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CATEGORY FREE CATEGORY THEORY

AND ITS PHILOSOPHICAL IMPLICATIONS

Abstract. There exists a dispute in philosophy, going back at least to Leib-
niz, whether is it possible to view the world as a network of relations and
relations between relations with the role of objects, between which these
relations hold, entirely eliminated. Category theory seems to be the correct
mathematical theory for clarifying conceptual possibilities in this respect.
In this theory, objects acquire their identity either by definition, when in
defining category we postulate the existence of objects, or formally by the
existence of identity morphisms. We show that it is perfectly possible to
get rid of the identity of objects by definition, but the formal identity of ob-
jects remains as an essential element of the theory. This can be achieved by
defining category exclusively in terms of morphisms and identity morphisms
(objectless, or object free, category) and, analogously, by defining category
theory entirely in terms of functors and identity functors (categoryless, or
category free, category theory). With objects and categories eliminated, we
focus on the “philosophy of arrows” and the roles various identities play in
it (identities as such, identities up to isomorphism, identities up to natu-
ral isomorphism . . . ). This perspective elucidates a contrast between “set
ontology” and “categorical ontology”.
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1. Introduction

There exists a tendency in philosophy, going back at least to Leibniz,
to view the universe as a network of relations and relations between
relations with the role of objects, between which these relations hold,
minimalysed or even reduced to null. If in Leibniz such a view should
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be possibly restricted only to space and time1, thinkers were not lacking
who espoused this standpoint in its full extent. It is interesting to notice
that one of Leibniz’s arguments against Newton’s idea of absolute space
drew on his outspoken Principle of the Identity of Indiscernibles which
excludes the possibility for two things being distinct that would not
be different with respect to at least one discernible property. Imagine
now the world moved by some distance in absolute space. Two such
“configurations” (before and after the world has been moved) would be
indiscernible even for God. Therefore, the concept of absolute space
should be ruled out as contradicting the Principle of the Identity of In-
discernibles. Essentially the same reasoning leads, according to Leibniz,
to rejection of absolute time. The concepts of identity and that of relat-
edness of everything with everything are strictly interwoven with each
other. To see the interconnectedness of these concepts, let us introduce
the following terminology. There is a sense in which “we can talk about
this object, whatever properties it may have, as opposed to that object,
whatever properties this second object may have” [16, pp. 16–17]. In
this sense, we speak about the primitive thisness of this object. If this is
not the case, i.e., if the identity of the object depends on its properties
related to other objects, we can talk about the induced or contextual

thisness of this object. If the identity of every object is reduced only
to the induced thisness, we can speak about the complete relatedness of
the system of objects. On the contrary, if the identity of every object is
reduced only to its primitive thisness, we could speak about an “abso-
lute” system in which relations between objects play no role. Of course,
“mixed situations” are also possible.

Category theory seems to be the correct mathematical theory for
clarifying conceptual possibilities in this domain (see, for instance, [11],
and also [12, Part II]). It seems natural to identify objects of the pre-
ceding paragraph with objects of category theory, and relations of the
preceding paragraph with morphisms of category theory, or objects with
categories themselves and relations with functors between categories (in
this paper we do not consider n-categories). Is there a possibility to
get rid of objects entirely and, in this way, to implement the idea of
the complete relatedness of the system? To pose correctly this question
in the context of category theory, we must first look for the identity of
objects. In category theory objects acquire their identity on two levels:

1 It is debatable whether it can be extended to his monadology.
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first, by definition, when in defining category we postulate the existence
of objects; second, formally by the existence of identity morphisms; we
can speak about the “identity by definition” and the “formal identity”,
respectively. In the following, we show that it is perfectly possible to
get rid of the identity of objects by definition, but the formal identity of
objects remains as an essential element of the theory. In this way, every-
thing can be reduced to morphisms (arrows). With objects eliminated,
we focus on the “philosophy of arrows” which we briefly discuss.

2. Objectless Category Theory

In the present section, we briefly present, following [14, pp. 44–46] (see
also [1, pp. 41–43]), a formulation of category theory in terms of mor-
phisms without explicitly mentioning objects. As we shall see, this for-
mulation is equivalent to the standard one.

Definition 2.1. Let us axiomatically define a theory which we shall
call an objectless or object free category theory. In this theory, the only
primitive concepts (besides the usual logical concepts and the equality
concept) are:

(I) α is a morphism,
(II) the composition of morphisms αβ is defined.

