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NATURAL DEDUCTION FOR FOUR-VALUED

BOTH REGULAR AND MONOTONIC LOGICS

Abstract. The development of recursion theory motivated Kleene to cre-
ate regular three-valued logics. Taking his inspiration from the computer
science, Fitting later continued to investigate regular three-valued logics
and defined them as monotonic ones. Afterwards, Komendantskaya proved
that there are four regular three-valued logics and in the three-valued case
the set of regular logics coincides with the set of monotonic logics. Next,
Tomova showed that in the four-valued case regularity and monotonicity
do not coincide. She counted that there are 6400 four-valued regular logics,
but only six of them are monotonic. The purpose of this paper is to cre-
ate natural deduction systems for them. We also describe some functional
properties of these logics.
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1. Introduction

1.1. Preliminaries

All logics described in this paper are built in a propositional language L
which we define in Backus–Naur form as follows:

A := p | ¬A | A ∧ A | A ∨ A.

Let Prop and Form abbreviate, respectively, the set of all proposi-
tional variables and the set of all formulae of L. Let V3 and V4 be,
respectively, the set {1, u, 0} of truth values “true”, “undefined”, and
“false” and the set {1, b, n, 0} of truth values “true”, “both true and
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false”, “neither true no false”, and “false”. In all t-valued (t ∈ {3, 4})
logics described in this paper, a valuation is a function v from Prop to
Vt. Moreover, let us denote a truth-table f for a connective c by fc.

1.2. Three-valued both regular and monotonic logics

Let us call regular logics those systems in which all connectives are reg-
ular in the sense specified below. The investigation of them began in
Kleene’s paper [15] where two regular logics were introduced: Kleene’s
strong logic K3 and Kleene’s weak logic Kw

3 . In [14] Kleene defines reg-
ularity and clarifies the motivation behind it as follows:

We conclude that, in order for the propositional connectives to be par-
tial recursive operations (or at least to produce partial recursive pred-
icates when applied to partial recursive predicates), we must choose
tables for them which are regular, in the following sense: A given col-
umn (row) contains 1 in the u row (column), only if the column (row)
consists entirely of 1’s; and likewise for 0. [14, p. 334]

In K3 a valuation v on Prop is extended to a valuation on Form
according to the following truth tables:

f¬
1 0

u u

0 1

f∧ 1 u 0

1 1 u 0

u u u 0

0 0 0 0

f∨ 1 u 0

1 1 1 1

u 1 u u

0 1 u 0

In K3, an entailment relation is defined via the sole designated value 1.
However, Asenjo [1] studied K3 with two designated values (1 and u) as
a logic of antinomies. This logic is well-known as LP (Logic of Paradox)
due to Priest’s [23, 21, 22] continuation of Asenjo’s research. Note that
K3 (1938) is a fragment of Łukasiewicz’s logic Ł3 (1920) [18]. Natural de-
duction systems for K3 and LP, respectively, are presented in [22, 24, 17].

In Kw
3 negation is the same as for K3; conjunction and disjunction,

as was shown in Finn’s paper [8], are expressed via K3’s connectives by
equations (1) and (2) (see p. 55), respectively. Notice that Kw

3 (1938) is a
fragment of Bochvar’s logic B3 (1938) introduced in [4] independently of
[15]. Natural deduction systems for Kw

3 both with one and two designated
values are presented in [19].

The next stage in the exploration of regular three-valued logics is
Fitting’s paper [10] where the intermediate logic K→3 (Lisp) was discov-
ered. In K→3 negation is the same as for K3; conjunction and disjunction,
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as was shown in Komendantskaya’s paper [16], are expressed via K3’s
connectives by equations (3) and (4) (see p. 55), respectively. Moreover,
Komendantskaya [16] described the logic K←3 (TwinLisp) which is the
dual of K→3 . In K←3 , negation is the same as for K3; conjunction and
disjunction, as was shown in [16], are defined via K3’s connectives by
equations (5) and (6), respectively. Natural deduction systems for K→3
and K←3 both with one and two designated values are presented in [19].

Note also that Kw
3 ’s conjunction and disjunction, as was shown in

[16], are expressed both via K→3 ’s and K←3 ’s connectives (see equations
(7)–(10) on p. 55).

