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Abstract. We extend the work presented in [7, 8] to a regions-based, two-
dimensional, Euclidean theory. The goal is to recover the classical contin-
uum on a point-free basis. We first derive the Archimedean property for
a class of readily postulated orientations of certain special regions, “gener-
alized quadrilaterals” (intended as parallelograms), by which we cover the
entire space. Then we generalize this to arbitrary orientations, and then
establishing an isomorphism between the space and the usual point-based
R × R. As in the one-dimensional case, this is done on the basis of axioms
which contain no explicit “extremal clause” (to the effect that “these are
the only ways of generating regions”), and we have no axiom of induction
other than ordinary numerical (mathematical) induction. Finally, having
explicitly defined ‘point’ and ‘line’, we will derive the characteristic Paral-
lel’s Postulate (Playfair axiom) from regions-based axioms, and point the
way toward deriving key Euclidean metrical properties.
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Introduction

This paper builds on work already presented [7, 8] on recovering the clas-
sical one-dimensional continuum on a point-free basis. The next section
will summarize that work, omitting proofs. Those already familiar with
it may wish to skip that section. Although our approach in the two-
dimensional case is similar in certain respects, several new problems and
issues arise demanding their own treatment. A well-known precedent for
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such efforts is Tarski’s [12] ingenious reconstruction of three-dimensional
Euclidean geometry on a point-free basis, using the primitive “sphere”
(see also [2, 4]). There, however, once he had defined point and equidis-

tance of two points from a third, Tarski simply adopted a known system
of axioms for three-dimensional Euclidean geometry based on these two
primitives.1 This last step, however, is the very antithesis of “honest
toil”, better described as “grand larceny”. Indeed, Tarski acknowledged
that his system was “far from being simple and elegant”.2 Moreover, he
wrote that “it seems very likely that this postulate system can be essen-
tially simplified by using intrinsic properties of the geometry of solids”.

Here we will present an “honest toil” regions-based reconstruction of
two-dimensional continua and Euclidean geometry. To aid the exposi-
tion, we will proceed in stages, first deriving the Archimedean property
for a class of readily postulated orientations of certain special regions,
“generalized quadrilaterals” (intended as parallelograms), by which we
cover the entire space. The second stage consists in generalizing this
to arbitrary orientations, and then establishing an isomorphism between
the space and the usual point-based R × R. As in the one-dimensional
case, this is done on the basis of axioms which contain no explicit “ex-
tremal clause” (to the effect that “these are the only ways of generating
regions”), and we have no axiom of induction other than ordinary numer-

1 The system is due to Pieri [11].
2 Tarski here severely understates the problem with his procedure. The usual

Nagelian (e.g., [9],[10]) standard for reducing a theory T2 to another T1 requires both
(1) that the predicates of T2 be explicitly defined by those of T1, and (2) that the
axioms of T2 be derived as theorems of T1 using the definitions. Here (2) serves as
a substantive constraint on the definitions of (1). But Tarski did not provide axioms
for his T1, beyond those of pure logic and mereology, and some postulates on “solid”,
defined as the fusion of a nonempty set of “spheres”. Tarski simply adopted the
translates of axioms of T2 as new axioms of T1. By such a procedure, any theory is
automatically reducible to any other (with enough predicates of the right-arity), for
nothing constrains the “definitions”!

Perhaps this has been missed because, in fact, Tarski’s definitions of external and
internal tangency and diametricality, concentricity, etc., aren’t at all arbitrary but
rather qualify as good and ingenious, despite his failure to state regions-based axioms
on ‘sphere’. Our evidence for this is that, within the point-based theory (T2), we can
derive theorems to the effect that each of the predicates to be defined holds if and only
if the proposed definiens holds, but where the latter is translated back into the point-
based theory. (No doubt, such reasoning is what led Tarski to contrive his definitions
in the first place.) However, that reasoning all takes place in the “superstructure”,
that is in T2, and so provides no substitute for the Nagelian requirement (2).

See [6] for an in depth treatment of Tarski’s definitions and axioms.
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ical (mathematical) induction. Finally, having explicitly defined ‘point’
and ‘line’, we will derive the characteristic Parallel’s Postulate (Playfair
axiom) from regions-based axioms, and point the way toward deriving
key Euclidean metrical properties.

1. The basic theory: an atomless, mereological
continuum in one dimension

Our formalism begins with classical first-order logic with identity sup-
plemented with a standard axiom system for second-order logic (or logic
of plural quantification, with an unrestricted comprehension axiom for
plurals), and with an adaptation of the standard (Tarskian) axioms of
mereology.

Axioms of Mereology:

Axioms 1.1a (on x ≤ y; “x is part of y”): reflexive, anti-symmetric,
transitive.

Certain of our axioms and theorems are stated in terms of a binary
relation called “overlaps”, defined in a standard way:

x ◦ y
df

⇐⇒ ∃z(z ≤ x & z ≤ y).

Axiom 1.1b (on ≤ and ◦).

∀x∀y
(

∀z(z ◦ x → z ◦ y) → x ≤ y
)

.

Theorem 1.1. Axioms 1a and 1b imply the Extensionality Principle:

x = y ↔ ∀z(z ◦ x ↔ z ◦ y).

Thus we adopt an equivalent of a now standard mereology.

Axiom 1.2 (Fusion or whole comprehension).

∃uΦ(u) →
(

∃x∀y[y ◦ x ↔ ∃z(Φ(z) & z ◦ y)]
)

,

where Φ is a predicate of the second-order language (or language of
plurals) lacking free x.

We write x + y for the mereological sum or fusion of x and y , such
that

∀z
(

z ◦ x+ y ↔ (z ◦ x ∨ z ◦ y)
)

,
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and we use
∑

∞

n=0 xn to designate fusions of infinitely many regions. Also,
if x ◦ y, then we write x ∧ y for the meet of x and y, which satisfies

∀z
(

z ≤ x ∧ y ↔ (z ≤ x & z ≤ y)
)

.

(If x and y have no common part, x ∧ y is undefined.)
For “x is discrete from y” we use the following definition

x | y
df

⇐⇒ ¬ ∃z(z ≤ x & z ≤ y)

i.e., x | y ⇐⇒ ¬x ◦ y.
Furthermore, if ∃z(z ◦ x & z | y), then x − y is the largest part of

x which does not overlap y (and if there is no such part, then x − y is
undefined).3 So

∀z
(

z ≤ x− y ↔ (z ≤ x & z | y)
)

.

We define G to be the fusion of all regions. It is the entire space.
We introduce a geometric primitive, L(x, y) , to mean “x is (entirely)

to the left of y”. The axioms for L specify that it is irreflexive, asymmet-
ric, and transitive. And we define ‘R(x, y)’, “x is (entirely) to the right
of y”, as L(y, x).

From this, we define a geometric relation, betweenness: Betw(x, y, z)
for “y is (entirely) between x and z”:

Betw(x, y, z)
df

⇐⇒
(

L(x, y) & R(z, y)
)

∨
(

R(x, y) & L(z, y)
)

It follows that Betw(x, y, z) ↔ Betw(z, y, x).
L(x, y) obeys the following axioms:

Axiom 1.3a. L(x, y) → x | y. (Of course, x | y implies x 6= y.)

It follows that R(x, y) → x | y.

Axiom 1.3b. L(x, y) ↔ ∀z, u[z ≤ x & u ≤ y → L(z, u)].

Now we can define an essential notion, that of a “connected part of G”.
Intuitively, such a part has no gaps. The definition is straightforward:

Conn(x)
df

⇐⇒ ∀y, z, u(z, u ≤ x & Betw(z, y, u) → y ≤ x).