The following axioms are assumed:

1. Associativity of compositions: Let α, β, γ be morphisms. If the com-
positions βα and γβ exist, then
• the compositions γ(βα) and (γβ)α exist and are equal;
• if γ(βα) exists, then γβ exists, and if (γβ)α exists then βα exists.

2. Existence of identities: For every morphism α there exist morphisms
ι and ι′, called identities, such that
• βι = β whenever βι is defined (and analogously for ι′),
• ιγ = γ whenever ιγ is defined (and analogously for ι′).
• αι and ι′α are defined.

Lemma 2.1. Identities ι and ι′ of Axiom 2 are uniquely determined by

the morphism α.

Proof. Let us prove the uniqueness for ι (for ι′ the proof goes analo-
gously). Let ι1 and ι2 be identities, and αι1 and αι2 exist. Then αι1 = α

and (αι1)ι2 = αι2. From Axiom 1 it follows that ι1ι2 is determined.
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But ι1ι2 exists if an only if ι1 = ι2. Indeed, let us assume that ι1ι2

exist then ι1 = ι1ι2 = ι2. And vice versa, assume that ι1 = ι2. Then,
from Axiom 2, it follows that there exists an identity ι such that ιι1

exists, and hence is equal to ι (because ι1 is an identity). This, in turn,
means that (ιι1)ι2 exists, because (ιι1)ι2 = ιι2 = ιι1 = ι. Therefore, ι1ι2

exists, by Axiom 1.

Let us denote by d(α) and c(α) identities that are uniquely deter-
mined by a morphism α, i.e., such that the compositions αd(α) and c(α)α
exist (letters d and c come from “domain” and “codomain”, respectively).

Lemma 2.2. The composition βα exists if and only if c(α) = d(β), and

consequently,

d(βα) = d(α) and c(βα) = c(β).

Proof. Let c(α) = d(β) = ι, then βι and ια exist. From Axiom 1 it
follows that there exists the composition (βι)α = βα. Let us now assume
that βα exists, and let us put ι = c(α). Then ια exists which implies
that βα = β(ια) = (βι)α. Since βι exists then d(β) = ι.

Definition 2.2. If for any two identities ι1 and ι2 the class

〈ι1, ι2〉 = {α : d(α) = ι1, c(α) = ι2},

is a set then objectless category theory is called small.

Definition 2.3. Let us choose a class C of morphisms of the objectless
category theory (i.e., C is a model of the objectless category theory), and
let C0 denote the class of all identities of C. If ι1, ι2, ι3 ∈ C0, we define
the composition

mC0

ι1,ι2,ι3
: 〈ι1, ι2〉 × 〈ι2, ι3〉 → 〈ι1, ι3〉

by mC0

(α, β) = βα. Class C is called objectless category.

Proposition 2.1. The objectless category Definition 2.3 is equivalent

to the standard definition of category.

Proof. To prove the theorem it is enough to reformulate the standard
category definition in the following way. A category C consists of

(I) a collection C0 of objects;
(II) for each A, B ∈ C0, a collection 〈A, B〉C0 of morphisms from A

into B;
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(III) for each A, B, C ∈ C0, if α ∈ 〈A, B〉C0 and β ∈ 〈B, C〉C0 , the
composition

mC0

: 〈A, B〉C0 × 〈B, C〉C0 → 〈A, C〉C0

is defined by mC0

A,B,C(α, β).

The following axioms are assumed

1. Associativity: If α ∈ 〈A, B〉C0 , β ∈ 〈B, C〉C0 , γ ∈ 〈C, D〉C0 then

γ(βα) = (γβ)α.

2. Identities: For every B ∈ C0 there exists a morphism ιB ∈ 〈B, B〉C0

such that

∀A∈C0∀α∈〈A,B〉
C0

ιBα = α,

∀C∈C0∀β∈〈B,C〉
C0

βιB = β.

To see the equivalence of the two definitions it is enough to suitably
replace in the above definition objects by their corresponding identities.

This proposition creates three possibilities to look at the category
theory: (1) the standard way, in terms of objects and morphisms, (2)
the objectless way, in terms of morphisms only, (3) the hybrid way in
which we take into account the existence of objects but, if necessary or
useful, we regard them as identity morphisms. The hybrid way could be
useful in some interpretative issues.