Let ∧ and ∨ be K3’s conjunction and disjunction, respectively; let
∩ and ∪ be Kw

3
’s conjunction and disjunction, respectively; let ∧→ and

∨→ be K→
3

’s conjunction and disjunction, respectively; let ∧← and ∨←

be K←
3

’s conjunction and disjunction, respectively. Then the following
equations hold [8, 16]:

A ∩ B = (A ∧ B) ∨ (A ∧ ¬A) ∨ (B ∧ ¬B) (1)

A ∪ B = (A ∨ B) ∧ (A ∨ ¬A) ∧ (B ∨ ¬B) (2)

A ∧→ B = (¬A ∨ B) ∧ A (3)

A ∨→ B = (¬A ∧ B) ∨ A (4)

A ∧← B = (A ∨ ¬B) ∧ B (5)

A ∨← B = (A ∧ ¬B) ∨ B (6)

A ∩ B = (A ∧→ B) ∨→ (B ∧→ A) (7)

A ∪ B = (A ∨→ B) ∧→ (B ∨→ A) (8)

A ∩ B = (A ∧← B) ∨← (B ∧← A) (9)

A ∪ B = (A ∨← B) ∧← (B ∨← A) (10)

Monotonic logics are those whose propositional connectives are mono-
tonic functions; a function F is monotonic, if F (x1, . . . , xz) ≤ F (y1,. . . ,
yk), for all truth values x1, . . . , xz, y1, . . . , yk such that x1 ≤ y1, . . . ,
xk ≤ yk. In [9, 10], the set {1, u, 0} is ordered as follows: u ≤ 1, u ≤ 0,
1 and 0 are incomparable. Using this order, Fitting [10] defined regular
logics as monotonic ones. Moreover, as shown in [16], the set of all regu-
lar three-valued logics coincides with the set of all normal three-valued1

monotonic logics.

1 A many-valued logic is called normal, if its connectives are classical on {1, 0}.
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1.3. Regularity and monotonicity in the four-valued case

In [25] Tomova defined regularity for the four-valued case as follows:

A given column (row) contains 1 in the b or n row (column), only if the
column (row) consists entirely of 1’s; and likewise for 0. [25, p. 226]

Moreover, Tomova [25] counted that there are 6400 four-valued reg-
ular disjunctions (conjunctions are defined in a standard way: A ∧ B =
¬(¬A ∨ ¬B)). Furthermore, there are 28 K3-type four-valued disjunc-
tions, 210 K→3 -type four-valued disjunctions, 210 K←3 -type four-valued
disjunctions, and 210 Kw

3 -type four-valued disjunctions.

In [25], the set {1, b, n, 0} is ordered as follows: n ≤ 0 ≤ b, n ≤ 1 ≤ b,
1 and 0 are incomparable. As follows from [25], this order produces 81
monotonic logics; however, only 6 of them are regular. Let us introduce
these logics:

• K→4 for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where

f¬
1 0

b b

n n

0 1

f∧ 1 b n 0

1 1 b n 0

b b b b b

n n n n n

0 0 0 0 0

f∨ 1 b n 0

1 1 1 1 1

b b b b b

n n n n n

0 1 b n 0

• K←4 for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where f¬ is the same
as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b n 0

n n b n 0

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b 1 b n b

n 1 b n n

0 1 b n 0

• Kw
4 for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where f¬ is the same

as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b b b

n n n n n

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b b b b b

n n n n n

0 1 b n 0



Natural deduction for four-valued . . . logics 57

• Kw
4b for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where f¬ is the same

as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b b b

n n b n n

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b b b b b

n n b n n

0 1 b n 0

• Kw
4bn for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where f¬ is the

same as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b n b

n n b n n

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b b b n b

n n b n n

0 1 b n 0

• Kw
4n for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉 where f¬ is the same

as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b n b

n n n n n

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b b b n b

n n n n n

0 1 b n 0

1.4. Functional properties of these four-valued logics

We will present here some functional properties of these four-valued log-
ics which were not mentioned in [25].