3 The definitions of “meet” and “difference” given in Hellman and Shapiro [7, 8]
are incorrect.
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In words, x is connected just in case anything lying between any two
parts of x is also a part of x.

Furthermore, we can define what it means for a connected part of G
to be bounded:

Bounded(p)
df

⇐⇒ ∃x, y(Conn(x) & Conn(y) & Betw(x, p, y).

In words, a connected region is bounded if it lies wholly between two
others.

We call bounded, connected regions “intervals” and write ‘Int(j)’,
etc., when needed. However, note that, lacking points, we cannot de-
scribe intervals as either “open”, “closed”, or “half-open”.

Once we establish that G is bi-infinite, i.e. infinite in both direc-
tions, and that G is Archimedean, it will follow that boundedness is also
sufficient for “finite in extent”, relative to any interval.

Using L, we can impose a condition of dichotomy for discrete inter-
vals:

Axiom 1.4 (Dichotomy axiom).

∀i, j
(

i, j are two discrete intervals → (L(i, j) ∨ L(j, i))
)

.

Now we can prove a linearity condition among intervals:

Theorem 1.2 (Linearity). Let x, y, z be any three pairwise discrete

intervals. Then exactly one of x, y, z is between the other two.

To guarantee that arbitrarily small intervals exist everywhere along
G, we adopt the following axiom:

Axiom 1.5. ∀x∃j(Int(j) & j < x).

This is what guarantees that the space is gunky.
An important relation of two intervals is “adjacency”, which is de-

fined as follows:

Adj(j, k)
df

⇐⇒ j | k & ∄m[Betw(j,m, k)].

The following equivalence relations on intervals will also prove useful:

“j and k are left-end equivalent” just in case

∃p
(

p ≤ j & p ≤ k & ∄q[(q ≤ j ∨ q ≤ k) & L(q, p)]
)

.
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Equivalently, two intervals are left-end equivalent just in any region that
is left of one of them is left of the other. “Right-end equivalent” is defined
analogously.

Left- (Right-) end equivalence means, intuitively, that the intervals
“share their left (right) ends, or end-points, in common”, but our sys-
tem does not recognize “ends” or “end-points” as objects entering into
mereological relations.

Our final primitive, for congruence among intervals, is used to insure
that G is infinite in extent and in recovering, in effect, the rational
numbers as a countable, dense subset of the (arithmetic) continuum, viz.
congruence, as a binary relation among intervals. Intuitively, Cong(i, j)
is intended to mean “the lengths of intervals i and j are equal”. Thus, we
adopt the usual first-order axioms specifying that Cong is an equivalence
relation.

We will sometimes write this as |i| = |j|, but with the understanding
that we have not yet given any meaning to ‘|i|’ standing alone, but only
in certain whole contexts. Similarly, for intervals i, j, we can define, con-
textually, |i| < |j| as meaning: ∃j′[j′ an interval & j′ < j & Cong(i, j′)];
and we may write |i| > |j| as equivalent to |j| < |i|.

The next axiom is crucial to our characterization of G:

Axiom 1.6 (Translation axiom). Given any two intervals, i and j, each
is congruent both to a unique left-end-equivalent and to a unique right-
end-equivalent of the other.

In effect, this guarantees that a given length can be “transported”
(more accurately, instantiated) anywhere along G, and that these in-
stances are unique as congruent and either left- or right-end equivalent
to the given length. In particular, we can prove

Theorem 1.3 (Trichotomy). For any two intervals, i, j, either |i| = |j|
or |i| < |j| or |i| > |j|.

Our final axiom is that congruence respects nominalistic summation
of adjacent intervals:

Axiom 1.7 (Additivity). Given intervals i, j, i′, j′ such that Adj(i, j),
Adj(i′, j′), Cong(i, i′), Cong(j, j′), then Cong(k, k′), where k = i+ j and
k′ = i′ + j′.

We now turn to the matter of the bi-infinitude of G. In fact, our
axioms already guarantee this, as we can now prove.
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Theorem 1.4 (Bi-Infinity of G). Let any interval i be given. Then there

exist exactly two intervals, j, k, such that Cong(i, j), and Cong(i, k), and

Adj(i, j), and Adj(i, k), and one of j, k is left of i and the other is right

of i.

Since bi-extension obviously iterates, this already insures that G is
“bi-infinite” in the sense of containing, as a part, the fusion of the mini-
mal closure of any interval i under the operation of “bi-extension” defined
in the theorem. But we can do better and also insure that G is exhausted

by iterating the process of flanking a given interval by two congruent ones
as in Bi-infinity. This is just the Archimedean property:

Theorem 1.5 (Characterization of G). LetG be the fusion of the objects

in the range of the quantifiers of our axioms; and let i be any interval.

Let i∗ be the fusion of the minimal closure of i under biext. Then G = i∗.

We can also show that G is Dedekind-complete.
Finally, we need a guarantee that any interval has a unique bisection.

That can be proved as a theorem:

Theorem 1.6 (Existence and uniqueness of bi-sections). Given any in-

terval i, there exist intervals j, k such that j < i, and k < i, and j | k,

and j+k = i, and Cong(j, k), and j, k are unique with these properties.

2. Regions-based two-dimensional continuum: derivation
of the Archimedean property (restricted)

As in the one-dimensional case, we begin with first-order logic with =,
augmented with plural quantification (or second-order logic) and mereol-
ogy, taking over axioms 1.1a, 1.b, and 1.2 above. The parts of our space,
which constitute the range of our first-order variables, we call “regions”.
Informally, we’ll sometimes refer to our space as G2. We write ‘s ≤ r’ for
“s is part of r”; ‘s < r’ for“s is a proper part of r”, i.e., s ≤ r & s 6= r;
s◦r, for “s overlaps r”, i.e., ∃t(t ≤ r & t ≤ s); and ‘s | r’ for “s is discrete
from r”, i.e., ¬ s ◦ r. Nominalistic summing or fusion is indicated by ‘+’,
which applies to arbitrary regions, with

r + s = t ⇐⇒ ∀u
(

u ◦ t ↔ (u ◦ r ∨ u ◦ s)
)

.

As before, sums or fusions of all things of any (non-empty) plurality (or
satisfying any non-vacuous predicate) are recognized. We use

∑

∞

n=0 xn
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to designate fusions of infinitely many regions. In the case of predicates
or formulas, quantification over arbitrary wholes or pluralities is permit-
ted, so that the system is in this sense “impredicative”, as expected in
a classical reconstruction.

At this stage, our only other primitives are as follows: First, we have
a primitive for congruence of regions, Cong(s, r), understood as it usually
is, to mean “same shape and size”. We also have a special type of region
which we call “generalized quadrilateral” gq(r). Our axioms will in effect
delimit these to parallelograms, although we don’t use that term, as the
notion of “line” is not yet available.4 We also introduce four relative “di-
rection” primitives associated with any given gq viz. ‘Up’, ‘Down’, ‘Left’,
and ‘Right’ (using upper case first letters as abbreviations), subject to
axioms to be introduced below. Now we define a notion of “co-oriented
adjacency” of gq’s,

Adj(r, s) iff r | s & gq(r + s).

Intuitively, this means that r and s share exactly one entire border in
common; that either s is U of r and r is D of s, or vice-versa, or r is
L of s and s is R of r, or vice-versa; that there are no gaps between r

and s; and that they are oriented in the same way, not oppositely, if
they are not bilaterally symmetric. (In the latter case, if they are not
both rectangles, their sum would not form a gq, despite sharing an entire
border in common.) We normally drop the reference to co-orientation.

Our first axiom specifies obvious properties of congruence and the
second introduces generalized quadrilaterals:

Axiom 2.0. Cong(s, r) is an equivalence relation.

