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Abstract. The logic BN4 was defined by R. T. Brady in 1982. It can be
considered as the 4-valued logic of the relevant conditional. E4 is a variant
of BN4 that can be considered as the 4-valued logic of (relevant) entailment.
The aim of this paper is to define reduced general Routley-Meyer semantics
for BN4 and E4. It is proved that BN4 and E4 are strongly sound and
complete w.r.t. their respective semantics.

Keywords: relevant logics; many-valued logics; 4-valued logics; Routley-
Meyer semantics

1. Introduction

The logic BN4 was defined by Brady in [6]. The matrix MBN4 (cf. Def-
inition 2.3 below) upon which BN4 is built is a modification of Smiley’s
matrix MSm4, characteristic of Anderson and Belnap’s First Degree En-
tailment logic FDE (cf. [1, pp. 161–162]; cf. the proof of Proposition 2.12
below where FDE is defined). According to Dunn [9, p. 8], the matrix
MSm4 is in its turn a simplification of Anderson and Belnap’s 8-element
matrix M0 (cf. [1, 3]), which has played an important role in the devel-
opment of relevant logics (cf. [17, pp. 176, ff.]).

The logic E4 is built upon a modification of Brady’s matrix MBN4;
in particular, upon a modification of the function f→ defining the con-
ditional (cf. Definition 2.4 below).

According to Meyer et al., “BN4 is the correct logic for the 4-valued
situation where the extra values are interpreted in the both and neither
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senses” [11, p. 25]. On his part, Slaney considers this logic as having
the truth-functional implication most naturally associated with the logic
FDE referred to above (cf. [18, p. 284]).

In [16], it is claimed that E4 is related to BN4 in a similar way to
which Anderson and Belnap’s logic of entailment E is related to the
relevant logic R (cf. [1] about these logics): while BN4 can be considered
as the “4-valued logic of the relevant conditional”, E4 can be viewed
as the “4-valued logic of (relevant) entailment”. BN4 can intuitively
be described as a 4-valued extension of contractionless relevant logic R
(RW); and E4, on its part, as a 4-valued extension of reductioless logic
Er. RW is intuitively the result of dropping the axiom contraction (i.e.,
[A → (A → B)] → (A → B)) from R, while Er results from dropping
the axiom reductio (i.e., (A → ¬A) → ¬A) from E.

The aim of this paper is to endow BN4 and E4 with a general reduced
Routley-Meyer semantics. In this way BN4 and E4 can be related to the
wealth of logics (relevant and non-relevant  i.e., lacking the variable-
sharing property) that have been interpreted with this type of semantics.
In particular, our results in the present paper are connected to some
applications of the Routley-Meyer semantics for non-relevant logics in
general (cf. [15]) and to 3-valued logics in particular (cf. [13, 14]).

Both BN4 and E4 have been interpreted with a Belnap-Dunn type
semantics (cf. [6, 16]). Furthermore, BN4 has been endowed with a 2-
set-up Routley-Meyer semantics (cf. [6]) while in [16] it is summarily
indicated how to provide a semantics of this type for E4. But the 2-
set-up semantics in [6] is briefly described in scarcely two pages and a
half (pp. 29–31) with some essential proofs referring to the fundamental
Chapter 4 of [17]. On the other hand, the treatment of the 2-set-up
semantics in [16] is limited to a still briefer description in a few lines,
as pointed out above. However, the semantics in the present paper are
developed in detail, the key theorems being fully proved. Moreover, (al-
though we do not have space here to do it) it will not be difficult to show
that the 2-set-up models are special cases of the general models to be in-
vestigated in the sequel. Then, soundness w.r.t. the 2-set-up semantics is
immediate from soundness w.r.t. the general models, whereas complete-
ness w.r.t. the former is not hard to prove from completeness w.r.t. the
latter. Now, whereas the 2-set-up models are only appropriate to certain
3-valued and 4-valued logics, the general ones are, as remarked above,
adequate for an ample class of logics, both relevant and non-relevant.
In particular, the general models investigated in the present paper are
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suitable for modeling any logic including the system b4 (“basic 4-valued
logic included in BN4 and E4”). The system b4 is an extension of the
logic Cm. The logic Cm is, in its turn, the result of dropping the Modus

Ponens Axiom ([A∧ (A → B)] → B) from the logic C, the minimal logic
(without weak rules) that can be endowed with a reduced Routley-Meyer
semantics.

As remarked above, the aim of this paper is to endow BN4 and E4
with a general Routley-Meyer semantics. In particular, with a reduced
general Routley-Meyer semantics. As it is known, reduced and unre-
duced general Routley-Meyer semantics are distinguished as follows: a
set of designated points is used to decide validity in the latter although
this set is restricted to a single element in the former. In [17] or in [8],
it is argued at length why reduced models are preferable when it is pos-
sible to defined them. Concerning the logics investigated in this paper,
contrary to what is the case with E4, BN4 presents some problems when
defining reduced models. But these problems can be solved according to
the method suggested in [17, 7, 8].

Taken from a general point of view, we think that the results in
the present paper are a contribution to enhancing what is shown in
[17, Chapter 4]: Routley-Meyer semantics is a malleable and powerful
instrument for interpreting non-classical logics.

The structure of the paper is as follows. In Section 2, the logics
BN4 and E4 are defined as Hilbert-style axiomatic systems. Actually,
they are defined from two sublogics of both BN4 and E4, the logics
Cm and b4. The latter logics are used to simplify the soundness and
completeness proofs of BN4 and E4. In Section 3, reduced models for Cm
are introduced. Then, reduced models for BN4 and E4 are defined from
Cm-models and soundness of BN4 and E4 w.r.t. their respective models
is proved from the soundness of Cm. In sections 4 and 5, the logic b4 is
used as a basis for developing the completeness proofs. In Section 4, in
particular, following [17, Chapter 4], we prove extensions and primeness
lemmas for any extension of b4, Eb4, where theories are defined as sets
closed under Adjunction and Eb4-entailment. In Section 5, on the other
hand, a series of preliminary lemmas to the completeness proofs are
proved. These lemmas work for extensions of b4 where theories are
defined as in the previous section. In Section 6, we prove the strong
completeness of E4 w.r.t. the reduced models defined in Section 3. The
proof is an easy consequence of the results in sections 4 and 5. Finally,
in Section 7, a strong completeness theorem for BN4 is proved. Unlike
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it was the case with E4, this theorem cannot entirely be based upon the
work in sections 4 and 5. In particular, we need a more strict notion
of a theory and new extension and primeness lemmas that are defined
following the method described in [17, 7, 8].

2. The logics BN4 and E4

In this section, we define the logics BN4 and E4. Firstly, we define the
logical language and the notion of logic used in the paper.

Definition 2.1 (Languages). The propositional language consists of a
denumerable set of propositional variables p0, p1, . . . , pn, . . . and some
or all of the following connectives → (conditional), ∧ (conjunction), ∨
(disjunction), ¬ (negation). The biconditional (↔) and the set of wffs
are defined in the customary way. A, B (possibly with subscripts 0, 1,
. . . , n), etc. are metalinguistic variables.

Definition 2.2 (Logics). A logic S is a structure 〈L, ⊢S〉 where L is
a propositional language and ⊢S is a (proof-theoretical) consequence
relation defined on L by a set of axioms and a set of rules of derivation.
The notions of proof and theorem are understood as it is customary in
Hilbert-style axiomatic systems (Γ ⊢S A means that A is derivable from
the set of wffs Γ in S; and ⊢S A means that A is a theorem of S).

Next, we introduce the matrices upon which BN4 and E4 are defined.
Consider now the following matrices (cf. [6, 16]).

Definition 2.3 (The matrix MBN4). The propositional language L con-
sists of the connectives →, ∧, ∨, and ¬. The matrix MBN4 is the
structure 〈V, D, F〉, where (i) V is {0, 1, 2, 3} and it is partially ordered
as shown in the following diagram:

r

r

r r

@
@@I

�
���

�
���

@
@@I

3

0

2 1

(ii) D = {3, 2}; (iii) F = {f→, f∧, f∨, f¬}, where f→, f∧, f∨, f¬ are de-
fined according to the truth-tables 1.
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→ 0 1 2 3

0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

∧ 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

¬
0 3
1 1
2 2
3 0

Table 1. Truth-tables for: →, ∧, ∨, and ¬

Definition 2.4 (The matrix E4). The propositional language is the
same as in MBN4. The matrix E4 is the structure 〈V, D, F〉, where V,
D, and F are defined exactly as in MBN4 except for f→ which is defined
according to the following truth-table:

→ 0 1 2 3

0 3 3 3 3
1 0 2 0 3
2 0 0 2 3
3 0 0 0 3

The notions of interpretation, consequence, and validity are defined
as it is customary in any matrix M , viz.