First of all, let us introduce Belnap–Dunn’s logic FDE [2, 3, 7]2 for
the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉3 where f¬ is the same as for
K→4 and

2 As mentioned in [9, 10, 11], FDE is a four-valued generalization of K3, i.e., with
respect to the sets {1, n, 0} and {1, b, 0} FDE is K3 and LP, respectively. A natural
deduction system for FDE may be found in [22].

3 Note that Belnap [2, 3] defined an entailment relation in FDE via ≤. However,
Font [12] proved that it is equivalently defined via the set {1, b} of designated values.
Later Zaitsev and Shramko [26] independently obtained the same result.
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f∧ 1 b n 0

1 1 b n 0

b b b 0 0

n n 0 n 0

0 0 0 0 0

f∨ 1 b n 0

1 1 1 1 1

b 1 b 1 b

n 1 1 n n

0 1 b n 0

If in equations (1) and (2) we replace K3’s connectives by FDE’s
connectives, we obtain Kw

4 ’s connectives. If in equations (3) and (4) we
replace K3’s connectives by FDE’s connectives, we obtain K→4 ’s connec-
tives. If in equations (5) and (6) we replace K3’s connectives by FDE’s
connectives, we obtain K←4 ’s connectives. Surprisingly, if in equations
(7)–(10) we replace K→3 ’s and K←3 ’s connectives by K→4 ’s and K←4 ’s con-
nectives, respectively, we do not obtain Kw

4 ’s connectives. We will obtain
connectives of the logic K↔4 for the matrix 〈{1, b, n, 0}, f¬, f∧, f∨, {1, b}〉
where f¬ is the same as for K→4 and

f∧ 1 b n 0

1 1 b n 0

b b b 1 b

n n 1 n n

0 0 b n 0

f∨ 1 b n 0

1 1 b n 1

b b b 0 b

n n 0 n n

0 1 b n 0

Although K↔4 is not regular, we will consider it on equal terms with
both regular and monotonic four-valued logics, since K↔4 ’s connectives
are naturally obtained from K→3 ’s and K←3 ’s ones.

Definition 1.1. Let L ∈ {K→
4

, K←
4

, Kw
4

, Kw

4b
, Kw

4bn
, Kw

4n
, K↔

4
}, Γ ⊆

Form, and A ∈ Form. Then Γ |=L A iff for each valuation v, if v(G) ∈
{1, b}, for any G ∈ Γ, then v(A) ∈ {1, b}.

2. Natural deduction systems

We will use the following rules of inference:

(¬¬I)
A

¬¬A
(¬¬E)

¬¬A

A

(∨I1)
A

A ∨ B
(∨I2)

B

A ∨ B
(∨I3)

¬A B

A ∨ B

(∨I4)
A ¬B

A ∨ B
(∨I5)

A ¬A

A ∨ B
(∨I6)

B ¬B

A ∨ B
(∨I7)

A B

A ∨ B
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(∧I1)
A B

A ∧ B
(∧I2)

A ¬A

A ∧ B
(∧I3)

B ¬B

A ∧ B
(∧I4)

A ¬A B

A ∧ B

(∧I5)
A ¬A ¬B

A ∧ B
(∧I6)

A B ¬B

A ∧ B
(∧I7)

¬A B ¬B

A ∧ B

(∧E1)
A ∧ B

A
(∧E2)

A ∧ B

B
(∧E3)

A ∧ B

¬A ∨ B

(∧E4)
A ∧ B

A ∨ ¬B
(∧E5)

A ∧ B

A ∨ B

(¬∨ I1)
¬A ∧ ¬B

¬(A ∨ B)
(¬∨ I2)

A ∧ ¬A

¬(A ∨ B)
(¬∨ I3)

B ∧ ¬B

¬(A ∨ B)

(¬∨ I4)
A ∧ ¬A ∧ B

¬(A ∨ B)
(¬∨ I5)

A ∧ B ∧ ¬B

¬(A ∨ B)

(¬∨ E1)
¬(A ∨ B)

¬A ∧ ¬B
(¬∨ E2)

¬(A ∨ B)

¬A
(¬∨ E3)

¬(A ∨ B)

¬B

(¬∨ E4)
¬(A ∨ B)

¬A ∨ B
(¬∨ E5)

¬(A ∨ B)