3. Theory of Categories without Categories

It is almost trivial to see that the above move towards getting rid of
objects can be repeated on the level of categories themselves, i.e., to-
wards formulating category theory entirely in terms of functors. The
idea would be the same as above  to substitute identity functors for
categories. What we need first, is the objectless functor definition, but
it is straightforward

Definition 3.1. Let C and D be objectless categories (Definition 2.3).
The objectless covariant (contravariant) functor Φ: C → D is an as-
signment of morphisms of C to the morphisms of D in such a way that
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the compositions and the identities are preserved, i.e., if α and β are
morphisms of C, then

Φ(αβ) = Φ(α)Φ(β) (Φ(αβ) = Φ(β)Φ(α)),

and if ι, ι′ ∈ C0, then Φ(ι) and Φ(ι′) are identities associated with Φ(α).

Since functors can be composed and there exist identity functors, it
is straightforward to repeat the strategy of the preceding section and
define “categoryless, or category free, category theory”. The obviousness
of the definition allows us to do this in a sketchy way.

Definition 3.2. The only primitive concepts of the category theory with-

out categories are:

(I) Φ is a functor;
(II) the composition of functors ΦΨ is defined.

The axioms of the associativity of functor composition and of the exis-
tence of functor identities (analogous to axioms 1 and 2 of Definition 2.1)
are assumed.

The results analogous to that of lemmas 2.1 and 2.2 are clearly true.
Let D(Φ) and C(Φ) be identity functors such that the compositions
ΦD(Φ) and C(Φ)Φ exist. Then the composition ΨΦ exists if and only if
C(Φ) = D(Ψ).

The above results are almost trivial from the formal point of view, but
philosophically they are quite remarkable: the very concept of category
is not indispensable in developing the theory itself. This remains in
agreement with the practice of Eilenberg and Mac Lane who, in their
seminal paper [5], regarded categories as auxiliary constructs necessary
only to ensure domains and codomains for morphisms.

4. Contextual Thisness

What has been achieved by introducing objectless categories and cat-
egory theory without categories?2 Let us focus on objects (analogous
things can be said about categories). As we have seen, in the objectless
category theory, objects do not acquire their individuality by definition,

2 It is interesting to notice that William Lawvere in his seminal doctor thesis
consequently eliminated objects with the help of identity morphisms [9].
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but only formally through the identity morphisms. Instead postulat-
ing the existence of objects, one postulates the existence of morphisms
which, when composed with other morphisms, change nothing. One
cannot speak here about the primitive thisness in the sense described
in Section 1, but only about the contextual thisness, and the context
is now given by those morphisms with which a given identity morphism
composes (to change nothing). I propose to call it compositional thisness.
This is the closest (but still faraway) from the primitive thisness (as it
can be defined in set theory) that can be obtained in category theory. Let
us notice that the principle of indiscernibility of identities, in its original
form, does not hold for this kind of thisness  two identities could be
discernible through their compositions with different morphisms. We
can, therefore, speak of discernibility through compositions.

The elimination of objects is possible not only on the formal level,
but also on the level of logical language. Let us consider an example. For
some purposes it is important to define the concept of category in a first-
order language. The most obvious of such languages is the one in which
there are two sorts of variables: one ranging over objects and another
over arrows. However, the language becomes simpler and more elegant
if we abolish this dichotomy by adopting objectless category approach
and replace objects by their corresponding identity arrows. This requires
some toil but is certainly more in the spirit of category theory (see [7,
pp. 232–234]).

5. Individuality of Categories

In mathematics we are usually interested in the individuality of entities
“up to isomorphism”. In this sense, mathematical entities change their
individuality depending on the context. For instance, in topology two
homeomorphic spaces are regarded as the same (homeomorphism is a
topological isomorphism), but in differential geometry two diffeomorphic
differential manifolds are regarded as the same (diffeomorphism is an
isomorphism of differential manifolds). The concept of isomorphism has
its categorical counterpart.

Let X and Y be objects in a category C. A morphism f : X → Y

is said to be isomorphism if there is a morphism g : Y → X such that
g ◦ f = ιX and f ◦ g = ιY . Since g is necessarily unique, we may write
g = f−1. As we can see, this is fully compatible with the identification of
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objects in terms of identity morphisms: the composition of the defining
morphisms with their respective inverses must give the identity arrow.
We are entitled to say that the context with respect to which the thisness
of an object is determined is now broadened to the extent the nature
of mathematical reasoning demands: thisness is not determined by the
identity arrow of a given object alone, but with the help of identities
corresponding to suitable compositions (g ◦ f and f ◦ g). I shall call it
thisness up to isomorphism.