Definition 2.5 (M -interpretations, M -consequence, M -validity). Let
M be a matrix for (a propositional language) L. An M -interpretation I
is a function from F to V according to the functions in F. Then, for any
set of wffs Γ and wff A, Γ �M A (A is a consequence of Γ according to M)
iff I(A) ∈ D whenever I(Γ ) ∈ D for all M -interpretations I (I(Γ ) ∈ D
iff I(B) ∈ D for each B ∈ Γ ). In particular, �M A (A is M -valid; A is
valid in the matrix M) iff I(A) ∈ D for all M -interpretations I.

Concerning the intuitive meaning of the truth-values in MBN4 and
E4, we note the following remark:

Remark 2.6 (On the intuitive meaning of the truth values). The truth
values 0, 1, 2, and 3 can intuitively be interpreted in MBN4 and ME4
as follows. Let T and F represent truth and falsity. Then, 0 = F ,
1 = N(either), 2 = B(oth) and 3 = T (cf. [4, 5]) Or, in terms of subsets
of {T, F}, we have: 0 = {F}, 1 = ∅, 2 = {T, F} and 3 = {T} (cf. [9]
and references therein). It is in this sense that we speak of “bivalent
semantics”, when referring to the Belnap-Dunn semantics: there are
only two truth values and the possibility of assigning both or neither
to propositions. (We use the symbols 0, 1, 2, and 3 because they are
convenient for using the tester in [10] in case the reader needs one.)
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BN4 and E4 are the logics determined by the matrices MBN4 and
ME4, respectively (cf. [6] and [16]), where this notion of determination
is defined as follows:

Definition 2.7 (Logics determined by matrices). Let L be a proposi-
tional language, M a matrix for L and ⊢S a (proof theoretical) con-
sequence relation defined on L. Then, the logic S (cf. Definition 2.2)
is determined by M iff for every set of wffs Γ and wff A, Γ ⊢S A iff
Γ �M A. In particular, the logic S (considered as the set of its theorems)
is determined by M iff for every wff A, ⊢S A iff �M A (cf. Definition 2.5).

Next, BN4 and E4 are defined. In order to do this, it will be useful
to previously define two logics contained in both BN4 and E4. The first
of them is the logic Cm, a restriction of the logic C, which is important
because it is the minimal logic that can be endowed with reduced RM-
models (cf. [17, Chapter 4]). The logic Cm is defined when dropping the
axiom Modus Ponens (i.e., [A ∧ (A → B)] → B) from C. The second
one, b4, is, as far as we know, a new logic serving a mere instrumental
role in the present paper.

Definition 2.8 (The logic Cm). The logic Cm can be axiomatized with
the following axioms and rules of inference.

Axioms:

A → A (a1)

(A → B) → [(B → C) → (A → C)] (a2)

(A ∧ B) → A / (A ∧ B) → B (a3)

[(A → B) ∧ (A → C)] → [A → (B ∧ C)] (a4)

A → (A ∨ B) / B → (A ∨ B) (a5)

[(A → C) ∧ (B → C)] → [(A ∨ B) → C] (a6)

[A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)] (a7)

(A → ¬B) → (B → ¬A) (a8)

(¬A → B) → (¬B → A) (a9)

Rules of derivation:

Adjunction: A & B ⇒ A ∧ B (Adj)

Modus Ponens: A & A → B ⇒ B (MP)

Notice that Cm is the result of adding (a2) and (a8)  or equivalently,
(a9)  to Routley and Meyer’s basic logic B (cf. [17, Chapter 4]).
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Definition 2.9 (The logic b4). The logic b4 is axiomatized by adding
to Cm the following axioms:

¬A → [A ∨ (A → B)] (a10)

A → [B → [[(A ∨ B) ∨ ¬(A ∨ B)] ∨ (A → B)]] (a11)

The label ‘b4’ is intended to abbreviate “basic logic contained in BN4
and E4” (the label ‘B4’ has been used to refer to Belnap and Dunn’s
well-known 4-valued logic  cf., e.g., [12, p. 282]). The axiom a10 is a
conspicuous thesis in some 3-valued and 4-valued logics; the axiom a11
serves an instrumental purpose: it is useful to prove that theories in the
canonical models are non-empty (cf. Lemma 5.5).

By an Eb4-logic, or simply by Eb4, we refer to any extension of b4,
that is, to a strengthening of b4 in the language of this logic.

BN4 and E4 are defined upon b4 as follows.

Definition 2.10 (The logic BN4). The logic BN4 is the result of adding
the axioms (A11)–(A14) listed below to b4. That is, BN4 is axiomatized
as follows:

Axioms

A → A (A1)

(A ∧ B) → A / (A ∧ B) → B (A2)

[(A → B) ∧ (A → C)] → [A → (B ∧ C)] (A3)

A → (A ∨ B) / B → (A ∨ B) (A4)

[(A → C) ∧ (B → C)] → [(A ∨ B) → C] (A5)

[A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)] (A6)

(A → B) → [(B → C) → (A → C)] (A7)

(A → ¬B) → (B → ¬A) (A8)

(¬A → B) → (¬B → A) (A9)

¬A → [A ∨ (A → B)] (A10)

A → [(A → B) → B] (A11)

(¬A ∧ B) → (A → B) (A12)

(A ∨ ¬B) ∨ (A → B) (A13)

A ∨ [¬A → (A → B)] (A14)

Rules of inference: (Adj), (MP), and:

Disjunctive Modus Ponens: C ∨ (A → B) & C ∨ A ⇒ C ∨ B (dMP)
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Definition 2.11 (The logic E4). The logic E4 is axiomatized with (A1)–
(A10) of BN4 and, in addition:

[A → (A → B)] → (A → B) (A15)

[[[(A → A) ∧ (B → B)] → C]] → C (A16)

[¬(A → B) ∧ (¬A ∧ B)] → (A → B) (A17)

[(A → B) ∧ (A ∧ ¬B)] → ¬(A → B) (A18)

(A → B) ∨ ¬(A → B) (A19)

The rules of inference are Adj and MP.

We remark some facts about BN4 and E4.
1. The axiom (a11) is derivable in BN4 and in E4 since it is valid in

MBN4 and ME4 (in case a tester is needed the reader can use that in
[10]). So, Cm and b4 are sublogics of both BN4 and E4.

2. The axiomatization of BN4 presented in Definition 2.10 is slightly
different from Brady’s original one (it is proved that both formulations
are equivalent in [16, Appendix 2]).

3. Notice that contractionless relevant logic, RW, can be axiomatized
with (A1)–(A9), (A11), (Adj), and (MP). Thus, BN4 can be considered
as a 4-valued extension of RW. On the other hand, reductioless entail-

ment logic, Er, can be axiomatized with (A1)–(A9), (A15), (A16), (Adj),
and (MP). Thus, E4 can in its turn be considered as a 4-valued extension
of Er.

The section is ended with a proposition including some theorems and
rules of b4 that will be useful in the completeness proofs.

Proposition 2.12 (Some theorems and rules of B4). The following the-
orems and rules are provable in b4.

A → (B ∨ C) ⇒ (A ∧ D) → [(B ∨ E) ∨ C] (r1)

(A ∧ B) → C ⇒ [(A ∧ D) ∧ B] → (C ∨ E) (r2)

A → (B ∨ C) & (A ∧ C) → B ⇒ A → B (r3)

A → B ⇒ (C ∨ A) → (C ∨ B) (r4)

A ↔ (A ∨ A) (T1)

[A ∨ (B ∨ C)] ↔ [(A ∨ B) ∨ C] (T2)

[A ∨ (B ∧ C)] ↔ [(A ∨ B) ∧ (A ∨ C)] (T3)

(A → B) → [(A ∧ C) → (B ∨ D)] (T4)

¬(A ∨ B) ↔ (¬A ∧ ¬B) (T5)
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¬(A ∧ B) ↔ (¬A ∨ ¬B) (T6)

A → ¬¬A (T7)

¬¬A → A (T8)

(A → B) → (¬B → ¬A) (T9)

A → [¬A ∨ (¬A → B)] (T10)

¬A → [B ∨ ((A ∧ B) → C)] (T11)

Proof. Theorems (r1)–(r4), (T1)–(T3), and (T5)–(T8) are in fact rules
and theorems of Anderson and Belnap’s First Degree Entailment logic,
FDE (cf. [1]), a weak logic that can be axiomatized with (A1), (A2),
(A4), (A6), (T7), (T8), and the rules:

Transitivity (A → B & B → C ⇒ A → C),
Conditioned introduction of conjunction

(A → B & A → C ⇒ A → (B ∧ C)),
Elimination of disjunction (A → C & B → C ⇒ (A ∨ B) → C)
Contraposition (A → B ⇒ ¬B → ¬A).

