”, North-Holland Publishing Company, 1958.

[4] De Bruijn, N., “Automath, a language for mathematics”, Technical report,
Department of Mathematics, Eindhoven University of Technology, 1968.

[5] Duží, M., and B. Jespersen, “Procedural isomorphism, analytic informa-
tion and β-conversion by value”, Logic Journal of IGPL 21, 2 (2013):
291–308. DOI: 10.1093/jigpal/jzs044

[6] Duží, M., and P. Materna, “Can concepts be defined in terms of sets?”,
Logic and Logical Philosophy 19, 3 (2010): 195–242. DOI: 10.12775/LLP.

2010.008

[7] Duží, M., B. Jespersen, and P. Materna, Procedural Semantics for Hy-
perintensional Logic: Foundations and Applications of Transparent Inten-
sional Logic, “Logic, Epistemology, and the Unity of Science”, Springer,
2010. DOI: 10.1007/978-90-481-8812-3

[8] Gentzen, G., “Untersuchungen über das logische Schließen. I”, Mathema-
tische Zeitschrift 39, 1 (1935): 176–210. DOI: 10.1007/BF01201353

[9] Girard, J.-Y., Proofs and Types, “Cambridge Tracts in Theoretical Com-
puter Science” 7, Cambridge University Press, 1989.

[10] Granström, J. G., Treatise on Intuitionistic Type Theory, “Logic, Episte-
mology, and the Unity of Science”, Springer Netherlands, 2011. DOI: 10.

1007/978-94-007-1736-7

[11] Heyting, A., Intuitionism: An Introduction, “Studies in Logic and the
Foundations of Mathematics”, North-Holland Pub. Co., 1956.

[12] Horák, A., Computer Processing of Czech Syntax and Semantics, Lib-
rix.eu, Brno, Czech Republic, 2008.

[13] Howard, W. A., “The formulae-as-types notion of construction”, pages
479–490 in J. R. Hindley and J. P. Seldin (eds.), To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism, Academic Press,
1980.

[14] Jespersen, B., and M. Carrara, “A new logic of technical malfunction”,
Studia Logica 101, 3 (2013): 547–581. DOI: 10.1007/s11225-012-9397-8

[15] Kolmogorov, A. N., “Zur Deutung der intuitionistischen Logik”, Mathema-
tische Zeitschrift 35, 1 (1932): 58–65. English translation in Tikhomirov
1991, pp. 151–158 and Mancosu 1998, pp. 328–334. DOI: 10.1007/

BF01186549

http://dx.doi.org/10.2307/1968337
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1093/jigpal/jzs044
http://dx.doi.org/10.12775/LLP.2010.008
http://dx.doi.org/10.12775/LLP.2010.008
http://dx.doi.org/10.1007/978-90-481-8812-3
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/978-94-007-1736-7
http://dx.doi.org/10.1007/978-94-007-1736-7
http://dx.doi.org/10.1007/s11225-012-9397-8
http://dx.doi.org/10.1007/BF01186549
http://dx.doi.org/10.1007/BF01186549

506 Ivo Pezlar

[16] Kolmogorov, A. N., “Letters of A. N. Kolmogorov to A. Heyting”,
Russian Mathematical Surveys 43, 6 (1988): 89–93. DOI: 10.1070/

RM1988v043n06ABEH001986

[17] Kolmogorov, A. N., “On the interpretation of intuitionistic logic”, pages
151–158 in V. M. Tikhomirov (ed.), Selected Works of A. N. Kolmogorov,
volume 25 of “Mathematics and Its Applications (Soviet Series)”, Springer
Netherlands, 1991. DOI: 10.1007/978-94-011-3030-1_19

[18] Kovář, V., A. Horák, and M. Jakubíček, “How to analyze natural lan-
guage with Transparent Intensional Logic?”, pages 69–76 in P. Sojka and
A. Horák (eds.), Proceedings of Recent Advances in Slavonic Natural Lan-
guage Processing, RASLAN 2010.

[19] Martin-Löf, P., “An intuitionistic theory of types: Predicative part”, pages
73–118 in H. E. Rose and J. C. Shepherdson (eds.), Logic Colloquium
’73Proceedings of the Logic Colloquium, volume 80 of “Studies in Logic
and the Foundations of Mathematics”, Elsevier, 1975. DOI: 10.1016/

S0049-237X(08)71945-1

[20] Martin-Löf, P., “Hauptsatz for the intuitionistic theory of iterated induc-
tive definitions”, pages 197–215 in J. E. Fenstad (ed.), Proceedings of the
Second Scandinavian Logic Symposium (Oslo 1970), North-Holland, 1971.