4 In the next section we generalize the Archimedean property to a plenum of
directions and derive the Euclidean Parallels Postulate. There, we will introduce
further primitives pertaining to angles (or to angles less than 2π radians), conceived
informally as regions shaped as sectors of circles (although we do not need ‘circle’ as
a primitive).

Notice, incidentally, that in the one-dimensional theory of the previous section,
“congruence” is only defined for intervals; here it is a relation on all regions. In the
present section, however, we only apply “congruence” to generalized quadralaterals.
In the next section, “congruence” is also applied to “angles”, construed as sectors of
circles, and to “triangles”, which are certain parts of gq’s. For other regions, we can
informally think of “congruence” as identity, or, for that matter, any other equivalence
relation.
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Axiom 2.1. There exist gq regions. Any gq region, r, has a “quadra-

section”, that is, r = s1 + s2 + s3 + s4, each itself a gq, with all the
si discrete from one another, with Cong(si, sj), and such that for each
si, there are exactly two sj such that Adj(si, sj). Furthermore, r has
a “quadra-extension”, that is, there are exactly four gq’s, ri, pairwise
discrete and discrete from r, with Cong(ri, r) and Adj(ri, r), for i =
1, . . . , 4, such that each rj is adjacent to the fusion of exactly two si,
and each si enters into exactly two such fusions. Finally, r has a “nona-

section”, that is, r =
∑9

i=1 si, each si a gq, with si | sj , i 6= j, and
Cong(si, sj). Each extension ri of r determined by quadra-extension is
adjacent to the fusion of exactly three sections si of the nona-section;
each of exactly four of the si enters into exactly two of these triple
fusions, and exactly one of the si enters into no such triple fusion.

(To aid visualization: The first four nona-sections si of the final
clause, informally speaking, are “at the corners” of r, and the single si

not entering into any triple fusion adjacent to an rj is the “central” one
of the nona-section.)

Then repeated quadra-extension results in (among other things) four
sums (call them “strings”) of congruent regions starting with a central
one, each string arranged linearly with each region (beyond the central
one) adjacent to its predecessor and its successor, proceeding outward
in a particular direction (the “direction of the string”) corresponding to
those of the principal axes of the central gq-region. A segment of such
a string  equal to the fusion of the initial region and some of its succes-
sors and closed under “immediate predecessor”  is called “bounded” just
in case there is some region discrete from all the members of the segment
and beyond all of them in the same direction as that of the string. Our
next axiom stipulates that sectioning and extending are inherited by
congruents and certain sums thereof, and that these “operations” are
indefinitely iterable:5

Axiom 2.2. Any region congruent to a gq is itself a gq.

Below we will introduce “rectangles” as special kinds of gq’s and will
adopt as an axiom (Axiom 2.3b) that every region has a rectangle as
a part. Thus our axioms guarantee infinite divisibility of the space into
gq-regions. Furthermore, they guarantee that the space is infinite in

5 Strictly speaking, we are specifying what regions exist, regardless of application
of operations. But speaking of operations is natural and perhaps of heuristic value.
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extent in all directions, and that we can find gq-regions (intuitively) at
arbitrary finite distances from any given one. Of course, we do not yet
have that the space is Archimedean.

Note that Axiom 2.1 embodies closure of gq’s under fusion of a gq

and any one of its extensions, by the requirement of adjacency as de-
fined. One further closure condition on gq-regions will prove useful in
recovering the classical Dedekind-Cantor continuum as superstructure
over any “line” in our space, once that notion has been defined. To state
this, define a sequence, ρ = 〈rj〉, of gq’s to be “sequentially adjacent”
just in case, for each j, Adj(rj+1, rj), all in the same direction. Also,
denote by Σj(〈rj〉) the fusion of the gq’s, rj , of such a sequence. Then
we stipulate

Axiom 2.3a. If ρ = 〈rj〉 is sequentially adjacent and for some gq r, and
every j, rj ≤ r, then Σj(〈rj〉) is a gq.

This is, in effect, a Cauchy completeness condition adapted to gq-
regions, and it will guarantee that, once the relevant terms have been
suitably defined, gq’s with “borders” of arbitrary real “length” always
exist.

Because of the iterability of sectioning, we are also furnished with
many nested sequences of gq-regions, and many of these are convergent
(in standard terms, to a point).

gq-regions 〈ri〉 are nested iff rk < rj , for k > j.

For point-wise convergence, however, we need a stronger nesting prop-
erty:

gq-regions 〈ri〉 are properly nested iff rk+1 is one of the sections

of quadra-secting or nona-secting rk, for all k = 1, 2, . . . .

We will also, for convenience, sometimes call properly nested sequences
“convergent”, although we cannot yet distinguish true “convergence to
a point” from “convergence to an infinitesimal region”, not yet having
proved that our space is Archimedean.

Theorem 2.1. There are properly nested gq-regions.

Proof. By Axiom 2.1, we may, for instance, take r1 of our sequence
to be, say, the UL, upper left quadrant of a first quadrasection of given
gq-region, r. Given ri, then let ri+1 be the DR, down-right quadrant
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of ri. This defines a properly nested sequence (intuitively converging to
the DR-most corner of the NW quadrant of r, i.e., the center of r).
(Alternatively, work with repeated nona-sections to obtain a properly
nested sequence converging in the same way, by always choosing the
central region of the nona-section at any stage.

Let r be a gq-region. We now introduce an operation, based on
quadra-extension, that provides larger and larger regions, starting with r,
growing exponentially without finite bound. Congruents of parts of any
of these will then be “finite relative to r”. The operation, called “4-fold-
extension”, is best illustrated with an example: Start with r, with its
own relative orientation, labeled ‘U’, ‘R’, ‘D’, ‘L’. Quadra-extend r, and
designate by rU the congruent of r adjacent to r and up, and similarly for
rR. Now by rRU

designate the extension of rR congruent and adjacent
to it and up from it (selected to agree with“up” from r). Then the
4-fold-extension of r “4-f (r)”  is the gq-region r + rR + rRU

+ rU .
Intuitively, the area of 4-f(r) is four times that of r. By iterating 4-f
we specify exponentially larger and larger gq’s, intuitively occupying the
UR quadrant of our space. (If the space is Archimedean, all of that
quadrant will be covered by these regions.)

As indicated above by the choice of names of “directions”, these terms
are not absolute but are relative to each gq. In particular, the various
gq’s need not be “oriented” the same way (although we take some steps
to orient some of them, for purposes of simple exposition).

Say that Left and Right are opposite to each other, and also that
Up and Down are opposite to each other. Say that the other pairs are
orthogonal. So Up and Down are each orthogonal to Left and Right (and
vice versa). In what follows, we’ll use meta-variables T , T ′, T1, etc. to
range over directions (or direction labels). If T is a direction, then T - is
its opposite. So if T is Left, then T - is Right, and vice versa, and if T is
Up, then T - is Down, and vice versa.

Let s be a gq and let T be a direction. Let m be any region. We want
some axioms governing the relation of m being T from s. Intuitively,
the idea is that m is discrete from s and lies entirely on the T side
of s, between lines that form the opposite borders of s (not necessarily
strictly between). Of course, we cannot say that officially, since there are
no lines (and so no borders). Instead, we give some axioms governing the
relation. Of course, in proving the theorems, we rely only on the axioms.
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Technically, we have four new binary relations between gq’s and re-
gions: Left(s,m), Right(s,m), Up(s,m), and Down(s,m). But we will
usually speak more informally of a given region m being T of a gq s,
where T is one of the four directions.

Axiom 2.4a. Let m be a region, s a gq, and T a direction. If m is T
from s, then m | s.

It follows immediately that the relations m is T of s are irreflexive.