Then, (T4) is provable in Routley and Meyer’s basic positive logic B+,
that, as note above, is included in Cm. The theorem (T10) is immediate
by (T7), (a10), and (a2). Finally, (T11) follows from (a3), (T9), (a2),
(r4), and (a10) in the form ¬(A ∧ B) → [(A ∧ B) ∨ ((A ∧ B) → C)].

3. Semantics for BN4 and E4

In this section BN4 and E4 are endowed with respective reduced general
Routley-Meyer semantics. We will begin by providing reduced models
verifying the axioms and rules of Cm.

Definition 3.1 (Cm-models). A Cm-model is a structure 〈T, K, R, ∗,�〉,
where K is a set, T ∈ K, R is a ternary relation on K, and ∗ is a unary
operation on K subject to the following definitions and postulates for all
a, b, c ∈ K:

a ≤ b := RTab (d1)

a = b := a ≤ b & b ≤ a (d1′)

R2abcd := (∃x ∈ K)(Rabx & Rxcd) (d2)

a ≤ a (P1)

(a ≤ b & Rbcd) ⇒ Racd (P2)
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R2abcd ⇒ (∃x ∈ K)(Racx & Rbxd) (P3)

a = a∗∗ (P4)

Rabc ⇒ Rac∗b∗ (P5)

Finally, � is a relation from K to the set of all wffs such that the following
conditions (clauses) are satisfied for every propositional variable p, wffs
A, B, and a ∈ K:

(i) (a ≤ b & a � p) ⇒ b � p,
(ii) a � A ∧ B iff a � A and a � B,

(iii) a � A ∨ B iff a � A or a � B,
(iv) a � A → B iff for all b, c ∈ K, (Rabc and b � A) ⇒ c � B,
(v) a � ¬A iff a∗

2 A.

Next, the notions of truth in a Cm-model, validity and semantic
consequence are defined.

Definition 3.2 (Truth in a Cm-model). A wff A is true in a Cm-model
iff T � A in this model.

Definition 3.3 (Cm-validity). A formula A is Cm-valid (in symbols,
�Cm A) iff T � A in all Cm-models.

Definition 3.4 (Semantic Cm-consequence). For any set of wffs Γ and
wff A: Γ �M A (A is a consequence of Γ in the Cm-model M) iff T � A
if T � Γ (T � Γ iff T � B for all B ∈ Γ ). Then, Γ �Cm A. (A is a
consequence of Γ in Cm-semantics) iff Γ �M A for each Cm-model M .

Models for logics extending Cm are defined simply by adding to (P1)–
(P5) the appropriate semantical postulates while at the same time defin-
ing ‘truth in a model’, ‘validity’ and ‘semantical consequence’ similarly as
in definitions 3.2, 3.3, and 3.4, respectively. Actually, reduced semantics
for BN4 and E4 are defined below in this way.

Next, it will be proved that Cm is sound w.r.t. the semantics just
defined. In this sense, the following lemmas are useful. (An adequate
version of each one of these lemmas is immediate for any extension of
Cm, and for BN4 and E4, in particular).

Lemma 3.5 (Hereditary condition). For any Cm-model, a, b ∈ K and
wff A: (a ≤ b & a � A) ⇒ b � A.

Proof. Induction on the length of A. The conditional case is proved
with (P2) and the negation case with the postulate a ≤ b ⇒ b∗ ≤ a∗,
immediate by (P5) and (d1).
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Lemma 3.6 (Entailment lemma). For any wffs A, B: �Cm A → B iff
a � A ⇒ a � B, for all a ∈ K in all Cm-models.

Proof. From left to right: by (P1); from right to left: by Lemma 3.5.

We can now prove soundness.

Theorem 3.7 (Soundness of Cm). For any set of wffs Γ and wff A: if
Γ ⊢Cm A, then Γ � A.

Proof. If A ∈ Γ or A is by (Adj), the proof is trivial. If A is an axiom,
then A is proved Cm-valid as in [17, Chapter 4]. Then, it remains to
prove the case when A has been derived by (MP). Suppose Γ �Cm B →
A and Γ �Cm B for some wff B. Further, suppose T � Γ . Then, (1)
T � B → A and T � B. And by (P1), (2) RTTT . So, (3) T � A by
applying clause (iv) in Definition 3.1 to (1) and (2).

In what follows, BN4-models and E4-models are defined and sound-
ness of BN4 and E4 w.r.t. its respective semantics is proved.

Definition 3.8 (BN4-models). A BN4-model is a structure 〈T, K, R, ∗,
�〉, where T , K, R, ∗, � are defined exactly as in Cm-models except for
the addition of the following semantical postulates to (P1)–(P5):

Rabc ⇒ (b ≤ a or b ≤ a∗) (P6)

Rabc ⇒ Rbac (P7)

Rabc ⇒ (b ≤ a∗ or a ≤ c) (P8)

RTab ⇒ (T ∗ ≤ b or a ≤ T ) (P9)

R2Tabc ⇒ (b ≤ T or b ≤ a∗) (P10)

Definition 3.9 (E4-models). An E4-model is a structure 〈T, K, R, ∗,�〉,
where T , K, R, ∗, � are defined exactly as in Cm-models except for the
addition of the following semantical postulates to (P1)–(P6):

Rabc ⇒ R2abbc (P11)

(∃x ∈ Z)Raxa [Za iff for all b, c ∈ K, Rabc ⇒ RTbc] (P12)

(Rabc & Ra∗de) ⇒ (a ≤ c or a ≤ e or b ≤ a∗ or d ≤ a∗) (P13)

Raaa∗ or Ra∗aa∗ (P14)

RTab ⇒ RT ∗ab (P15)
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Now, as pointed out above, ‘truth in a BN4-model’ (‘truth in an E4-
model’) and related notions are defined similarly as in the case of Cm
(definitions 3.2–3.4). Once this is done, we can prove soundness.

Theorem 3.10 (Soundness of BN4 and E4). For any set of wffs Γ and
wff A:

(1) If Γ ⊢BN4 A, then Γ �BN4 A.
(2) If Γ ⊢E4 A, then Γ �E4 A.

Proof. Given the proof of soundness of Cm, it suffices to prove (1)
(A10)–(A14) are BN4-valid and (dMP) preserves BN4-validity; and (2)
(A10) and (A15)–(A19) are E4-valid. Now, (A11) and (A15) are proved
as in [17, Chapter 4], and (A16) is proved as in [2, pp. 171–172]; on the
other hand, (dMP) is shown to preserve BN4-validity by using RTTT
(by (P1)), similarly as in the proof that (MP) preserves Cm-validity
(Theorem 3.7). So, it remains to prove the validity of (A10)–(A14),
(A17)–(A19). (We use the Entailment Lemma  Lemma 3.6  and pro-
ceed by reductio ad absurdum.)

(A10) ¬A → [A ∨ (A → B)]) is BN4-valid. Suppose that there are
a ∈ K in some BN4-model and wffs A, B such that (1) a � ¬A but
(2) a 2 A ∨ (A → B). By clause (iii), (3) a 2 A and a 2 A → B. By
clause (v) and (1), (4) a∗

2 A and by clause (iv), (5) b � A, c 2 B for
b, c ∈ K such that Rabc. Now, (6) b ≤ a or b ≤ a∗ follows by (P6).
Then, (7) a � A or a∗ � A, by applying Lemma 3.5 to (5) and (6). But
(7) contradicts (3) and (4).

It is proved that (A10) is E4-valid in a similar way.
(A12) (¬A ∧ B) → (A → B)) is BN4-valid. Suppose that there are

a ∈ K in some BN4-model and wffs A, B such that (1) a � ¬A and (2)
a � B but (3) a 2 A → B. Then, (4) b � A, c 2 B for b, c ∈ K such that
Rabc. By (1) and clause (v), (5) a∗

2 A. By (P8), (6) b ≤ a∗ or a ≤ c.
Thus, (7) a∗ � A or c � B by (2), (4), (6) and Lemma 3.5, contradicting
(4) and (5).

(A13) (A ∨ ¬B) ∨ (A → B)) is BN4-valid. Suppose that there is
some BN4-model and wffs A, B such that (1) T 2 (A ∨ ¬B) ∨ (A → B).
Then, (2) T 2 A, T 2 ¬B (i.e., T ∗ � B) and T � A → B. By clause
(iv), (3) RTab, a � A and b 2 B, for some a, b ∈ K in this model. By
(P9), (4) T ∗ ≤ b or a ≤ T , whence by (2) and (3), (5) b � B or T � A, a
contradiction.

(A14) A ∨ [¬A → (A → B)]) is BN4-valid. Suppose that there is
some BN4-model and wffs A, B such that (1) T 2 A ∨ [¬A → (A → B)].