A ∨ ¬B

(¬ ∧ I)
¬A ∨ ¬B

¬(A ∧ B)
(¬ ∧ E)

¬(A ∧ B)

¬A ∨ ¬B

Moreover, we will use the following proof construction rules:

(∨E1)

[A] [¬A][B]
A ∨ B C C

C
(∨E2)

[A][¬B] [B]
A ∨ B C C

C

(∨E3)

[A][B] [A][¬B] [¬A][B]
A ∨ B C C C

C

(∨E4)

[A][B] [A][¬B] [¬A][B] [A][¬A]
A ∨ B C C C C

C

(∨E5)

[A][B] [A][¬B] [¬A][B] [B][¬B]
A ∨ B C C C C

C

(∨E6)

[A][B] [A][¬B] [¬A][B] [A][¬A] [B][¬B]
A ∨ B C C C C C

C
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(∧E6)

[A][B] [A][¬A] [B][¬B]
A ∧ B C C C

C

where [X]
Z

means that Z is derivable from the assumption X and this

assumption is discharged; and [X][Y ]
Z

means that Z is derivable from
either the assumption X or the assumption Y and either X or Y is
discharged.

It seems that these rules do not exactly meet the standard require-
ments with respect to natural deduction systems. However, this is a
consequence a consequence, on the one hand, of the semantic singularity
of the logics and, on the other, the method of axiomatization used.

A set of rules of a natural deduction system for K→4 is as follows:
(¬¬I), (¬¬E), (∨I1), (∨I3), (∨E1), (∧I1), (∧I2), (∧E1), (∧E3), (¬∨I1),
(¬∨I2), (¬∨E2), (¬∨E5), (¬∧I), (¬∧E).

A set of rules for K←4 is as follows: (¬¬I), (¬¬E), (∨I2), (∨I4),
(∨E2), (∧I1), (∧I3), (∧E2), (∧E4), (¬∨I1), (¬∨I3), (¬∨E3), (¬∨E4),
(¬∧I), (¬∧E).

A set of rules for Kw
4 is as follows: (¬¬I), (¬¬E), (∨I3), (∨I4), (∨I5),

(∨E4), (∧I1), (∧I2), (∧I7), (∧E3), (∧E4), (∧E5), (¬∨I1), (¬∨I2), (¬∨I5),
(¬∨E1), (¬∧I), (¬∧E).

A set of rules for Kw
4b is as follows: (¬¬I), (¬¬E), (∨I3), (∨I4), (∨I5),

(∨I6), (∨E6), (∧I1), (∧I2), (∧I3), (∧E3), (∧E4), (∧E5), (¬∨I1), (¬∨I2),
(¬∨I3), (¬∨E1), (¬∧I), (¬∧E).

A set of rules for Kw
4bn is as follows: (¬¬I), (¬¬E), (∨I3), (∨I4), (∨I6),

(∨E5), (∧I1), (∧I3), (∧I4), (∧I5), (∧E3), (∧E4), (∧E5), (¬∨I1), (¬∨I3),
(¬∨I4), (¬∨E1), (¬∧I), (¬∧E).

A set of rules for Kw
4n is as follows: (¬¬I), (¬¬E), (∨I3), (∨I4),

(∨E3), (∧I1), (∧I4), (∧I7), (∧E3), (∧E4), (∧E5), (¬∨I1), (¬∨I4), (¬∨I5),
(¬∨E1), (¬∧I), (¬∧E).

A set of rules for K↔4 is as follows: (¬¬I), (¬¬E), (∨I3), (∨I4),
(∨I7), (∨E3), (∧I1), (∧I2), (∧I3), (∧E6), (¬∨I1), (¬∨I2), (¬∨I3), (¬∨E1),
(¬∧I), (¬∧E).