Axiom 2.4b. Let m, m′ be regions, s a gq, and T a direction. If m is T
of s and m′ ≤ m, then m′ is T of s.

Axiom 2.4c. Let s be gq, T a direction, and let M be any set (or
plurality) of regions. If every member of M is T of s, then the fusion of
M is also T of s.

Suppose that m is T from s. Then Axiom 2.4a says that the two
are discrete and Axiom 2.4b says that every part of m is also T from s.
Axiom 2.4c is a sort of converse to Axiom 2.4b.

Next are axioms that relate the four directions to the quadra-ex-
tensions, quadra-sections, and nona-sections of a given gq. Here we
coordinate some of the directions.

Axiom 2.5a. If s is a gq and T is a direction, then exactly one of the
four quadra-extensions of s is T of s. So we can speak of the T -quadra-
extension of s.

Axiom 2.5b. If t is the T -quadra-extension of s, then s is the T -quadra-
extension of t. Moreover, the T -quadra-extension of t is also T of s (and
thus the T -quadra-extension of s is T - of t).

Axiom 2.6a. Let s be a gq. Then the four quadra-sections of s can
be labeled Up-Left (UL), Up-Right (UR), Down-Left (DL), and Down-
Right (DR), such that (i) the UL-quadra-section of s is Left from the
UR-quadra-section of s and Up from the DL-quadra-section of s ; the
UR-quadra-section of s is Right from the UL-quadra-section of s and Up
from the DR-quadra-section; and similarly for the other two. And (ii) the
Left quadra-extension of the UL-quadra-section of s is the UR-quadra-
section of the Left quadra-extension of s; and the Up quadra-extension
of the UL-quadra-section of s is the DL-quadra-section of the Up quadra-
extension of s; and similarly for the other three quadra-sections of s.
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Axiom 2.6b. Let s be a gq. Then the nine nona-sections of s can
be labeled Up-Left (UL), Up-Middle (UM), Up-Right (UR), Middle-
Left (ML), Middle-Middle (MM), Middle-Right (MR), Down-Left (DL),
Down-Middle (DM), and Down-Right (DR), such that (i) the Right
quadra-extension of the UL-nona-section of s is the UM-quadra-section
of s, the Left quadra-extension of the UL-nona-section of sis the UR-
nona-section of the Left quadra-extension of s, the Up quadra-section
of the UL-nona-section of s is the DL-nona-section of the Up quadra-
section of s, and the Down quadra-section of the UL-nona-section of s is
the ML-nona-section of s; and similarly for the other eight nona-sections.

Axiom 2.6c. If a region m is UP from the UL-quadra-section, the UR-
quadra-section, the UL-nona-section, the UM-nona-section, or the UR-
nona-section of a gq r, then m is UP from r. And similarly for the other
directions.

Define the spread of a gq r to be the set (or plurality) of all gq’s
in the minimal closure of {r} under quadra-extension, quadra-section,
and nona-section. The above axioms (are meant to) make sure that the
various directions of gq’s in the spread of r are oriented with each other.6

Define two gq’s p, q to be Aligned if there are directions T , T ′ such
that p is T of q and q is T ′ of p. If p and q are in the same spread, then,
by the axioms 2.5, T ′ will be T -, the opposite direction of T , but that
need not hold in general.

For example, let p be a gq and let q be the Up quadra-extension of
the Up quadra-extension of p. Then p and q are Aligned.

Recall that, intuitively, a region m is, say, Left of a gq s just in case
m is entirely to the Left of s, and fits between the extensions of the upper
and lower boundaries of s. So, intuitively, two gq’s are Aligned if they
are discrete and the lines formed by two of their opposite boundaries are
the same. Of course, this is all at the level of heuristics.

6 We could extend the coordination a bit. Let q be a gq and let r be its Right
quadra-extension. Then q + r is itself a gq. We can stipulate that the UL-quadra-
section of q + r is the fusion of the UL-quadra-section and the UR-quadra-section of
q. And so on. But there is no hope of coordinating all of the gq’s in G2, for some of
them might not even have the same “orientation” as q. Intuitively, some gq’s might
be at an angle to others  so to speak. So we will have to live with the relativity of
the directions.
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Axiom 2.7a (Transitivity). Let p be Aligned with q. So there are direc-
tions T , T ′ such that q is T of p; and p is T ′ of q. Then any region that
is T ′- of q is also T of p.

In other words, if p is Aligned with q, then, in effect, the T ′- direction
from q is the same as the T direction from p; anything that is in the T ′-
direction from q is also T of p. This also guarantees that our original gq

p is not T ′- of q. In effect, the Transitivity axiom guarantees that the
space is not “closed” or, in other words, no matter how far one goes in
the T direction, one will not get back to the gq at which we started. (As
already noted, Axiom 2.4a implies that ‘T of’ is irreflexive.)

Axiom 2.7b (Dichotomy). Let p be Aligned with q. So there are direc-
tions T , T ′ such that q is T of p; and p is T ′ of q. Let m be any region
that is T ′ of q and discrete from p. Then either m is T of p, or m is T -
of p.

In words, the Dichotomy axiom says if p is Aligned with q, so that
there are directions T , T ′ such that q is T of p; and p is T ′ of q, then
any region that is T ′ from q and discrete from p is either in between the
gq’s or on the opposite side of p.

Axiom 2.8 (gq covering). Let T be a direction, and suppose that a region
m is T from a gq r. Then m is a part of the fusion of all gq’s that are T
of r, congruent with r, and Aligned with r.

In other words, we can cover any region T from r with gq’s, all of
which are Aligned with r, congruent with r, and T of r. Notice that
a converse of Axiom 2.8 follows from Axiom 2.4.

We need to rule out models in which the universe consists of two com-
pletely discrete “spaces”, where no part of one of them can be “reached”
from any part of the other via some combination of the four directions.
For example, we should rule out models that consist of two copies of
a point-free space, where no region in one of them is Up, Down, Left, or
Right from any gq in the other. Our next axiom accomplishes this:

Axiom 2.9 (Unity of Space). Let r be any gq, and let m be any region.
Then there is a gq s such that (i) either s = r, or else both s is congruent
with r and there is a direction T1 of s such that r is T1 of s and Aligned
with s; and (ii) there is a direction T2 of s, such that m overlaps the
fusion of s and all gq’s that are T2 of s.
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Intuitively, the idea is this: Start with any region r and let m be
any region whatsoever. Then we can reach part of m by going in some
direction from r, turning either right or left (or up or down), and then
going in that direction.

Notice that nothing so far entails that the space is Archimedean.
Even with Axiom 2.9, we have not ruled out models that have gq’s, r,
s where, say, s is Left of r, but infinitely far from r (relative to r, and
relative to s).7 We have also not ruled out gq’s that are infinitely large
relative to each other. Ruling out such models, via an Archimedean
theorem, is the main order of business of this section.

More definitions: Let r and s be gq’s that are Aligned with each
other, and let m be any region. Say that m is Between r and s if and
only if both of the following hold:

(i) there is a direction T1 of r such that m and s are both T1 from r;
and

(ii) there is a direction T2 of s such that m and r are both T2 of s.

It follows that if m is Between r and s, then r is Aligned with s.

Let m and n be regions. Say that m and n are Contiguous just in
case there is no gq t and no direction T of t, such that m is T of t and n
is T− of t. This definition is loosely modeled after Aristotle’s. He says
that two things are contiguous just in case nothing can get between them
(e.g., Physics 226b21). Think of two adjacent books on a tightly packed
shelf or two adjacent houses whose outer walls touch (or overlap). Here,
we’d like to say that two regions are contiguous if there can be no region
that comes between them. But we need at least one gq in order to have
an orientation or a “direction”, and thus a sense of “between”. So we
say that two regions are Contiguous if no gq can separate them, so that
one of the regions is on one side of the gq, and the other region is on the
other side.