Relational semantics for the 4-valued . . . 185

Then, (2) T 2 A, T 2 ¬A → (A → B). By clause (iv), (3) RTab, a � ¬A
(i.e., a∗

2 A) and b 2 A → B for a, b ∈ K. Again, by clause (iv), (4)
Rbcd, c � A and d 2 B, for c, d ∈ K. By (d2), (5) R2Tacd, and by (P10),
(6) c ≤ T or c ≤ a∗ whence by (4), T � A or a∗ � A, a contradiction.

(A17) [¬(A → B) ∧ (¬A ∧ B)] → (A → B)) is E4-valid. Suppose
that there is some E4-model and wffs A, B such that (1) a � ¬(A → B)
(i.e., a∗

2 A → B), a � ¬A (i.e., a∗
2 A) and a � B but (2) a 2 A → B.

By clause (iv) and (2), (3) Rabc, b � A and c 2 B for some b, c ∈ K.
By clause (iv) and (1), (4) Ra∗de, d � A and e 2 B for some d, e ∈ K.
By (3), (4) and (P13), (5) a ≤ c or a ≤ e or b ≤ a∗ or d ≤ a∗ whence
by (1) (a � B), (3) (b � A) and (4) (d � A), c � B or e � B or a∗ � A,
contradicting (1) (a∗

2 A), (3) (c 2 B) and (4) (e 2 B).
(A18) [(A → B) ∧ (A ∧ ¬B)] → ¬(A → B)) is E4-valid. Suppose

that there is some E4-model and wffs A, B such that (1) a � A → B,
a � A, a � ¬B (i.e., a∗

2 B) but (2) a 2 ¬(A → B) (i.e., a∗ � A → B).
By (P14), (3) Raaa∗ or (4) Ra∗aa∗. By clause (iv), (1) and (3), (4)
a∗ � B. By clause (iv), (1), (2) and (4), (5) a∗ � B. But both (4) and
(5) contradict (1).

(A19) (A → B)∨¬(A → B)) is E4-valid. Suppose that there is some
E4-model and wffs A, B such that (1) T 2 (A → B) ∨ ¬(A → B). Then,
(2) T 2 A → B and T 2 ¬(A → B) (i.e., T ∗ � A → B). By clause (iv)
and (2), (3) RTab, a � A and b 2 B for some a, b ∈ K in this model. By
(P15) and (3), (4) RT ∗ab, whence by clause (iv), (2) and (3), (5) b � B,
contradicting (3).

We end this section by noting that b4-models can be defined similarly
as Cm-models save for the addition of P6 and the following postulate
that can be used in validating (a11):

(Rabc & Rcde) ⇒ (a ≤ c or b ≤ c or c∗ ≤ c or d ≤ c or b ≤ e) (Pa11)

4. Extension and primeness lemmas

As pointed out above, by Eb4, we refer to any extension of b4. The aim of
this section is to show how to extend Eb4-theories (the notion is defined
below) to prime Eb4-theories by using a first extension lemma based
upon “disjunctive Eb4-implicability”. This extension lemma is used es-
sentially in the proof of the preliminary lemmas to the completeness
theorems in the following section, as well as in the strong completeness
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theorem for E4. We follow Routley et al.’s formulation and proof of this
lemma (cf. [17, Chapter 4, pp. 307, ff.]).

We begin by defining the notion of a theory and the classes of theories
that are important in this paper.

Definition 4.1 (Eb4-theories). An Eb4-theory is a set of formulas closed
under Adjunction (Adj) and Eb4-entailment (Eb4-ent). That is, a is a
Eb4-theory if whenever A, B ∈ a, then A ∧ B ∈ a; and if whenever
A → B is a theorem of Eb4 and A ∈ a, B ∈ a.

Definition 4.2 (Classes of Eb4-theories). Let a be an Eb4-theory. We
set:

(1) a is prime iff whenever A ∨ B ∈ a, then A ∈ a or B ∈ a;
(2) a is empty iff it contains no wffs;
(3) a is regular iff a contains all theorems of Eb4;
(4) a is trivial iff every wff belongs to it;
(5) a is a-consistent (consistent in an absolute sense) iff a is not trivial.

Next, we note a couple of preliminary definitions before proving the
extension and primeness lemmas.

Definition 4.3 (Disjunctive Eb4-implicability). For any set of wffs Γ ,

Θ, Γ disjunctively implies Θ in Eb4 (in symbols Γ
d

−→
Eb4

Θ) iff ⊢EB4

(A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm), for some wffs A1, . . . , An ∈ Γ and

B1, . . . , Bm ∈ Θ. By Γ
d
9
Eb4

Θ is denoted that Θ is not disjunctively

implicated by Γ in Eb4.

Definition 4.4 (Eb4 maximal sets). Γ is an Eb4 maximal set of wffs

iff Γ
d
9
Eb4

Γ ( Γ is the complement of Γ ).

Lemma 4.5 (Extension to Eb4 maximal sets). Let Γ , Θ be sets of wffs

such that Γ
d
9
Eb4

Θ. Then there are sets of wff Γ ′, Θ′ such that Γ ⊆ Γ ′,

Θ ⊆ Θ′, Θ′ = Γ
′

and Γ ′ d
9
Eb4

Θ′ (that is, Γ ′ is an EB4 maximal set such

that Γ ′ d
9
Eb4

Θ′).

Proof. Let A1, . . . , An, . . . be an enumeration of the wffs. The sets
Γ ′ and Θ′ are defined as follows: Γ ′ =

⋃
k∈N

Γk, Θ′ =
⋃

k∈N
Θk, where

Γ0 = Γ , Θ0 = Θ and for each k ∈ N, Γk+1 and Θk+1 are defined as
follows:
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(i) If Γk ∪ {Ak+1}
d

−→
Eb4

Θk, then Γk+1 = Γk and Θk+1 = Θ ∪ {Ak+1}.

(ii) If Γk ∪ {Ak+1}
d
9
Eb4

Θk, then Γk+1 = Γk ∪ {Ak+1} and Θk+1 = Θk.

Notice that Γ ⊆ Γ ′, Θ ⊆ Θ′ and Γ ′ ∪ Θ′ = F (the set of all wffs). We

prove: (I) Γk

d
9
Eb4

Θk for all k ∈ N. We proceed by reductio ad absurdum.

So, suppose that for some i ∈ N, (II) Γi

d
9
Eb4

Θi but Γi+1
d

−→
Eb4

Θi+1. We

then consider the two possibilities (i) and (ii) above according to which
Γk+1 and Θk+1 are defined.

(a) Γi ∪ {Ai+1}
d
9
Eb4

Θi. By (ii), Γi+1 = Γi ∪ {Ai+1} and Θi+1 = Θi.

By the reductio hypothesis (II), Γi ∪ {Ai+1}
d

−→
Eb4

Θi, a contradiction.

(b) Γi ∪ {Ai+1}
d

−→
Eb4

Θi. By (i), Γi+1 = Γi and Θi+1 = Θi ∪ {Ai+1}.

By the reductio hypothesis (II),

1. Γi

d
−→
Eb4

Θi ∪ {Ai+1}.

Now, let the formulas of Γi and Θi in this derivation be B1, . . . , Bm

and C1, . . . , Cn, respectively, and let us refer by B to B1, . . . , Bm and
by C to C1, . . . , Cn. Then, (1) can be rephrased as follows:

2. ⊢Eb4 B → (C ∨ Ai+1).

On the other hand, given the hypothesis (b), there is a conjunction
B′ of elements of Γi and some disjunction C′ of elements of Θi such that

3. ⊢Eb4 (B′ ∧ Ai+1) → C′

Let us now refer by B′′ to B ∧ B′ and by C′′ to C ∨ C′; we will

show (III) ⊢Eb4 B′′ → C′′, whence Γi

d
−→
Eb4

Θi, contradicting the reductio

hypothesis, and thus proving (I) (we use Proposition 2.12). By (r1), we
have

4. ⊢Eb4 (B′ ∧ B′) → [(C ∨ C′) ∨ Ai+1].

from (2) and

5. ⊢Eb4 [(B′ ∧ B′) ∧ Ai+1] → (C ∨ C′)

from (3), by (r2). By applying (r3) to (4) and (5), we obtain

6. ⊢Eb4 (B′ ∧ B′) → (C ∨ C′)
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But (6) is (III) ⊢Eb4 B′′ → C′′, whence as pointed out above, Γi

d
−→
Eb4

Θi,

contradicting the reductio hypothesis. Consequently, (I) Γk

d
9
Eb4

Θk, for

all k ∈ N is proved. Thus, we have sets of wffs Γ ′, Θ′ such that Γ ⊆ Γ ′,

Θ ⊆ Θ′, Γ ′ d
9
Eb4

Θ′ (since Γk

d
9
Eb4

Θk, for all k ∈ N) and Θ′ = Γ
′

(since

Γ ′ ∩Θ′ = ∅  otherwise Γi

d
−→
Eb4

Θi, for some i ∈ N  and Γ ′ ∪Θ′ = F), as

it was required. Finally, notice that Γ ′ is maximal (since Γ ′ d
9
Eb4

Γ
′

).