Definition 2.1. Γ ⊢K→

4
A iff there is a derivation in the natural de-

duction system for K→
4

of a formula A from a set of assumptions Γ,
i.e., there is a finite non-empty sequence of formulae with the following
conditions: (i) each formula is an assumption or follows from the previ-
ous formulae via K→

4
’s rule of inference and (ii) by applying (∨E1) each

formula starting from the assumption A until a formula C, inclusively,
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as well as each formula starting either from the assumption ¬A until
a formula C, inclusively, or from the assumption B until a formula C,
inclusively, is discarded from the derivation.4 Note that the notion of
a derivation in the natural deduction system for K→

4
of A from Γ may

be defined in an alternative way as a finite tree labeled with formu-
lae such that conditions (i) and (ii) hold. The notion of Γ ⊢L A (for
L ∈ {K←

4
, Kw

4
, Kw

4b
, Kw

4bn
, Kw

4n
, K↔

4
}) is defined similarly.

Recall that the definition of Γ |=L A (for L ∈ {K→
4

, K←
4

, Kw
4

, Kw

4b
,

Kw

4bn
, Kw

4n
, K↔

4
}) is given in Definition 1.1.

Now we are ready to formulate the main result of this paper:

Theorem 2.1. Let L ∈ {K→
4

, K←
4

, Kw
4

, Kw

4b
, Kw

4bn
, Kw

4n
, K↔

4
}. Then for

all Γ ⊆ Form and A ∈ Form:

Γ ⊢L A iff Γ |=L A.

3. Proof of Theorem 2.1

As an example, we will prove Theorem 2.1 for the logic K→
4

. For other
logics this theorem is proved similarly. So let us write Γ ⊢ A for Γ ⊢K→

4
A

and Γ |= A for Γ |=K→

4
A. The soundness proof is by a routine check.

Proposition 3.1 (Soundness). For all Γ ⊆ Form and A ∈ Form:

if Γ ⊢ A then Γ |= A.

For the completeness proof we use Henkin’s method and adopt the
notational conventions of [17, 24]. A set of formulae Γ is a nontrivial
prime theory iff the following conditions are met:

(Γ1) Γ 6= Form (non-triviality);
(Γ2) Γ ⊢ A iff A ∈ Γ (closure of ⊢);
(Γ3) if A ∨ B ∈ Γ then either A ∈ Γ or both ¬A ∈ Γ and B ∈ Γ

(primeness).

For all Γ ⊆ A and A ∈ Form, e(A, Γ) is a canonic valuation iff the
following conditions are met:

4 This definition is an adaptation for our case of Copi, Cohen, and McMahon’s
one [6, p. 366].
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e(A, Γ) =























1 iff A ∈ Γ, ¬A /∈ Γ

b iff A ∈ Γ, ¬A ∈ Γ

n iff A /∈ Γ, ¬A /∈ Γ

0 iff A /∈ Γ, ¬A ∈ Γ

Lemma 3.1. For any nontrivial prime theory Γ and for all A, B ∈ Form:

(1) f¬(e(A, Γ)) = e(¬A, Γ);
(2) f∨(e(A, Γ), e(B, Γ)) = e(A ∨ B, Γ);
(3) f∧(e(A, Γ), e(B, Γ)) = e(A ∧ B, Γ).

Proof. (1.1) Let e(A, Γ) = 0. Then A 6∈ Γ, ¬A ∈ Γ. Suppose ¬¬A ∈ Γ.
By the rule (¬¬E), A ∈ Γ. Contradiction. Hence, ¬¬A 6∈ Γ. Therefore,
e(¬A, Γ) = 1 = f¬(0) = f¬(e(A, Γ)).

(1.2) Let e(A, Γ) = b. Then A ∈ Γ, ¬A ∈ Γ. By the rule (¬¬I),
¬¬A ∈ Γ. Therefore, e(¬A, Γ) = b = f¬(b) = f¬(e(A, Γ)). The other
cases are proved similarly.

(2.1) Let e(A, Γ) = b and e(B, Γ) = 1. Then A ∈ Γ, ¬A ∈ Γ, B ∈ Γ,
and ¬B 6∈ Γ. By the rule (∨I1), A∨B ∈ Γ. By the rules (∧I1) and (¬∨I2),
¬(A ∨ B) ∈ Γ. Hence, e(A ∨ B, Γ) = b = f∨(b, 1) = f∨(e(A, Γ), e(B, Γ)).