The isomorphism concept refers also to categories. A functor F : C →
D from a category C to a category D is said to be an isomorphism, if it
has the inverse G : D → C such that G ◦ F = idC and F ◦ G = idD (here
we assume that idC ∈ C0 and idD ∈ D0 ). In such a case, we say that the
categories C and D are isomorphic, and we write C ∼= D. It is not difficult
to see that what identity morphisms are for objects, the identity functors
are for categories. It turns out, however, that the concept of contextual
thisness as applied to categories (their isomorphism) is too rigid from the
point of view of category theory. Two categories can be equal (remaining
in a bijective correspondence), they can be unequal but isomorphic, or
they can be not even isomorphic but nevertheless equivalent from the
categorical point of view. To define the latter notion, we must first
introduce the concept of naturality.

Let us consider two functors F and G from a category C to a category
D, F : C → D and G : C → D. A natural transformation from the functor
F to the functor G is an assignment τ that associates every object X

of C with the arrow τX : F (X) → G(X) of D in such a way that for
any arrow f : X → Y of C one has τY ◦ F (f) = G(f) ◦ τX (to see this
clearly draw the corresponding commutative diagram). The arrows τX

are said to be the components of τ . We could imagine the functors F

and G as giving two pictures of the category C within the category D. If
these two pictures are “faithful” to the original and between themselves
the transformation between the functors F and G is natural. If every
component τX of τ is an isomorphism in D, then τ is said to be a natural
isomorphism. If this is the case, two above mentioned pictures of the
category C within the category D are not only “faithful” but also “exact”.

Let us now go back to the equivalence of categories from the categor-
ical point of view. A functor F : C → D is said to be an equivalence of
categories, if there is a functor G : D → C such that there exist natural
isomorphisms τ : idC

∼= G ◦ F and σ : idD
∼= F ◦ G; in such a case, we
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say that the categories C and D are equivalent and write C ≃ D. In this
context, I shall speak about thisness up to equivalence.

The notion of the equivalence of categories is clearly more tolerant
than that of the isomorphism of categories, in the sense that isomorphic
categories are equivalent but not vice versa. The relationship between
these two notions can be made more transparent in the following way.
A category C is said to be skeletal if its isomorphic objects are identical,
i.e., A ∼= B iff A = B where A and B are objects of C. In other words,
for skeletal categories, “isomorphic” means the same as “is equal”, that
is to say primitive thisness means the same as contextual thisness. A full
subcategory3 C0 of a category C is called a skeleton of C if C0 is skeletal
and each object of C is isomorphic to the exactly one object of C0. Every
two skeletons of a category are isomorphic.

A skeleton C0 of C is clearly equivalent to C, C0 ≃ C, and if categories
have the same skeleton, they are equivalent4.

Finally, let us quote a few examples. The category of all finite sets
and all functions between them has the subcategory of all finite ordi-
nal numbers as its skeleton. The category of all well ordered sets with
suitable order preserving morphisms has the subcategory of all ordinal
numbers as its skeleton. The category of all vector spaces over a fixed
field K and K-linear transformations has the subcategory of all Kn, for
n any cardinal number, as its skeleton.

It is interesting to notice that if the axiom of choice holds for a
category C then it has a skeleton. This statement can be proved in the
following way. The relation of isomorphism on the collection of objects
of a category C is an equivalence relation. Let us choose one object from
each equivalence class. The full subcategory of C formed from the chosen
elements is a skeleton of C.

6. The Arrow Philosophy

Categories are complex entities. They are composed of objects and ar-
rows subject to a few axiomatic exigencies which, although rather simple,

3 If C0 is a subcategory of C then every object of C0 is an object of C, and a
subcategory C0 of a category C is a full subcategory of C, if C has no arrows other
than the ones already present in C0.

4 All mathematical facts quoted in this section are standard in category theory;
see for instance [7, pp. 200–202].
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lead to a rich structural variety. Since, as we have seen, objects can be
eliminated, everything finally reduces to arrows. Often the “philosophy
of arrows” is contrasted with the “philosophy of elements” (each of them
with its primitive thisness) and it is said that they determine two dif-
ferent “ontologies” for mathematics. The set ontology is of reductionist
type: in it everything is reduced to “being an element of”, typified by
the functor “∈”. An element either belongs to a set, or does not belong
to it which is a symptom of the two-valued classical logic. The categor-
ical ontology is of referential type with arrows, as fundamental entities,
indicating an action or reference. Being an element of an object is re-
placed by an arrow pointing to a given object. Such an arrow could be
understood as denoting an action that consists of picking up something
(an “element”) in this object. Moreover, this picking up can be done
with various degrees of “intensity” depending on the domain of a given
arrow: with maximal intensity (for sure) if the domain is the terminal
object of the category, and with lesser intensity (with lesser certainty)
otherwise.