Lemma 4.6 (Maximal sets are prime Eb4-theories). If Γ is a maximal
set, then it is a prime Eb4-theory.

Proof. (1) Γ is closed under (Adj). Suppose that there are wffs A, B
such that A ∈ Γ , B ∈ Γ but A∧B /∈ Γ . By (A1), ⊢Eb4 (A∧B) → (A∧B)
contradicting the maximality of Γ . (2) Γ is closed under (Eb4-ent).
Suppose ⊢Eb4 A → B and A ∈ Γ . If B /∈ Γ , then the maximality of Γ is
contradicted. (3) Γ is prime. It is proved similarly as case (1) by using
now (A1) in the form (A ∨ B) → (A ∨ B).

5. Preliminary lemmas to the completeness theorem

In this section we prove a series of preliminary lemmas to be used in the
completeness proofs for both BN4 and E4. We follow Routley et al. (cf.
[17, Chapter 4]). Given an extension of b4, Eb4, we begin by defining
the concept of a T -theory.

Definition 5.1 (T -theories). Let Eb4 be an extension of b4 and T be
a regular and prime Eb4-theory (that is, a set of wffs closed under (Adj)
and (Eb4-ent); cf. Definition 4.1). A T -theory is a set of formulas closed
under Adjunction (Adj) and T -entailment (T -ent). That is, a is a T -
theory if whenever A, B ∈ a, then A∧B ∈ a; and if whenever A → B ∈ T
and A ∈ a, then B ∈ a.

Notice that any T -theory is an Eb4-theory (cf. Definition 4.1): since
T is regular, if ⊢Eb4 A → B, then A → B ∈ T . So, if ⊢Eb4 A → B and
A ∈ a, then B ∈ a as a is closed under T -ent.

Next, we define some relations on sets of T -theories.

Definition 5.2 (The sets KT , KC). Let T be a regular and prime
Eb4-theory. KT is the set of all T -theories, and KC is the set of all
a-consistent non-empty and prime T -theories (cf. Definition 4.2).
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Definition 5.3 (The relations RT , RC and �C). Let T be a regular and
prime T -theory and KT and KC be defined as in Definition 5.2. RT is
defined on KT as follows: for all a, b, c ∈ KT , RT abc iff for all wffs A, B,
(A → B ∈ a & A ∈ b) ⇒ B ∈ c. Next, RC is the restriction of RT to
KC . On the other hand,�C is defined as follows: for any a ∈ KC and
wff A, a �C A iff A ∈ a.

Finally, we define a unary operation on KC .

Definition 5.4 (The operation ∗C). The unary operation ∗C is defined
on KC as follows: for each a ∈ KC , a∗ = {A | ¬A /∈ a}.

Given an extension of b4, Eb4, we use the Extension Lemma to build
a regular and prime Eb4-theory T (cf. Proposition 6.3 below) and define
upon T the notions KC , RC , ∗C and �C as indicated above. Then, the
structure 〈T , KC , RC , ∗C ,�C〉, called the canonical Eb4-model, is shown
to be an Eb4-model by means of which non-theorems of Eb4 are falsified.

In the rest of this section, a series of lemmas is proved. These lemmas
shall be used in the completeness proofs. We suppose that we are given a
regular and prime Eb4-theory T upon which the items KT , KC , RC , ∗C ,
�C are defined as shown above. We begin by investigating the relations
RT and RC .

Lemma 5.5 (Defining x for a, b in RT ). Let a, b be non-empty T -theories.
The set x = {B | ∃A(A → B ∈ a & A ∈ b)} is a non-empty T -theory
such that RT abx.

Proof. It is easy to show that x is a T -theory (use (a2)  Defini-
tion 2.8  to prove that x is closed under T -ent). Next, RT abx is imme-
diate by definition of RT . Finally, x is non-empty: let A ∈ a, B ∈ b. By
a11 and RT abx, [(A ∨ B) ∨ ¬(A ∨ B)] ∨ (A → B) ∈ x.

Lemma 5.6 (Extending b in RT abc to a member in KC). Let a and b
be non-empty T -theories, and a and c be a-consistent, prime T -theories
such that RT abc. Then, there is an a-consistent (and non-empty) prime
T -theory x such that b ⊆ x and RT axc.

Proof. By using the Extension Lemma or Kuratowski-Zorn’s Lemma,
b is extended to a prime theory x such that b ⊆ x and RT axc (cf. [17,
pp. 309, ff.]). Next, it is shown that x is a-consistent. Suppose it is
not. (We use Proposition 2.12.) Let A ∈ a and B be a wff belonging to
neither a nor c. Then, by (T10) and (MP), we have ¬A∨(¬A → B) ∈ a.
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Hence, by primeness of a, either (1) ¬A ∈ a or (2) ¬A → B ∈ a. Let us
consider the case 2. As x is supposed to be trivial, ¬A ∈ x. But then,
definition of RT , we have B ∈ c, since RT axc, ¬A → B ∈ a, and ¬A ∈ x
but this contradicts our hypothesis. Let us now examine the case 1.
By (T11) and (MP), for arbitrary C we have B ∨ ((A ∧ B) → C) ∈ a.
Whence (A∧B) → C ∈ a, since B /∈ a. Now notice that A∧B ∈ x, since
x is not a-consistent. Thus, C ∈ c, since (A ∧ B) → C ∈ a, A ∧ B ∈ x,
and RT axc but this contradicts the a-consistency of c.

Lemma 5.7 (Extending a in RT abc to a member in KC). Let a, b be
non-empty T -theories and c be an a-consistent, prime T -theory such that
RT abc. Then there is an a-consistent (and non-empty) prime T -theory
x such that a ⊆ x and RT xbc.

Proof. As in the previous lemma, it is shown that there is a prime
theory x such that a ⊆ x and RT xbc. Next, it is shown that x is a-
consistent. Suppose it is not and let A ∈ b and B be an arbitrary wff.
As x is supposed to be trivial, A → B ∈ x. Then, by definition of RT ,
we have B ∈ c, since RT xbc, A → B ∈ x, and A ∈ b. It is contradicting
the a-consistency of c.

Consider now the following definition.

Definition 5.8 (The relation ≤C). For any a, b ∈ KC : a ≤C b iff
RCT ab.

The following lemma shows that the relation ≤C is just set inclusion
between a-consistent and non-empty prime T -theories.

Lemma 5.9 (≤C and ⊆ are coextensive). For any a, b ∈ KC : a ≤C b iff
a ⊆ b.

Proof. From left to right, it is immediate by using a1 in Definition 2.8.
Suppose now a ⊆ b, for a, b ∈ KC . Clearly RCT aa (cf. definitions 5.1
and 5.3). By the hypothesis, RT ab, i.e., a ≤C b, by Definition 5.8.

Lemma 5.10 (Extension to prime T -theories). Let a be a T -theory and
A a wff such that A /∈ a. Then there is a prime T -theory x such that
a ⊆ x and A /∈ x.

Proof. By direct application of Kuratowski-Zorn’s Lemma as in [17,
Chapter 4, pp. 310–311].

In what follows, we investigate the operation ∗C .
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Lemma 5.11 (Primeness of ∗-images). Let a be a prime T -theory. Then

(1) a∗ is a prime T -theory as well,
(2) for any wff A, ¬A ∈ a∗ iff A /∈ a.

Proof. (1) a∗ is closed under T -ent, by (T9); a∗ is closed under (Adj),
by (T5); a∗ is prime, by (T4). (2) By (T7) and (T8).

Lemma 5.12 (∗C is an operation on KC). Let a be an a-consistent and
non-empty prime T -theory. Then a∗ is an a-consistent and non-empty
T -theory as well.

Proof. By Lemma 5.11, a∗ is a prime T -theory. Next, it is shown that
if a is a-consistent and non-empty, then a∗ is also a-consistent and non-
empty. (1) a∗ is a-consistent. As a is non-empty, there is some wff A
such that A ∈ a. Then, ¬A /∈ a∗, by Lemma 5.11(2). (2) a∗ is non-
empty. As a is a-consistent, there is some wff A such that A /∈ a. Then,
¬A ∈ a∗ by Lemma 5.11(2).

Finally, it is proved that the relation �C obeys requirements (clauses)
(i)–(v) in the definition of an Eb4-model (a Cm-model; cf. Definition 3.1).