(2.2) Let e(A, Γ) = n and e(B, Γ) = 1. Then A 6∈ Γ, ¬A 6∈ Γ, B ∈ Γ,
and ¬B 6∈ Γ. Suppose A ∨ B ∈ Γ. Then, by (Γ3), either A ∈ Γ or
both ¬A ∈ Γ and B ∈ Γ. Contradiction. Hence, A ∨ B 6∈ Γ. Suppose
¬(A ∨ B) ∈ Γ. By the rule (¬∨E2) ¬A ∈ Γ. Contradiction. Hence,
¬(A ∨ B) 6∈ Γ. So e(A ∨ B, Γ) = n = f∨(n, 1) = f∨(e(A, Γ), e(B, Γ)).
The other cases are proved similarly.

(3.1) Let e(A, Γ) = 1 and e(B, Γ) = 0. Then A ∈ Γ, ¬A 6∈ Γ, B 6∈ Γ,
and ¬B ∈ Γ. Suppose A ∧ B ∈ Γ. By the rule (∧E3), ¬A ∨ B ∈ Γ.
By (Γ3), either ¬A ∈ Γ or both ¬¬A ∈ Γ and B ∈ Γ. Contradiction.
So A ∧ B 6∈ Γ. By the rule (¬¬I), ¬¬A ∈ Γ. Then by the rule (∨I3),
¬A ∨ ¬B ∈ Γ. By the rule (¬∧I), ¬(A ∧ B) ∈ Γ. Hence, e(A ∧ B, Γ) =
0 = f∨(1, 0) = f∨(e(A, Γ), e(B, Γ)).

(3.2) Let e(A, Γ) = b and e(B, Γ) = n. Then A ∈ Γ, ¬A ∈ Γ, B 6∈ Γ,
and ¬B 6∈ Γ. By the rule (∧I2), A∧B ∈ Γ. By the rules (∨I1) and (¬∧I),
¬(A ∧ B) ∈ Γ. Hence, e(A ∧ B, Γ) = b = f∨(b, n) = f∨(e(A, Γ), e(B, Γ)).
The other cases are proved similarly.

By a structural induction on formulae, using Lemma 3.1 we obtain:
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Lemma 3.2. Let Γ be any nontrivial prime theory and vΓ be an arbitrary

valuation such that vΓ(p) = e(p, Γ), for any p ∈ Prop. Then we have

vΓ(A) = e(A, Γ), for any A ∈ Form.

Lemma 3.3 (Lindenbaum). For all Γ ⊆ Form, A ∈ Form, if Γ 6⊢ A then

there is Γ∗ ⊆ Form such that (1) Γ ⊆ Γ∗, (2) Γ∗ 0 A, and (3) Γ∗ is a

nontrivial prime theory.

Proof. Suppose Γ 0 A. Let B1, B2, . . . be an enumeration of Form.
Let Γ0, Γ1, . . . be a sequence of sets of formulae defined as follows:

Γ0 = Γ

Γi+1 =

{

Γi ∪ {Bi+1}, if Γi ∪ {Bi+1} 6⊢ A;
Γi, otherwise.

We take Γ∗ =
⋃

∞

i=1 Γi. Then:

(1) Follows from the definition of Γ∗.
(2) By straightforward induction on i.
(3) We prove only the case (Γ3) as it is the most complicated one.

(Γ3) Suppose B ∨C ∈ Γ∗, but B 6∈ Γ∗ and either ¬B 6∈ Γ∗ or C 6∈ Γ∗.
Since B ∨C ∈ Γ∗, so Γ∗ ⊢ B ∨C (cf.(Γ2)). Moreover, for some i, j, and k
we have: B = Bi, ¬B = Bj , and C = Bk. Furthermore, Γi−1 ∪{Bi} ⊢ A
and either Γj−1 ∪ {Bj} ⊢ A or Γk−1 ∪ {Bk} ⊢ A. Since Γi−1 ⊆ Γ∗,
Γj−1 ⊆ Γ∗, and Γk−1 ⊆ Γ∗, so Γ∗ ∪ {Bi} ⊢ A and either Γ∗ ∪ {Bj} ⊢ A
or Γ∗ ∪ {Bk} ⊢ A. From the latter and the fact that Γ ⊢ B ∨ C, by the
rule (∨E1), we obtain Γ∗ ⊢ A. This contradicts (2). The statement (Γ3)
is proved.