Something similar happens on the level of categories with functors
playing the role of arrows. The above “arrow strategy” works also at
this level. As we have seen, categories could be entirely eliminated with
identity functors effectively replacing them.

Such an elimination of objects (or even of categories) could be desir-
able from the point of view of the structuralist philosophy of mathemat-
ics. Proponents of this philosophical view give precedence to structure
over objects or even try to eliminate objects altogether (see, for example,
[4, 10, 13]). This view assumes also the shape of a structuralist ontology,
not necessarily restricted to philosophy of mathematics, and can serve
as a tool to interpret various scientific theories (e.g., [6, 8, 17]).

At the bottom of the “new perspective”, exploited in the present
work, lies the concept of individuality. In the “set theoretical ontol-
ogy”, the individuality of a set element is given by its very “thisness”,
independently of its relationship to the environment. In the “ontology”
determined by the strategy of arrows, one can also speak on thisnesses of
some structures, but they always are contextual from the very beginning.
As we have seen, they strongly depend on their environment. What we
have called compositional thisness depends on arrows with which the
corresponding arrow composes to change nothing. Two antiparallel ar-
rows (i.e., arrows pointing in two opposite directions) can in various
ways interact with each other to produce identities. If they compose
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to produce just identity, they are said to define an isomorphism, and
we have, in such circumstances, agreed to speak about thisness up to
isomorphism. If they compose to produce identity in a natural way, we
have agreed to speak about thisness up to equivalence.

To this list of producing identities “of various degrees” we can add
some more. Let us consider the pair of functors between categories C
and D, F : D → C and G : C → D, and two natural transformations

ǫ : FG → IdC ,

and

η : IdD → GF .

With the help of these data one defines the adjunction between cate-
gories C and D; F is called the left adjoint to G, and G is called the
right adjoint to F .5 ǫ and η are then called the counit and the unit of
this adjunction, respectively. Here we have also an interaction between
natural transformations producing suitable unit and counit. Adjunction
can be regarded as a generalisation of the equivalence of categories [2,
p. 209]. This time unit and counit arise from interaction between func-
tors rather than between categories. Adjunction turns out to be ubiqui-
tous in mathematics; it unveils intimate relationships between sometimes
very faraway departments of mathematics. In this sense, we could speak
on non-local context dependence.

This “strategy of units” tells us something about the nature of the
“field of categories”; it is drastically unlike a collection of sets. For the
sake of concreteness let us specialise to toposes, and let us consider a
pair of adjoint functors f∗ : D → C and f∗ : C → D such that f∗ is
left adjoint to f∗, and f∗ is also left exact6. Such functors define an
admissible transformation between two toposes, which in this context
are called frameworks (the name being clearly motivated by an analogy
with reference frame used in physics)7. The shifting from one framework
to another framework with the help of an admissible transformation can

5 For the definition see, for example, [2, chapter 9] or in a very accessible way
[15, chapter 5].

6 A left exact functor is a functor that preserves finite limits. The reading of
this paragraph requires a more advanced knowledge of category theory. All concepts
appearing in it the reader can find, for instance, in [7].

7 More precisely, the name “(local) framework” is used for any topos having the
natural numbers object [3].
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lead to a shift in understanding of a mathematical concept. Here is an
example. Let us consider the concept of real-valued continuous function
on a topological space X . Such a function can be interpreted, in the
topos S of constant sets, as a continuously varying real number. Let us
now shift, via the admissible transformation, from S to the topos Shv(X)
of sheaves over X . The concept of real function in S shifts to the concept
of real number as it is interpreted in Shv(X). J. L. Bell describes the
situation in the following way:

[. . . ] shifting to Shv(X) from S essentially amounts to placing oneself
in a framework which is, so to speak, itself ‘moving along’ with the
variation over X of the given variable real numbers. This causes the
variation of any variable real number not to be ‘noticed’ in Shv(X); it
is accordingly there regarded as being constant real number. [3]

This is only the illustration of the main Bell’s idea that “the absolute
universe of sets [should] be relinquished in favour of a plurality of local
mathematical frameworks”. The interpretation of any mathematical con-
cept is not fixed, but changes with the change of a local framework. It
should be emphasised that units and counits (defining adjointness of ad-
missible transformations) play here the key role. The concept of identity
seems to lie at the core of the categorical architecture.

Acknowledgment. My thanks go to Tomasz Miller who read the manu-
script and suggested valuable improvements.
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