Lemma 5.13 (�C and clauses (i)–(v)). For all a, b, c ∈ KC and wffs A, B:

(i) (a ≤C b & a �C p) ⇒ b �C p
(ii) a �C A ∧ B iff a �C A and a �C B

(iii) a �C A ∨ B iff a �C A or a �C B
(iv) a �C A → B iff for all b, c ∈ KC , (RCabc and b �C A) ⇒ c �C B
(v) a �C ¬A iff a∗

2
C A

Proof. (i) is immediate by Lemma 5.9; (ii) follows by (a3) and closure
of a under (Adj); (iii) is proved by (a5) and primeness of a; and (v)
and (iv) (from left to right) are immediate by Definition 5.4 and Defini-
tion 5.3, respectively. So, let us prove (iv) from right to left. For wffs
A, B and a ∈ KC , suppose A → B /∈ a (i.e., a 2

C A → B). We prove
that there are x, y ∈ KC such that RCaxy, A ∈ x (i.e., x �C A) and
B /∈ y (i.e., y 2

C B). Consider the sets z = {C | A → B ∈ T } and
u = {C | ∃D(D → C ∈ a & D ∈ z}. Firstly, notice that A ∈ z, since
A → A ∈ T by (a1) (cf. Definition 2.8). Then, z and u are easily shown
T -theories such that RT azu. Now, B /∈ u (if B ∈ u, then A → B ∈ a
contradicting the hypothesis). Moreover, u is not empty, by Lemma 5.5.
Then, by Lemma 5.10, there is a (a-inconsistent and non-empty) prime
T -theory y such that u ⊆ y and B /∈ y. Clearly, RT azy (cf. Defini-
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tion 5.3). Next, by using Lemma 5.6, z is extended to an a-consistent,
non-empty and prime T -theory x such that z ⊆ x and RCaxy. Clearly,
A ∈ x. Therefore, we have a-consistent and non-empty prime T -theories
x, y such that A ∈ x, B /∈ y and RCaxy, as was to be proved.

6. Completeness of E4

In this and the following section, we shall prove strong completeness
theorems for E4 and BN4. Since E4 and BN4 are extensions of b4, we
can use the results on Eb4 logics obtained in sections 4 and 5. In the
present section, we prove strong completeness of E4 w.r.t. the semantics
defined in section 3. The standard concept of “set of consequences of a
set of wffs” will be useful.

Definition 6.1 (The set Cn Γ [E4]). The set of consequences in E4 of
a set of wffs Γ (in symbols Cn Γ [E4]) is defined as follows: Cn Γ [E4] :=
{A | Γ ⊢E4 A} (cf. definitions 2.2 and 2.11).

We note the following remarks (cf. definitions 4.1 and 4.2).

Remark 6.2 (Cn Γ [E4] is a regular E4-theory). It is obvious that for any
Γ , the set Cn Γ [E4] is a regular theory since it is closed under (Adj) and
(MP) and, consequently, under (E4-ent) (the set Cn Γ [E4] contains all
theorems of E4).

Now we have:

Proposition 6.3 (The building of T ). Let Γ be a set of wffs and A a
wff such that Γ 0E4 A. Then, there is a regular, a-consistent and prime
E4-theory T such that Γ ⊆ T and A /∈ T .

Proof. Assuming the hypothesis of Proposition 6.3, suppose Γ 0E4 A.

Then, A /∈ Cn Γ [E4] and so Cn Γ [E4]
d
9
Eb4

{A}: otherwise ⊢E4 (B1 ∧ · · ·∧

Bn) → A, for some B1, . . . , Bn ∈ Γ , whence A would be in Cn Γ [E4]
after all. Next, lemmas 4.5 and 4.6 apply and there is some (regular and
a-consistent) prime E4-theory T such that Γ ⊆ T (since Γ ⊆ Cn Γ [E4])
and A /∈ T .

Leaning on this theory T , the canonical E4-model is defined and
Γ 2E4 A is proved.

Definition 6.4 (The canonical E4-model). The canonical model is the
structure 〈T , KC , RC , ∗C ,�C〉, where KC , RC , ∗C , �C are defined upon
the E4-theory T as indicated in definitions 5.2–5.4.
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Once proved that the canonical E4-model is an E4-model, Proposi-
tion 6.3 is used to show Γ 2

C A in the canonical E4-model, i.e., to show
that A is not a semantic E4-consequence of Γ (cf. Definition 3.4).

We proceed to the proof that the canonical E4-model is an E4-model.
Firstly, we remark the following important fact.

Proposition 6.5 (E4-theories are closed under MP). If a is an E4-
theory, then a is closed under (MP).

Proof. The axiom Modus Ponens, i.e., the thesis [A ∧ (A → B)] → B
is provable in E4 (actually, it is provable in Routley and Meyer’s basic
positive logic B+ (cf. [17]) supplemented with the axiom contraction 
i.e., (A15) in Definition 2.11). Then, Proposition 6.5 follows by closure
of a under (Adj) and (E4-ent).

Next, it is shown that the semantical postulates hold canonically
and then that the canonical E4-model is an E4-model.

Lemma 6.6 (E4 postulates hold canonically). The semantical postulates
(P1)–(P6), (P11)–(P15) hold in the canonical E4-model.

Proof. The proof is greatly simplified by using Lemma 5.9. By leaning
on this lemma (P1)–(P5) and (P11) are proved as in [17, Chapter 4];
and (P12), as in [2, pp. 171–172]. So, let us prove (P6), (P13)–(P15).
We proceed by reductio ad absurdum.

(P6) (RCabc ⇒ (b ≤C a or b ≤C a∗)) holds in the canonical E4-

model: Suppose that there are a, b, c ∈ KC and wffs A, B such that
(1) RCabc but (2) A ∈ b, A /∈ a, B ∈ b and B /∈ a∗ (i.e., ¬B ∈ a).
By (A10), (3) ¬B → [B ∨ (B → C)], for arbitrary wff C. Then, (4)
B ∨ (B → C) ∈ a (by 2, 3) whence (5) B ∈ a or (6) B → C ∈ a. Let us
consider the second alternative, 6. By applying the definition of RC to
1, 2 (B ∈ b) and 6, we have (7) C ∈ c, contradicting the a-consistency of
c. So, let us consider the first alternative, 5. By (T11), (a2), and (a3),
we have (8) (B ∧ ¬B) → [A ∨ [(A ∧ B) → C]], for arbitrary C, and by
2, 5, (9) B ∧ ¬B ∈ a. Thus, (10) A ∨ [(A ∧ B) → C] ∈ a whence we get
(11) (A∧B) → C ∈ a by 2 (A /∈ a). But (12) A∧B ∈ b by 2. So, finally,
C ∈ c (by 1, 11 and 12), contradicting the a-consistency of c.

(P13) ((RCabc & RCa∗de) ⇒ (a ≤C c or a ≤C e or b ≤C a∗

or d ≤C a∗)) holds in the canonical E4-model : Suppose that there are
a, b, c, d ∈ KC and wffs A, B, C such that (1) RCabc and RCa∗de but
(2) A ∈ a, A /∈ c, B ∈ a, B /∈ e, C ∈ b, C /∈ a∗ (i.e., ¬C ∈ a),
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D ∈ d and D /∈ a∗ (i.e., ¬D ∈ a). By 2, (3) C ∨ D ∈ d and A ∧ B /∈
e whence by 1 (RCa∗de), (4) (C ∨ D) → (A ∧ B) /∈ a∗. Hence (5)
¬[(C ∨D) → (A∧B)] ∈ a. On the other hand, by using 2 again, we have
(6) A∧B ∈ a and ¬(C ∨D) ∈ a (by T5 in Proposition 2.12 since ¬C ∈ a
and ¬D ∈ a). Now, (7) [¬[(C ∨D) → (A∧B)]∧ [¬(C ∨D) ∧ (A∧B)]] →
[(C ∨ D) → (A ∧ B)] follows by (A17). So, by 5, 6 and 7, we have (8)
(C ∨ D) → (A ∧ B) ∈ a. But (9) C ∨ D ∈ b (by 2). So, (10) A ∧ B ∈ e
by 1 (RCabc), 8 and 9. But 10 contradicts 2 (A /∈ e).

(P14) (RCaaa∗ or RCa∗aa∗) holds in the canonical E4-model : Sup-
pose that there is a ∈ KC and wffs A, B such that (1) A → B ∈ a, (2)
A′ → B′ ∈ a∗, (3) A ∈ a and A′ ∈ a, but (4) B /∈ a∗ and B′ /∈ a∗ (i.e.,
¬B ∈ a and ¬B′ ∈ a). By T4 we have (5) (A → B) → [(A ∧ A′) →
(B ∨B′)]. So, (6) (A∧A′) → (B ∨B′) ∈ a by 1 and 5. By (A18), we have
(7) [[(A∧A′) → (B∨B′)]∧[(A∧A′)∧¬(B∨B′)]] → ¬[(A∧A′) → (B∨B′)].
Thus, by 3, 4, 6 and 7, we get (8) ¬[(A ∧ A′) → (B ∨ B′)] ∈ a, whence
(9) (A ∧ A′) → (B ∨ B′) /∈ a∗ follows. But by applying again (T4)
(together with some elementary properties of ∧ and ∨), we get (10)
(A′ → B′) → [(A∧A′) → (B∨B′)], whence (11) (A∧A′) → (B∨B′) ∈ a∗

follows by 2. But 9 and 11 contradict each other.
(P15) (RCT ab ⇒ RCT ∗ab) holds in the canonical E4-model : Sup-

pose that there are a, b ∈ KC and wffs A, B such that (1) RCT ab, (2)
A → B ∈ T ∗ (i.e., ¬(A → B) /∈ T ), (3) A ∈ a but (4) B /∈ b. By (A19),
(5) (A → B) ∨ ¬(A → B) ∈ T . Thus, by 2 and 5, (6) A → B ∈ T ,
whence by 1 and 3, (7) B ∈ b follows, contradicting 4.