Aristotle defines two things to be continuous if, when they are con-
tiguous, the boundary between them is absorbed, and they become one

7 To construct such a model, begin with a two-dimensional non-Archimedean
space, such as one constructed from Robinson-style hyper-reals. Let the “regions” be
regular open sets (those that are identical to the interior of their closure), and let the
gq’s be the interiors of parallelograms.
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thing.8 Think of bodies of water or, for that matter, regions of space. If
they are contiguous with each other, they are (or become) one.

We can get something similar here, at least for gq’s. Let r and s

be gq’s. Say that r is Continuous with s just in case they are Aligned,
Contiguous, and there is no region that is between them.

Recall that we have another primitive Adj(s, r), whose intended
meaning is that r and s are discrete from each other and share part
of a border, but, again, that is at the level of heuristics. It is part of the
axiom defining gq’s that quadra-extensions are adjacent to one another.
We can relate that to the present primitives:

Axiom 2.10. Every gq is Continuous with its quadra-extensions. In
general, if r and s are Aligned gq’s such that Adj(r, s), then r and s are
Continuous.

Notice, however, that it can happen that two gq’s are congruent with
each other, Aligned, and Contiguous, and still there is a region that is
between them  so that they are not Continuous. Think of two congruent
parallelograms side by side, but oriented in opposite directions. We
define rectangles to be gq’s where this does not happen:

Let q be a gq. Then q is a Rectangle just in case for every gq r, if
r is Aligned with q, Contiguous with q, and congruent with q, then r is
Continuous with q (i.e., there is no region that is between r and q). In
fact, r is a quadra-extension of q.

Axiom 2.11a. If a region q is congruent with a rectangle q′, then q is
a rectangle.

Axiom 2.11b. If r and r′ are Aligned, Contiguous rectangles, then r+r′

is a rectangle.

Some properties of rectangles:

Axiom 2.12a (Decomposition I). Let r, s, t be rectangles such that r is
Aligned with both s and t and that s ◦ t. Then either s ≤ t, or t ≤ s,
or there are three pairwise discrete rectangles s′, t′, v, all Aligned with
r such that s = s′ + v and t = t′ + v. Moreover, v is between s′ and t′.

8 Physics, Book V (227a6): “The continuous is just what is contiguous, but I say
that a thing is continuous when the extremities of each at which they are in contact be-
come one and the same and are (as the name implies) contained in each other. Conti-
nuity is impossible if these extremities are two. This definition makes it plain that con-
tinuity belongs to things that naturally, in virtue of their mutual contact form a unity.”
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Axiom 2.12b (Decomposition II). Let q and r be any gq’s (or we can
restrict this to rectangles). If q < r, then ¬ Cong(q, r).

Axiom 2.12c (Decomposition III). If q is a rectangle, then so are its
quadra-sections and nona-sections.

Axiom 2.12d (Additivity). Let r, r1, r2, s, s1, and s2 be rectangles,
such that r = r1 + r2 with r1 discrete from r2, and s = s1 + s2 with s1

discrete from s2. If Cong(r1, s1) and Cong(r2, s2), then Cong(r, s).

Our next axiom guarantees an abundance of rectangles, including
arbitrarily small ones (in light of Axiom 2.1), as mentioned above (this
axioms also guarantees that the space is gunky):

Axiom 2.13b (Existence of Rectangles). Let m be any region. Then
there is a rectangle r such that r ≤ m.

Here, then, is our plan for establishing the Archimedean property:
Let r be any rectangle and let T be a direction from r. Let rT be the
fusion of all regions that are T of r. Let r1 be the T quadra-extension
of r, and let RT be the minimal closure of {r1} under the operation of
taking the T quadra-extension. Notice that every rectangle in RT is in
the spread of r, and so has the same “orientation”, by Axiom 2.6a. Let
rT be the fusion of RT .

After adding one more definition and one more axiom, we will show
that rT = rT . Then, with the Unity of Space and the Existence of Rect-
angles axioms, we are able to show that the entire space is Archimedean
in the following sense: Let r be any rectangle. Let r∗ be the fusion of
all regions in the minimal closure of {r} under quadra-extension. Then
r∗ = G2. It also follows that all gq’s are finite relative to each other.

Here is our final definition (for this part of the project): Let r be
a gq and T a direction, and let a region m be T from r. Say that m is
Bounded to the T of r if there is a gq s, such that (i) s is T of r and
Aligned with r, and (ii) there is a direction T ′ of s such that r and m

are both T ′ of s. In other words, m is Bounded to the T of r just in case
there is a gq s Aligned with r, such that m is Between r and s.

And the final axiom of this section is this:

Axiom 2.13 (Translation). Let r be a gq and T a direction. Suppose
that a region m is T of r. Then, if m is Bounded to the T of r, then
there is a gq r′ such that (i) r′ is congruent to r and Aligned with r; (ii)
m is between r and r′; and (iii) m and r′ are Contiguous.
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Intuitively, the antecedent of the Translation axiom is that m is T
from r and there is some gq on the “other side” of m (from r). The
consequent of the axiom is that we can get a copy of r on the “other
side” of m, Aligned with r and move it so close to m that no gq can get
between them. In a sense, we have this copy of r just touching m.

Theorem 2.2. Let r be any rectangle and let T be any direction from

r. Let rT be the fusion of all regions that are T of r. Let r1 be the T

quadra-extension of r, and let RT be the minimal closure of {r1} under

the operation of taking the T quadra-extension. Let rT be the fusion

of RT . Then rT = rT .

Proof. By transitivity, every member of rT is T of r, and so, by Ax-
iom 2.4c, rT is T of r. So rT ≤ rT . Suppose rT 6= rT . Then rT − rT

exists. By Axiom 2.4b, rT − rT is T of r.
Let s be the set (or plurality) of all of all gq’s that are T of r, con-

gruent with r, and Aligned with r. The members of s are all rectangles.
By Axiom 2.8 (gq covering), rT − rT is part of the fusion of s. So let s
be any rectangle in s that overlaps rT − rT . Since s is Aligned with r,
there is a direction T ′ from s such that r is T ′ of s.

There are two cases. Case 1: Assume that s overlaps rT . Then there
is a rectangle rn in rT such that s overlaps rn. So we have that s and
rn are both Aligned with r, and all three are rectangles (invoking Ax-
iom 2.11a for rn). So by Axiom 2.12a, either s ≤ rn, rn ≤ s, or there are
three pairwise discrete rectangles s′, r′

n, v, all Aligned with r, such that
s = s′ +v and rn = r′

n +v, with v between s′ and r′

n. But if s ≤ rn, then
rn overlaps rT −rT , which is absurd since clearly rn ≤ rT . If rn ≤ s, then
we must have rn < s, since s overlaps rT − rT . So, by Axiom 2.12b, De-
composition II, ¬ Cong(rn, s), and so ¬ Cong(r, s), which is also absurd.

So there are three pairwise discrete rectangles s′, r′
n, v, all Aligned

with r, such that s = s′ + v and rn = r′
n + v, with v between s′ and

r′

n. Since v ≤ rT , we have that s′ overlaps rT − rT . Let rn+1 be the T
quadra-extension of rn. Since s is Aligned with r, there is a direction T ′

from s such that r is T ′ from s. Let s′′ be the T ′- quadra-extension of
s. Since v is Aligned with r there is a direction T ′′ from v such that r
is T ′′ from v. By Dichotomy (Axiom 2.7b) it is straightforward to show
that s′ and s′′ are both T ′′- from v. Indeed, s′ is between v and s′′. So s′

is Bounded to the T ′′- of v. By Translation (Axiom 2.13), there is a gq

v′ such that (i) v′ is congruent to v and Aligned with v (and so with r,
and everything else here); (ii) s′ is between v and v′; and (iii) s′ and v′
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are Contiguous. By Axiom 2.11b, s′ and v′ are Continuous with each
other and s′ + v′ is a rectangle. By additivity (Axiom 2.12d), s′ + v′ is
congruent with s (which, recall, is s′ + v). So s′ + v′ is congruent with r
and thus with rn. It is also a straightforward consequence of Dichotomy
(Axiom 2.7b) that s′ + v′ is adjacent to rn and T from rn. So, by the
uniqueness of T quadra-extension, we have that s′ + v′ is rn. But then
s′ ≤ rT , which contradicts the claim that s′ overlaps rT − rT .