[21] Martin-Löf, P., “About models for intuitionistic type theories and the
notion of definitional equality”, pages 81–109, North-Holland Publishing
Company, 1975.

[22] Martin-Löf, P., “Constructive mathematics and computer programming”,
pages 153–175 in J. L. Cohen and J. Łoś et al. (eds.), Logic, Methodology
and Philosophy of Science VI, 1979, North-Holland, 1982.

[23] Martin-Löf, P., Intuitionistic Type Theory, “Studies in Proof Theory”,
Bibliopolis, 1984.

[24] Materna, P., Concepts and Objects, Acta Philosophica Fennica, Helsinki:
Philosophical Society of Finland, vol. 63, 1998.

[25] Materna, P., Conceptual Systems, Logische Philosophie Logos, 2004.
[26] Materna, P., “Ordinary modalities”, Logique et Analyse 48, 57–70 (2005):

513–554.
[27] Materna, P., “The notion of problem, intuitionism and partiality”, Logic

and Logical Philosophy 17, 4 (2008): 287–303. DOI: 10.12775/LLP.2008.

016

[28] Materna, P., “Mathematical and empirical concepts”, pages 209–233 in
J. Maclaurin (ed.), Rationis Defensor, volume 28 of “Studies in History
and Philosophy of Science”, Springer Netherlands, 2012. DOI: 10.1007/

978-94-007-3983-3_16

[29] Materna, P., “Is Transparent Intensional Logic a non-classical logic?”,
Logic and Logical Philosophy 23, 1 (2014): 47–55. DOI: 10.12775/LLP.

2013.032

http://dx.doi.org/10.1070/RM1988v043n06ABEH001986
http://dx.doi.org/10.1070/RM1988v043n06ABEH001986
http://dx.doi.org/10.1007/978-94-011-3030-1_19
http://dx.doi.org/http://dx.doi.org/10.1016/S0049-237X(08)71945-1
http://dx.doi.org/http://dx.doi.org/10.1016/S0049-237X(08)71945-1
http://dx.doi.org/10.12775/LLP.2008.016
http://dx.doi.org/10.12775/LLP.2008.016
http://dx.doi.org/10.1007/978-94-007-3983-3_16
http://dx.doi.org/10.1007/978-94-007-3983-3_16
http://dx.doi.org/10.12775/LLP.2013.032
http://dx.doi.org/10.12775/LLP.2013.032

Algorithmic theories of problems 507

[30] Melikhov, S. A., “A galois connection between classical and intuitionistic
logics. I: Syntax”, 2013.

[31] Moschovakis, Y. N., “A logical calculus of meaning and synonymy”, Lin-
guistics and Philosophy 29, 1 (2006): 27–89. DOI: 10.1007/s10988-005-

6920-7

[32] Muskens, R., “Sense and the computation of reference”, Linguistics and
Philosophy 28, 4 (2005): 473–504. DOI: 10.1007/s10988-004-7684-1

[33] Nordström, B., K. Petersson, and J. M. Smith, Programming in Martin-
Löf’s Type Theory: An Introduction, International series of monographs
on computer science, Clarendon Press, 1990.

[34] Nordström, B., K. Petersson, and J M. Smith, Martin-Löf’s Type Theory.
Handbook of Logic in Computer Science, Volume 5, “Logic and Algebraic
Methods”, Oxford University Press, Oxford, 2001.

[35] Pierce, B. C., Types and Programming Languages, MIT Press, 2002.
[36] Primiero, G., and B. Jespersen, “Two kinds of procedural semantics for

privative modification”, Lecture Notes in Artificial Intelligence 6284: 251–
271, 2010. DOI: 10.1007/978-3-642-14888-0_21

[37] Raclavský, J., “On the interaction of semantics and deduction in Trans-
parent Intensional Logic (Is Tichý’s logic a logic?)”, Logic and Logical
Philosophy 23, 1 (2014): 57–68. DOI: 10.12775/LLP.2013.035

[38] Raclavský, J., and P. Kuchyňka, “Conceptual and derivation systems”,
Logic and Logical Philosophy 20, 1–2 (2011): 159–174. DOI: 10.12775/

LLP.2011.008

[39] Raclavský, J., P. Kuchyňka, and I. Pezlar, Transparent Intensional Logic
as Characteristica Universalis and Calculus Ratiocinator (in Czech),
Brno: Masaryk University (Munipress), Brno, 2015.