Now, we can prove the adequacy of the canonical E4-model.

Proposition 6.7 (The canonical E4-model is an E4-model). The canon-
ical E4-model is indeed an E4-model.

Proof. Given Definition 6.4 and Proposition 6.3, the proof follows by
Lemma 5.12 (∗C is an operation on KC), Lemma 5.13 (Adequacy of the
canonical clauses) and Lemma 6.6 (The postulates hold canonically).

Finally, we prove completeness.

Theorem 6.8 (Strong completeness of E4). For any set of wffs Γ and
wff A: if Γ �E4 A, then Γ ⊢E4 A.

Proof. Suppose Γ 0E4 A for some set of wffs Γ and wff A. By Propo-
sition 6.3, there is a regular, a-consistent and prime E4-theory T such
that Γ ⊆ T and A /∈ T . Then, the canonical E4-model is defined upon
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T as indicated in Definition 6.4. By Proposition 6.7, the canonical E4-
model is an E4-model. Then, Γ 2

C A since T �
CΓ , but T 2

CA. Thus,
Γ 2E4 A by Definition 3.4.

7. Completeness of BN4

In this section a strong completeness theorem for BN4 is proved. Let
us begin by commenting on the theory T upon which the canonical E4-
model is built. This theory is required to be a-consistent, regular and
closed under (Adj) and (E4-ent). But undoubtedly it has been remarked
that T has in addition to be closed under (MP): the postulate RTTT is
required in order to verify the rule (MP) (cf. Theorem 3.10). The theory
T is built by using the Extension Lemma (Lemma 4.5) which is proved
by using the notion of Eb4-d-implicability. In the case of E4, this notion
suffices for proving that any maximal set Γ ′ is closed under the rules of
E4 since it is trivial to show that Γ ′ is closed under (Adj) and (E4-ent)
(cf. Lemma 4.6) and, on the other hand, Γ ′ is proved closed under (MP)
in virtue of the Axiom Modus Ponens (cf. Proposition 6.5): if A ∈ Γ ′ and
A → B ∈ Γ ′, then B ∈ Γ ′, given ⊢E4 [A∧(A → B)] → B. Unfortunately,
BN4 lacks the Axiom Modus Ponens and then it is possible to have
A → B ∈ Γ ′, A ∈ Γ ′ and B /∈ Γ ′, for some wffs A, B without break of Γ ′-
maximality in the case of BN4. Consequently, we need a new Extension
Lemma defined on a different notion from d-Eb4-implicability, although
the rest of the completeness proof for BN4 follows similar lines to that of
E4. In order to define the new Extension Lemma, we introduce the no-
tions of d-BN4-derivability and d-BN4-maximality (maximality w.r.t. d-
BN4-derivability). We follow Routley et al. [17, Chapter 4, pp. 336, ff.].

Definition 7.1 (Disjunctive BN4-derivability). For any sets of wffs Γ ,
Θ, Θ is disjunctively derivable from Γ in BN4 (in symbols, Γ ⊢d

BN4 Θ)
iff A1 ∧ · · · ∧ An ⊢BN4 B1 ∨ · · · ∨ Bm, for some wffs A1, . . . , An ∈ Γ and
B1, . . . , Bm ∈ Θ.

Next, we prove a lemma which is essential for proving the extension
to maximal sets w.r.t. d-BN4-derivability (in the couple of lemmas to
follow the subscript BN4 is, in general, dropped from ⊢BN4, since no
confusion can arise as these lemmas are proved only for the logic BN4).
We also need the following definition.
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Definition 7.2 (Full regularity). A BN4-theory is fully regular if it is
a regular BN4-theory (cf. definitions 4.1 and 4.2) which is closed under
(MP) and (dMP). That is, a is fully regular if a is a regular BN4-theory
and for any wffs A, B, C:
(1) if A → B ∈ a and A ∈ a, then B ∈ a; and
(2) if C ∨ (A → B) ∈ a and C ∨ A ∈ a, then C ∨ B ∈ a.

Lemma 7.3 (Main auxiliary lemma). For any A, B1, . . . , Bn ∈ F : if
{B1, . . . , Bn} ⊢BN4 A, then, for any wff C, C∨(B1∧· · ·∧Bn) ⊢BN4 C∨A.

Proof. (Cf. [6, p. 27]) Induction on the length of the proof of A from
{B1, . . . , Bn} (H.I abbreviates hypothesis of induction). (1) A ∈ {B1,
. . . , Bn}. Let A be Bi (1 6 i 6 n). By elementary properties of ∧,
⊢ (B1 ∧ · · · ∧ Bn) → Bi. By (r4), (A → B ⇒ (C ∨ A) → (C ∨ B)),
C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ A. (2) A is an axiom. By (A4), ⊢ C ∨ A.
So, C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ A. (3) A is by (Adj). Then, A is D ∧ E
for some wffs D and E. By H.I, C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ D and
C ∨(B1 ∧· · ·∧Bn) ⊢ C ∨E whence C ∨(B1 ∧· · ·∧Bn) ⊢ (C ∨D)∧(C ∨E),
by (Adj). Finally, C∨(B1∧· · ·∧Bn) ⊢ C∨(D∧E) by T3 ([A∨(B∧C)] ↔
[(A ∨ B) ∧ (C ∨ D)]). (4) A is by (MP). By H.I, C ∨ (B1 ∧ · · · ∧ Bn) ⊢
C ∨ (D → A) and C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ D, for some wff D. So,
C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ A, by (dMP). (5) A is by (dMP). Then, A is
D ∨ E for some wffs D and E. By H.I, C ∨ (B1 ∧ · · ·∧ Bn) ⊢ C ∨ (D ∨ F )
and C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ [D ∨ (F → E)], for some wff F , whence
C∨(B1∧· · ·∧Bn) ⊢ (C∨D)∨F and C∨(B1∧· · ·∧Bn) ⊢ (C∨D)∨(F → E)
by T2 ([A∨(B∨C) ↔ [(A∨B)∨C]). So, C∨(B1∧· · ·∧Bn) ⊢ (C∨D)∨E,
by (dMP) and, finally, C ∨ (B1 ∧ · · · ∧ Bn) ⊢ C ∨ (D ∨ E), by (T2), as it
was required in case 5, which ends the proof of Lemma 7.3.

Next, we show how to extend sets of wffs to maximal sets. (The
proof that follows mirrors that of Lemma 4.5 by using now the no-
tion of disjunctive BN4-derivability instead of that of disjunctive Eb4-
implicability.)

Lemma 7.4 (Extension to d-BN4 maximal sets). Let Γ , Θ be sets of wffs
such that Γ 0

d Θ. Then there are sets of wffs Γ ′, Θ′ such that Γ ⊆ Γ ′,
Θ ⊆ Θ′, Θ′ = Γ

′

and Γ ′
0

d Θ′ (that is, Γ ′ is a maximal set such that
Γ ′

0
d Θ′).