Case 2. Assume that s does not overlap rT . By Axiom 2.7b (Di-
chotomy) either rT is T ′ of s or rT is T ′− of s. But the latter is absurd.
We would have s coming between r and its T quadra-extension r1. So rT

is T ′ of s. So rT is Bounded to the T of r. So, by Axiom 2.13 (Transla-
tion), there is a rectangle t such that (i) t is congruent to r and Aligned
with r; (ii) rT is between r and t; and (iii) rT and t are Contiguous.
So there is a direction T ′′ such that r is T ′′ of t. Let u be the T ′′ quadra-
extension of t. So u overlaps rT (by the contiguity of t and rT ). So there
is a rectangle rn in rT such that u overlaps rn. If either rn ≤ u or u ≤ rn

then rn = u (by Axiom 2.12b, Decomposition II). But in that case, by
the uniqueness of quadra-extension, t would be the T quadra-extension
of rn and so t ≤ rT , which contradicts the hypothesis (ii) that rT is
between r and t.

So there are three pairwise discrete rectangles u′, r′
n, v, all Aligned

with r, such that u = u′ + v and rn = r′
n + v, and v is between u′ and

r′
n. Proceeding similarly to Case 1, note that since v is Aligned with r

there is a direction T1 from v such that r is T1 from v. By Dichotomy
(Axiom 2.7b) it is straightforward to show that u′ and t are both T1-
from v. Indeed, u′ is between v and t. So u is bounded to the T1-
of v. By Translation (Axiom 2.13), there is a gq v′ such that (i) v′ is
congruent to v and Aligned with v (and so with r, and everything else
here); (ii) u′ is between v and v′; and (iii) u′ and v′ are Contiguous.
By Axiom 2.11b, u′ and v′ are Continuous with each other and u′ + v′

is a rectangle. By additivity (Axiom 2.12d), s′ + v′ is congruent with u

(which, recall, is u′ +v). So u′ +v′ is congruent with r and thus with rn.
It is also a straightforward consequence of Dichotomy (Axiom 2.7b) that
u′ + v′ is adjacent to rn and T from rn. So, by the uniqueness of T
quadra-extension, we have that s′ + v′ is rn+1, the T quadra-extension
of rn. So v′ ≤ rT . By hypothesis, v′ is discrete from both v and u′, and
so from v+u′ = u. With Dichotomy (Axiom 2.7b), it is straightforward
to check that v′ is between u and t. But this contradicts the fact that u
and t are quadra-extensions of each other.
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Theorem 2.3. Let r be any rectangle. Let r be the minimal closure of

{r} under quadra-extension, and let r∗ be the fusion of r. Then r∗ is

G2, the entire space.

Proof Sketch. Suppose not. Then, since obviously r∗ ≤ G2, G2 − r∗

exists. So let m be any region that is discrete from r∗.

By Axiom 2.9, Unity of Space, There is a gq s such that (i) either
s = r, or else both s is congruent with r and there is a direction T1 of s
such that r is T1 of s and Aligned with s; and (ii) there is a direction T2

of s, such that m overlaps the fusion of s and all gq’s that are T2 of s.

If s = r then m overlaps the fusion of all gq’s that are T2 of r. Let r1

be the T2 quadra-extension of r. We have that m overlaps the fusion of r
and all gq’s that are T2 of r. By Theorem 2.2, m overlaps the fusion of r
and the fusion of the minimal closure of {r1} under T2 quadra-extension.
Either way, m overlaps r∗, which is a contradiction.

If, instead, s 6= r, then, by the definition of Alignment, there is
a direction T of r such that s is T from r. As in Theorem 2.2, let r1 be
the T quadra-extension of r; and let rT be the minimal closure of {r1}
under the operation of taking the T quadra-extension. By a construction
similar to that used in the proof of Theorem 2.2, there is a member rn

of rT such that s ≤ rn + rn+1, where rn+1 is the T quadra-extension of
rn. We have that there is a direction T2 of s such that m overlaps the
fusion of all gq’s that are T2 of s. It is straightforward to check that
there is a direction T ′ of rn + rn+1 such that m overlaps the fusion of
all gq’s that are T ′ of rn + rn+1. Applying Theorem 2.2 again, we have
that m overlaps the fusion of the minimal closure of {rn + rn+1} under
T ′ quadra-section. It is straightforward to verify that m thus overlaps
r∗, a contradiction.

3. Generalization of the Archimedean property
and recovery of the parallels postulate

So far, we have derived the Archimedean property as it pertains to any of
the four directions relative to a given gq. There is, however, nothing so
far that guarantees that gq’s exist in arbitrary orientations, as usually
understood in terms of lines or classes of parallel lines. In fact, the
following describes a model M of the axioms thus far. The “regions”
of M are regular, open sets of pairs of real numbers, with the usual
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metric and topology.9 So the entire space G2 of M is R2. Mereological
“parts” are subsets, and the fusion of a set S of regions is the interior
of the closure of the union of the members of S. Let i be any open
parallelogram, say one whose interior angles are π

4 and 3π
4 (radians). Say

that a regular, open set m is a gq of M just in case m is a parallelogram
whose sides are parallel to those of i. So, in M all gq’s are oriented the
same way (i.e., they are all oriented the same as i). Let s and r be two
regions of M. Say that Cong(s, r) holds in M just in case either s and r
are gq’s and s is congruent (in R2) to r, or else neither is a gq and s = r

(see note 4 above). It is straightforward to verify that M satisfies all of
the axioms of the previous section. In M all gq’s are “rectangles” (even
though they are not rectangles in R2).

In effect, the Unity of Space Axiom 2.9 and the Principle 1.2 of
unrestricted fusions guarantees that, in any model, there will be regions

with all sorts of sizes, shapes, and orientations. For example, there will
be regions that are intuitively “congruent” to a given gq, but oriented
differently, say at a π

6 angle from it. But, as indicated by the model M,
we do not yet have the means to show that these regions are gq’s and
that they stand in the Cong relation to any gq’s (despite Axiom 2.2).

In this section, we add some further primitives on regions and axioms
governing them that enable us to rule out models like M, and, indeed, to
establish the full Archimedean property for arbitrary directions. These
primitives, it turns out, also suffice for the full, regions-based recovery
of Euclidean geometry, to be shown explicitly below in the case of the
parallels postulate (“EPP”).