[40] Ranta, A., Type-Theoretical Grammar, Indices, Clarendon Press, 1994.
[41] Simmons, H., Derivation and Computation: Taking the Curry-Howard

Correspondence Seriously, Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 2000.

[42] Sørensen, M. H., and P. Urzyczyn, Lectures on the Curry-Howard Isomor-
phism, Volume 149 of “Studies in Logic and the Foundations of Mathe-
matic”, Elsevier Science Inc., New York, NY, USA, 2006.

[43] Stergios, Ch., and Z. Luo, Modern Perspectives in Type-Theoretical Se-
mantics, Springer Publishing Company, Incorporated, 1st edition, 2017.
DOI: 10.1007/978-3-319-50422-3

[44] Sundholm, G., “Constructions, proofs and the meaning of logical con-
stants”, Journal of Philosophical Logic 12, 2 (1983): 151–172. DOI: 10.

1007/BF00247187

[45] Thompson, S., Type Theory and Functional Programming, International
computer science series, Addison-Wesley, 1999.

http://dx.doi.org/10.1007/s10988-005-6920-7
http://dx.doi.org/10.1007/s10988-005-6920-7
http://dx.doi.org/10.1007/s10988-004-7684-1
http://dx.doi.org/10.1007/978-3-642-14888-0_21
http://dx.doi.org/10.12775/LLP.2013.035
http://dx.doi.org/10.12775/LLP.2011.008
http://dx.doi.org/10.12775/LLP.2011.008
http://dx.doi.org/10.1007/978-3-319-50422-3
http://dx.doi.org/10.1007/BF00247187
http://dx.doi.org/10.1007/BF00247187

508 Ivo Pezlar

[46] Tichý, P., “Foundations of partial type theory”, Reports on Mathematical
Logic 14 (1982): 59–72.

[47] Tichý, P., “Constructions”, Philosophy of Science 53, 4 (1986): 514–534.
[48] Tichý, P., “Indiscernibility of identicals”, Studia Logica 45, 3 (1986): 251–

273. DOI: 10.1007/BF00375897

[49] Tichý, P., The Foundations of Frege’s Logic, Foundations of Communica-
tion, de Gruyter, 1988.

[50] Tichý, P., V. Svoboda, B. Jespersen, and C. Cheyne (eds.), Pavel Tichý’s
Collected Papers in Logic and Philosophy, Filosofia, 2004.

[51] The Univalent Foundations Program, Homotopy Type Theory: Univa-
lent Foundations of Mathematics, Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book

[52] van Dalen, D., “Interpreting intuitionistic logic”, in P. C. Baayen, D. van
Dulst, and J. Oosterhoff (eds.), Proceedings, Bicentennial Congress,
Wiskundig Genootschap, Amsterdam: Mathematisch Centrum, 1979.

[53] van Heijenoort, J., From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, Source Books in the History of the Sciences, Harvard
University Press, 1977.

[54] Wadler, Ph., “Propositions as types”, Draft, 29 November 2014. http://

homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/

propositions-as-types.pdf

[55] Whitehead, A. N., and B. Russell, Principia Mathematica, Cambridge
University Press, 1910.

[56] Więckowski, B., “Constructive belief reports”, Synthese 192, 3 (2015):
603–633. DOI: 10.1007/s11229-014-0540-0

Ivo Pezlar
Department of Philosophy
Masaryk University
Arna Nováka 1
Brno, Czech Republic
pezlar@phil.muni.cz

http://dx.doi.org/10.1007/BF00375897
https://homotopytypetheory.org/book
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://dx.doi.org/10.1007/s11229-014-0540-0

	Introduction
	Non-Empirical Problems: Preliminary Considerations
	Case Study A: Mathematical Problems
	Case Study B: Logical problems
	Summary of Preliminary Considerations

	Martin-Löf's Constructive Type Theory
	Problems and Judgements
	FIEC Rules
	CTT-Driven Analysis: Case Study A (Mathematical Problems)
	CTT-Driven Analysis: Case Study B (Logical Problems)
	Summary of CTT-Driven Analysis

	Tichý's Transparent Intensional Logic
	TIL-Constructions and Matches
	TIL Inference Rules and Conceptual Systems
	TILM-Driven Analysis: Case Study A (Mathematical Problems)
	TILM-Driven Analysis: Case Study B (Logical Problems)
	Summary of TILM-Driven Analysis

	TILM+ Modification
	Kolmogorov's Insight: Problems and Propositions
	Proofs as Higher-Order Objects
	Problem Assignment and Solution Constructor

	Final Remarks
	Appendix
	References