Proposition 3.2 (Completeness). For all Γ ⊆ Form and A ∈ Form:

if Γ |= A then Γ ⊢ A.

Proof. Suppose Γ 0 A. Then, by Lemma 3.3, there is Γ∗ ⊆ Form such
that (1) Γ ⊆ Γ∗, (2) Γ∗ 0 A, and (3) Γ∗ is a nontrivial prime theory. By
Lemma 3.2, there is a valuation vΓ∗ such that: vΓ∗(B) ∈ {1, b}, for any
B ∈ Γ, and vΓ∗(A) 6∈ {1, b}. Then Γ 6|= A. So if Γ 0 A then Γ 6|= A. By
contraposition we obtain that if Γ |= A then Γ ⊢ A.

Theorem 2.1 immediately follows from propositions 3.1 and 3.2 for
the case of K→

4
. Recall that for other logics Theorem 2.1 is proved

similarly.
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4. Conclusion

In this paper, we have constructed natural deduction systems for regular
and monotonic four-valued logics that is a continuation of [17, 19, 22, 24]
where regular three-valued logics are formalized via natural deduction
systems.

The future work concerns, firstly, exploring the other possible gener-
alizations for the four-valued case of regular three-valued logics; secondly,
the development of proof-search algorithms in the spirit of [5] for the
calculi described in this paper; and thirdly, an investigation of the logics
studied here with other sets of designed values; for example, with the
sole designated value 1.5

Acknowledgments. I would like to thank an anonymous referee as well
as the editors of LLP for suggestions regarding the earlier version of this
paper.

References

[1] Asenjo, F. G., “A calculus of antinomies”, Notre Dame Journal of Formal

Logic 7 (1966): 103-105. DOI: 10.1305/ndjfl/1093958482

[2] Belnap, N. D., “A useful four-valued logic”, pages 7–37 in J. M. Dunn

and G. Epstein, Modern Uses of Multiple-Valued Logic, Boston: Reidel

Publishing Company, 1977. DOI: 10.1007/978-94-010-1161-7_2

[3] Belnap, N. D., “How a computer should think”, pages 30–56 in G. Rule

(ed.), Contemporary Aspects of Philosophy, Stocksfield: Oriel Press, 1977.

[4] Bochvar, D. A., “On a three-valued logical calculus and its application to

the analysis of the paradoxes of the classical extended functional calculus”,

History and Philosophy of Logic 2 (1981): 87–112. English translation of

Bochvar’s paper of 1938. DOI: 10.1080/01445348108837023

[5] Bolotov, A., and V. Shangin, “Natural deduction system in paraconsistent

setting: Proof search for PCont”, Journal of Intelligent Systems 21 (2012):

1–24. DOI: 10.1515/jisys-2011-0021

[6] Copi, I. M., C. Cohen, and K. McMahon, Introduction to Logic, Fourteenth

Edition, Routledge, New York, 2011.

5 Note that for FDE such an investigation was completed in Pietz and Rivieccio’s
paper [20].

http://dx.doi.org/10.1305/ndjfl/1093958482
http://dx.doi.org/10.1007/978-94-010-1161-7_2
http://dx.doi.org/10.1080/01445348108837023
http://dx.doi.org/10.1515/jisys-2011-0021


Natural deduction for four-valued . . . logics 65

[7] Dunn, J. M., “Intuitive semantics for first-degree entailment and cou-

pled trees”, Philosophical Studies 29 (1976): 149–168. DOI: 10.1007/

BF00373152

[8] Finn, V. K., “Axiomatization of some three-valued propositional calculi

and their algebras” (in Russian), pages 398–438 in P. Tavanets and

V. Smirnov (eds.), Philosophy in the Contemporary World. Philosophy

and Logic, Moscow: Nauka Publ., 1974.