The bulk of our task is definitional, introducing enough conceptual
machinery to state axioms adequate for generalizing the Archimedean
property and recovering Euclidean geometry. Our method employs a no-
tion of “angle” as a region, written Ang(θ). In ordinary terms, we may
think of an angle as a sector or a circle, or better, as an equivalence
class of such sharing a common vertex, with the angles respectively of
concentric circles such that they all share a common vertex and each
is an “initial part describing the same angle”, i.e. all are are angles as
sectors of larger concentric circles, all of the same angle norm (to be
defined, below). But this is just heuristics. We will often drop the
primitive ‘Ang’, reserving θ, ϕ, ψ, etc. as angle variables (typically for

9 So M is an analogue of one of the topological models of our one dimensional
theory ([7, 8]).
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generic representatives of equivalence classes). Of course, we don’t yet
have vertices as points, so we will need some new primitives on such
regions and axioms governing them. It helps that we already have gq’s,
intuitively containing four angles (as regions) at it’s “corners”. Further,
we have the resources to define explicitly the “corners” of a given gq.
For example, using our relative direction terms, the “top-left corner” of
given gq, r, can be identified with the nested sequence 〈ri〉 of gq’s ri

under iterated quadrasection starting with r0 = r, setting ri+1 = the
top-left quadrasection of ri (and similarly for the other three corners).10

Thus we can simply identify the “vertex” of an angle (< π radians) with
the equivalence class of co-convergent n- and q-sequences defining the
relevant “corner” of a gq from which it derives. Further, since angles in
our sense are regions, we already have applicable our primitive congru-
ence relation, which, in the case of angles, will be written Cong(θ, ϕ),
where, as usual, this means, in ordinary terms, “same size and same
shape”. Here are the axioms we will use:

Axiom 3.1a. Let r be a gq; then r has exactly four angles, Ang(θi), i = 1,
. . . , 4, with each θi < r, such that the vertex of θ1 = the UL corner as
defined, and likewise proceeding clockwise. Further, diagonally opposite
angles are congruent, Cong(θ1, θ3) and Cong(θ2, θ4).

We also want to stipulate that an angle, as part of a gq “fills up”
a corner of the gq in the sense of having “sides” that coincide with
segments of two adjacent sides of the gq. This can be expressed using
the relative direction terms, “to the D of”, as in the previous section:

Axiom 3.1b. Let r be a gq and let θ be an angle at the FF′ corner of r
(where ‘FF′’ takes the values ‘UL’, ‘UR’, ‘DL’, or ‘DR’); then no part of
θ lies F of r or F′ of r, and no part of r lies F of θ or F′ of θ.

Based on this, we can re-define rectangle(r) as: r is a gq all four of
whose angles are congruent.11 Then each such angle, θ, is called “right”,
and its norm, |θ| = π

2 . By our Axiom 2.13 of the previous section,
rectangles exist (in abundance).

10 The definition of ‘point’ in our framework is given below via properly nested
sequences of gq’s under iterated nona-sectioning, and co-convergence of these with
properly nested sequences under quadra-sectioning is also defined.

11 As indicated by the above model M, this definition of “rectangle” is not equiva-
lent to that of the previous section. It is straightforward that rectangles, in the present
sense, meet the defintion of “rectangle” in the previous section.
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Given just this much, we already can define a suitable relation of ad-

jacency of two angles to one another: Adj(ϕ, ψ) iff ϕ | ψ & Ang(ϕ+ ψ).
It is convenient also to introduce two subrelations of angle adjacency,
+Adj(ϕ, ψ) and −Adj(ϕ, ψ), the former defined as Adj(ϕ, ψ) & ϕ is
clockwise of ψ, the latter as the same except substituting ‘counterclock-
wise’ for ‘clockwise’.

Invoking quadraextensions, we have that each right angle, say, θ1, of
a rectangle is adjacent to two others (one, θ2, +Adj to θ1, the other, θ3,

−Adj), and those two are adjacent to a fourth, θ4, completing a circle (as
a region) = Σ4

i=1θi. All circles may be identified in this way, as an angle.

Our next axiom is one of Euclid’s:

Axiom 3.1c. Let θ and ψ be any two right angles; then Cong(θ, ψ). If C
is a circle, its norm, |C| = 2π.

In general, the (angle) norm function is stipulated to be countably
additive with respect to sequentially adjacent angles: |Σjθj | = Σj |θj |,
mod 2π, whenever Adj(θj, θj+1), each j, with |θj| ¬ 2π (where we have
abused notation, using the Σ inside the brackets to denote mereological
fusion and the Σ outside to be ordinary addition of real numbers). This
is taken to apply to finite sums as well as countably infinite.

Axiom 3.2. Every angle has a (polar) bisection:

∀θ∃ϕ, ψ
(

Cong(ϕ, ψ) & Adj(ϕ, ψ) & θ = ϕ+ ψ
)

(‘+’ in the sense of mereology). Except in the case of θ = a circle, the
bisection is unique.

This already implies that angles are “bilaterally symmetric”, and
hence that, as it is usually expressed in terms of points and lines, the
two “sides” of an angle (as a circle sector) are “of equal length”. And since
Axiom 3.2 can be iterated any finite number of times, this guarantees
that all of the angles obtained under iterated polar bisection have sides
of the same length as one another. Our next axiom enables us to extend
this to subangles of arbitrary real norm (mod 2π) relative to that of any
given angle.

Axiom 3.3. Let 〈θj〉 be a sequence of angles, each θj < θ, such that
Adj(θj, θj+1), each j; then the fusion, Σjθj , of the θj is an angle, θj ,
with θj ¬ θ.
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Angles of a sequence 〈θj〉 satisfying the hypothesis of this last ax-
iom will (collectively) be called “sequentially adjacent”. If all the Adj

instances are in the same sense, + or −, we call the angles “sequentially
+adjacent” and “sequentially −adjacent”, respectively. Since angles of
irrational norm (mod 2π) can be obtained exactly by fusion of conver-
gent sequentially adjacent angles of binary rational norm, the effect of
these last two axioms is to furnish us with a continuum of angles of any
given circle, in one-one correspondence with those as usually defined via
intersecting half-lines.

Our next axiom insures that fusions of sequentially adjacent angles
preserve congruence:

Axiom 3.4. If the angles of 〈θj〉 are either sequentially +adjacent or
−adjacent and those of 〈ϕj〉 are either sequentially +adjacent or −ad-
jacent, with all the θj < θ and all the ϕj < ϕ, and Cong(θj, ϕj), all j,
then Cong(Σjθj,Σjϕj).

Similarly we adopt a kind of “converse” to this:

Axiom 3.5. Under the same hypotheses as the previous axiom but
with Cong(θj , ϕj) holding for all j except for one, j = k, then if also
Cong(Σjθj ,Σjϕj), then Cong(θk, ϕk).

Our next step is to obtain the effect of rotation operators, here un-
derstood as rotating a given angle through another given angle. Once
that is accomplished, we will be able to state an axiom guaranteeing
existence of gq’s (or rectangles) oriented in arbitrary directions in space.
Then the derivation of the Archimedean property of the previous section
will straightforwardly generalize as desired.

In the usual terms of points and lines, any angle (in our sense of re-
gion, as well as on the standard conception) uniquely determines a circle,
with the vertex as center and either side of the angle as radius. How can
we express this function from angles to circles just in terms of regions?
One requirement for a given angle θ to be of a circle C is that the fusion
of θ together with sufficiently (finitely) many copies of θ, sequentially
adjacent in the same sense (+ or −), is identical with C.12 Thus we
postulate

12 It makes no difference if the last copy of θ returns to θ with an overlapping
excess: the fusion of the sequence is still just the circle determined by θ.
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Axiom 3.6. (Angle biextensions). For any given angle θ (< 2π), there
are exactly two unique angles, θ′, θ′′, such that Cong(θ, θ′), Cong(θ, θ′′),
and +Adj(θ′, θ) and −Adj(θ′′, θ).

Then we define that θ is of C to mean that, for some n, there are n
angles, θj , each congruent to θ, sequentially +adjacent (or −adjacent),
with θ1 = θ, such that the fusion, Σjθj = C. (Of course, then θ ¬ C.)

Now let C and C′ be given congruent circles, and let θ be an angle
of C, and let ϕ be an angle of C′. Our next axiom generalizes the last,
guaranteeing that copies of either angle exist adjacent to either side of
the other.