Proof. Let A1, . . . , An, . . . be an enumeration of the wffs. The sets
Γ ′ and Θ′ are defined as follows: Γ ′ :=

⋃
k∈N

Γk, Θ′ :=
⋃

k∈N
Θk, where

Γ0 = Γ , Θ0 = Θ and for each k ∈ N, Γk+1 and Θk+1 are defined
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as follows: (i) if Γk ∪ {Ak+1} ⊢d Θk, then Γk+1 = Γk and Θk+1 =
Θk ∪ {Ak+1}; (ii) if Γk ∪ {Ak+1} 0

d Θk, then Γk+1 = Γk ∪ {Ak+1} and
Θk+1 = Θk. Notice that Γ ⊆ Γ ′, Θ ⊆ Θ′ and that Γ ′ ∪ Θ′ = F (the
set of all wffs). We prove (I) Γk 0

d Θk for all k ∈ N. We proceed by
reductio ad absurdum. So, suppose that for some i ∈ N, (II) Γi 0

d Θi but
Γi+1 ⊢d Θi+1. We then consider the two possibilities (i) and (ii) above
according to which Γi+1 and Θi+1 are defined: (a) Γi ∪ {Ai+1} 0

d Θi.
By (ii), Γi+1 = Γi ∪ {Ai+1} and Θi+1 = Θi. By the reductio hypothesis
(II), Γi ∪ {Ai+1} ⊢d Θi, a contradiction. (b) Γi ∪ {Ai+1} ⊢d Θi. By
(i), Γi+1 = Γi and Θi+1 = Θi ∪ {Ai+1}. By the reductio hypothesis
(II), (1) Γi ⊢d Θi ∪ {Ai+1}. Now, let the formulas of Γi and Θi in
this derivation be B1, . . . , Bm and C1, . . . , Cn, respectively, and let
us refer by B to B1 ∧ · · · ∧ Bn and by C to C1 ∨ · · · ∨ Cn. Then (1)
can be rephrased as follows (2) B ⊢ C ∨ Ai+1. On the other hand,
given the hypothesis (b), there is a conjunction B′ of elements of Γi and
some disjunction C′ of elements of Θi such that (3) B′ ∧ Ai+1 ⊢ C′.
Let us now refer by B′′ to B ∧ B′ and by C′′ to C ∨ C′; we will show
(III) B′′ ⊢ C′′, that is, Γi ⊢d Θi, contradicting the reductio hypothesis
and thus proving (I). By elementary properties of ∧ and ∨, we have
(4) B′′ ∧ Ai+1 ⊢ C′′ from (3), and (5) B′′ ⊢ C′′ ∨ Ai+1 from (2). By
(5), we get (6) B′′ ⊢ C′′ ∨ (B′′ ∧ Ai+1) and by (4) and Lemma 7.3, (7)
C′′ ∨ (B′′ ∧ Ai+1) ⊢ C′′ ∨ C′′ whence by (T1) (A ↔ (A ∨ A)), we have
(8) C′′ ∨ (B′′ ∧ Ai+1) ⊢ C′′. By (6) and (8) we get (III) B′′ ⊢ C′′, that
is, Γi ⊢d Θi, contradicting the reductio hypothesis. Consequently, (I)
(Γk 0

d Θk for all k ∈ N) is proved. Thus, we have sets of wffs Γ ′, Θ′

such that Γ ⊆ Γ ′, Θ ⊆ Θ′, Θ′ = Γ
′

and Γ ′
0

d Θ′ (since Γk 0
d Θk for all

k ∈ N) and Θ′ = Γ
′

(since Γ ′ ∩ Θ′ = ∅  otherwise Γi ⊢d Θi, for some
i ∈ N  and Γ ′ ∪ Θ′ = F), as it was required. Finally, notice that Γ ′ is
maximal (since Γ ′

0
d Γ ).

Before proving the primeness lemma we pause a second to remark the
essential role Lemma 7.3 has played in the proof of the extension lemma
just given (notice that the rest of syntactical moves required in the said
proof can be carried on by leaning on the simple resources of the posi-
tive fragment of Anderson and Belnap’s First Degree Entailment Logic
FDE  cf. [1, §15.2] about this logic; cf. the proof of Proposition 2.12
above).

Lemma 7.5 (Ext. to prime BN4-th. closed under (MP) and (dMP)). If Γ
is a maximal set, then it is a BN4-theory closed under (MP) and (dMP).
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Proof. (Cf. Lemma 8 in [6]) (1) Γ is a BN4-theory closed under (MP)
and (dMP): It is trivial to prove that Γ is a BN4-theory closed under
(MP) and (dMP). For example, let us prove that Γ is closed under
(dMP). For reductio, suppose that there are wffs A, B, C such that
C ∨ A ∈ Γ , C ∨ (A → B) ∈ Γ but C ∨ B /∈ Γ . Then, (C ∨ A) ∧ [C ∨
(A → B)] ⊢ C ∨ (A → B) and (C ∨ A) ∧ [C ∨ (A → B)] ⊢ C ∨ A,
whence (C ∨ A) ∧ [C ∨ (A → B)] ⊢ C ∨ B by (dMP), contradicting the
maximality of Γ . (2) Γ is prime: If there are some wffs A, B such that
A ∨ B ∈ Γ , but A /∈ Γ and B /∈ Γ , then Γ is not maximal by virtue of
(A1) ((A ∨ B) → (A ∨ B)).

Once these preliminary facts having been stated, the completeness
proof is developed similarly as in the case of E4. In the first place, we
have:

Proposition 7.6 (The building of T ). Let Γ be a set of wffs and A
a wff such that Γ 0BN4 A. Then there is a prime, fully regular and
a-consistent BN4-theory T such that Γ ⊆ T and A /∈ T .

Proof. Similarly as in E4, we define the notion Cn Γ [BN4] (cf. Def-
inition 6.1) and note that, for any Γ , Cn Γ [BN4] is a fully regular
theory. Now, suppose Γ 0BN4 A. Then, A /∈ Cn Γ [BN4], and thus
Cn Γ [BN4] 0

d
BN4 {A}: otherwise B1 ∧ · · · ∧ Bn ⊢BN4 A, for some B1,

. . . , Bn ∈ Γ whence A would be in Cn Γ [BN4] after all. Next, by
Lemma 7.4, there is a maximal set T such that Cn Γ [BN4] ⊆ T and
A /∈ T . By Lemma 7.5, T is a prime BN4-theory closed under (MP)
and (dMP). Moreover, T is regular since it includes Cn Γ [BN4], and it
is a-consistent since A /∈ T .

Now, similarly as it was the case with E4, the canonical BN4-model
is defined upon T . Then Lemma 5.12 guarantees that ∗C is an operation
on KC and Lemma 5.13, that the clauses hold canonically (exactly as
in the case of E4  cf. Proposition 6.7). Thus, in order to prove that
the canonical BN4-model is a BN4-model, it remains to prove that the
postulates hold canonically (cf. Lemma 6.6 in the case of E4).

Lemma 7.7 (BN4-postulates hold canonically). The semantical postu-
lates (P1)–(P10) hold in the canonical BN4-model.

Proof. We use Lemma 5.9 (cf. Lemma 6.6). (P1)–(P5) and (P7) are
proved as in [17, Chapter 4], and (P6), similarly as in Lemma 6.6. So,
let us prove (P8)–(P10).
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(P8) (RCabc ⇒ (b ≤C a∗ or a ≤C c)) holds in the canonical BN4-

model: Suppose that there are a, b, c ∈ KC and wffs A, B such that (1)
RCabc and (2) A ∈ b, A /∈ a∗ (i.e., ¬A ∈ a), B ∈ a and B /∈ c. By (A12),
(3) (¬A ∧ B) → (A → B). Thus, (4) A → B ∈ a, by 1 and 2, whence
B ∈ c (1, 2 and 4), contradicting 2.

(P9) (RT ab ⇒ (T ∗ ≤ b or a ≤ T )) holds in the canonical BN4-

model: Suppose that there are a, b ∈ KC and wffs A, B such that (1)
RCT ab and (2) A ∈ T ∗ (i.e., ¬A /∈ T ), A /∈ b, B ∈ a and B /∈ T . By
(A13), (3) (B ∨ ¬A) ∨ (B → A) ∈ T (T is regular). So, (4) B → A ∈ T ,
by 2 and 3. Finally, (5) B ∈ b, by 1, 2 and 4, contradicting 2.

(P10) (RC2T abc ⇒ (b ≤C T or b ≤C a∗)) holds in the canonical

BN4-model: Suppose that there are a, b, c ∈ KC and wffs A, B such that
(1) RC2T abc and (2) A ∈ b, A /∈ T , B ∈ b and B /∈ a∗ (i.e., ¬B ∈ a). By
(d2), there is (3) x ∈ KC such that RCT ax and RCxbc. Let C be a wff
such that (4) C /∈ c (c is a-consistent). Then (5) (A ∧ B) → C /∈ x, since
RCxbc (by 3) and A∧B ∈ b (by 2). On the other hand, (6) ¬A∨¬B ∈ a
by 2, whence (7) ¬(A ∧ B) ∈ b, by (T6) (cf. Proposition 2.12). Thus, (8)
¬(A ∧ B) → [(A ∧ B) → C] /∈ T , by 5 and 7, since RCT ax (by 3). By
(A14), (9) (A∧B) ∨ [¬(A∧B) → [(A∧B) → C]] ∈ T (T is regular). So,
by 8 and 9, (10) A ∧ B ∈ T . But 10 and 2 contradict each other.

Finally, as it was the case with E4, we have:

Proposition 7.8 (The canonical BN4-model is a BN4-model). The
canonical BN4-model is indeed a BN4-model.

Theorem 7.9 (Strong completeness of BN4). For any set of wffs Γ and
wff A: if Γ �BN4 A, then Γ ⊢BN4 A.

We end the paper by noting that Cm and b4 can proved strongly
complete similarly as BN4 only if both are extended with the rule (dMP).
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