[9] Fitting, M., “Kleene’s logic, generalized”, Journal of Logic and Computa-

tion 1 (1991): 797–810. DOI: 10.1093/logcom/1.6.797

[10] Fitting, M., “Kleene’s three valued logics and their children”, Fundamenta

Informaticae 20 (1994): 113–131. DOI: 10.3233/FI-1994-201234

[11] Fitting, M., “Negation as refutation”, pages 63–70 in R. Parikh (ed.), Pro-

ceedings of the Fourth Annual Symposium on Logic in Computer Science

(1989), IEEE, 1989. DOI: 10.1109/LICS.1989.39159

[12] Font, J. M., “Belnap’s four-valued logic and De Morgan lattices”, Logic

Journal of the IGPL 5 (1997): 1–29. DOI: 10.1093/jigpal/5.3.1-e

[13] Karpenko, A. S., The Development of Many-Valued Logic (in Russian),

LKI, 2010.

[14] Kleene, S. C., Introduction to Metamathematics, Sixth Reprint, Wolters-

Noordhoff Publishing and North-Holland Publishing Company, 1971.

[15] Kleene, S. C., “On a notation for ordinal numbers”, The Journal of Sym-

bolic Logic 3 (1938): 150–155. DOI: 10.2307/2267778

[16] Komendantskaya, E. Y., “Functional expressibility of regular Kleene’s log-

ics” (in Russian), Logical Investigations 15 (2009): 116–128.

[17] Kooi, B., and A. Tamminga, “Completeness via correspondence for ex-

tensions of the logic of paradox”, The Review of Symbolic Logic 5 (2012):

720–730. DOI: 10.1017/S1755020312000196

[18] Łukasiewicz, J., “On three-valued logic”, pages 87–88 in L. Borkowski

(ed.), Jan Łukasiewicz: Selected Works, Amsterdam, North-Holland Pub-

lishing Company, 1997. English translation of Łukasiewicz’s paper of 1920.

[19] Petrukhin, Y., “Natural deduction for three-valued regular logics”, Logic

and Logical Philosophy 26, 2 (2017): 197–206. DOI: 10.12775/LLP.2016.

025

[20] Pietz, A., and U. Rivieccio, “Nothing but the truth”, Journal of Philo-

sophical Logic 42 (2013): 125–135. DOI: 10.1007/s10992-011-9215-1

[21] Priest, G., “Logic of paradox revisited”, Journal of Philosophical Logic 13

(1984): 153–179. DOI: 10.1007/BF00453020

[22] Priest, G., “Paraconsistent logic”, in M. Gabbay and F. Guenthner

(eds.), Handbook of Philosophical Logic, vol. 6, Second Edition, Dordrecht:

Kluwer, 2002. DOI: 10.1007/978-94-017-0460-1_4

http://dx.doi.org/10.1007/BF00373152
http://dx.doi.org/10.1007/BF00373152
http://dx.doi.org/10.1093/logcom/1.6.797
http://dx.doi.org/10.3233/FI-1994-201234
http://dx.doi.org/10.1109/LICS.1989.39159
http://dx.doi.org/10.1093/jigpal/5.3.1-e
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.1017/S1755020312000196
http://dx.doi.org/10.12775/LLP.2016.025
http://dx.doi.org/10.12775/LLP.2016.025
http://dx.doi.org/10.1007/s10992-011-9215-1
http://dx.doi.org/10.1007/BF00453020
http://dx.doi.org/10.1007/978-94-017-0460-1_4


66 Yaroslav Petrukhin

[23] Priest, G., “The logic of paradox”, Journal of Philosophical Logic 8 (1979):

219–241. DOI: 10.1007/BF00258428

[24] Tamminga, A., “Correspondence analysis for strong three-valued logic”,

Logical Investigations 20 (2014): 255–268.

[25] Tomova, N. E., “About four-valued regular logics” (in Russian), Logical

Investigations 15 (2009): 223–228.

[26] Zaitsev, D. V., and Y. V. Shramko, “Logical entailment and designated

values” (in Russian), Logical Investigations 11 (2004): 126–137.

Yaroslav Petrukhin

Department of Philosophy
Moscow State University
Moscow, Russia
yaroslav.petrukhin@mail.ru

http://dx.doi.org/10.1007/BF00258428

	Introduction
	Preliminaries
	Three-valued both regular and monotonic logics
	Regularity and monotonicity in the four-valued case
	Functional properties of these four-valued logics

	Natural deduction systems
	Proof of Theorem 2.1
	Conclusion
	References