Axiom 3.7 (Angle translation). Given circles C, C′ with Cong(C,C′)
and angles θ of C and ϕ of C′, each < 2π, there are unique ϕ, ϕ′ with
Cong(ϕ′, ϕ) and Cong(ϕ′′, ϕ) and +Adj(ϕ′, θ) and −Adj(ϕ′′, θ).

(Since the circle and angle variables in this are universally quanti-
fied, it already implies the statement with the roles of θ, ϕ, and C, C′

reversed.)13

Angle translation and the intended interpretation of Adj also provide
a route to recovering the usual definition of ‘circle’ via equal-length radii
from a fixed point (center, vertex of angles in our sense).

The pieces are now in place for us to define general rotation operators
on angles, and hence on gq’s. Specifically, for example, we would like
to complete a formula that defines: +R(θ, θ′, ϕ) iff θ′, with Cong(θ, θ′),
represents “the result of rotating θ clockwise through angle ϕ”, where
+Adj(ϕ, θ).

This can be done without defining any new relations as follows: first,
apply biextension to ϕ, obtaining ϕ′ with Cong(ϕ′, ϕ) and +Adj(ϕ′, ϕ);
then require that −Adj(θ′, ϕ′). Now, in terms of line segments, the same
sides of θ and θ′ form angles congruent to ϕ. Formally, we first define
the four-place relation,

+R(θ, θ′, ϕ, ϕ′) iff Cong(θ, θ′) &

+Adj(ϕ, θ) & Cong(ϕ, ϕ′) & +Adj(ϕ′, ϕ) & −Adj(θ′, ϕ′)].

13 This axiom also implies the previous one on angle biextensions as a special
case. The latter, however, is needed in order to infer that the definition of “θ is of C”
is instantiated, as in the axiom of angle translation.
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Then we define

+R(θ, θ′, ϕ) iff ∃ϕ′[+R(θ, θ′, ϕ, ϕ′)].

‘−R(θ, θ′, ϕ)’, “θ′ results from counterclockwise rotation of θ through
ϕ”, is defined analogously.

The last axiom of this group is key to proving our main results of
this and the next section, generalization of the Archimedean property to
arbitrary directions and recovering the Euclidean parallels postulate:

Axiom 3.8 (Angles to gq’s). Let θ be any angle < π; then there is a gq,
r, with θ as one of its angles.14

As a special case, let r be a given rectangle with ψ as one of its right
angles, and let ϕ be an arbitrary angle < π; then, by Angle transla-
tion, there exists ψ′ with Cong(ψ, ψ′) such that, for some ϕ′ satisfying
Cong(ϕ, ϕ′), we have that +R(ψ, ψ′, ϕ, ϕ′) (and similarly for −R), i.e.,
ψ′ results from positive (negative) rotation of ψ through angle ϕ. Then
by the “Angles to gq’s” axiom, there is a rectangle r′ with ψ′ as one of
its angles. Since ϕ is arbitrary, this furnishes us with rectangles with
arbitrary orientations, as desired. Thus, we have

Theorem 3.1. Same statement as Theorem 2.2: Let r be any rectangle

and let T be any direction from r. Let rT be the fusion of all regions

that are T of r. Let r1 be the T quadra-extension of r, and let RT be

the minimal closure of {r1} under the operation of taking the T quadra-

extension. Let rT be the fusion of RT . Then rT = rT .

Here, however, the variable ‘r’ over rectangles ranges over those of
arbitrary orientations. The proof of Theorem 2.2 carries over intact.
Similarly with regard to the next theorem and its proof:

Theorem 3.2. Same statement as Theorem 2.3: Let r be any rectangle.

Let R be the minimal closure of {r} under quadra-extension, and let r∗

be the fusion of R. Then r∗ is G2, the entire space.

Now we turn to the recovery of the Euclidean parallels postulate
(“EPP”). This breaks down naturally into two tasks: first, we need to

14 Although angles were first introduced above as deriving from gq’s, occupying
their “corners”, this axiom is not redundant as it applies to arbitrary angles, includ-
ing all those obtained from given ones via the operations of bisection, biextension,
translation, and fusion of sequentially adjacent angles.
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introduce ‘point ’ and ‘line’ and enough relations among these to be able
to express the EPP in our framework. Second, we then will introduce
‘triangle’ and the relation of ‘similarity’ between triangles and some
axioms governing these predicates as a means of recovering the Euclidean
proof of uniqueness of parallels (through a given point, in relation to
a given line). The existence of parallels already will follow from our
arbitrarily oriented gq’s.

Turning to the first task: We will want to introduce “lines” as certain
sets or pluralities of points, where points are taken to be sequences of
properly nested gq’s. For this, we must be assured of distinct points,
which translates as “non-co-convergent” sequences. Thus, we need a cri-
terion of co-convergence (intuitively meaning, “to the same point”).

Note that two co-convergent sequences (speaking informally here), if
obtained by repeated quadra-secting, may be entirely discrete from one
another, i.e., no region of one sequence overlaps any of the other. It can
even be that no region of one is adjacent to any of the other. (For exam-
ple, take one sequence to be that defined in the proof of Theorem 2.1,
above, and take a second, also converging to the “center” of r, to be that
which results from switching the roles of ‘NW’ and ‘SE’ in the definition
of the first sequence). However, if we restrict our definition to sequences
of gq-regions obtained always by nona-secting the previous region, then
the criterion for co-convergence is especially simple, and, moreover, the
proof that non-co-convergent sequences exist is made easy. So we define:

Properly nested sequence σ = 〈σi〉 of gq-regions is an n-sequence iff each
σi+1 is the central region of the nona-section of σi.

Properly nested n-sequences ρ = 〈ρi〉, σ = 〈σj〉 are co-convergent (we
write CoConv(ρ, σ)) iff ∀i∃j σj ≤ ρi & ∀j∃i ρi ≤ σj .

It is easily proved that CoConv is an equivalence relation. (This is
left to the reader.)

Now we prove that there are many non-co-convergent n-sequences.

Lemma 3.3. Given any n-sequence σ, there exists an n-sequence τ such

that ¬ CoConv(σ, τ).

Proof. If the first term σ1 of σ is part of gq-region r, let τ1 be any
gq-region such that τ1 < r′, where r′ can be any region resulting from
applying quadra-extension to r. Then, since τ1 is discrete from σ1, in
fact all the τi are discrete from all the σj by the choice of central regions
of nona-sections at each stage.
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In light of our previous axioms, this provides many non-co-convergent
pairs of convergent sequences, hence many mutually distinct “points”
and, as will emerge, distinct “lines” as well.

It will also be useful to invoke properly nested gq-sequences ob-
tained by quadra-section at each stage, especially when speaking of “cor-
ners” and “border points” of gq-regions (cf. Axiom 3.1a, above). Such
points must be defined by n-sequences, but we may say that properly
nested sequences via quadra-section  call them “q-sequences  are also
co-convergent with a fixed n-sequence. For this, we may define

Q-sequences ρ, σ are co-convergent with n-sequence τ (we write:
CoConv(ρ, σ, τ)) iff ∀τi, ρj, σk(τi ◦ ρj & τi ◦ σk). Holding n-sequence τ
fixed, this is also an equivalence relation between the first two terms,
provided the relation holds (i.e., reflexivity, CoConv(σ, σ, τ), obtains
whenever the condition τi ◦ σj for all i, j, is met).15

We define “p is a point” to mean p is an equivalence class of properly
nested co-convergent n-sequences. Occasionally, when convenient, we
will refer to a generic member of such a class rather than to the class
itself.

Our definition of line, one of several equivalents chosen for conve-
nience, follows closely that of classical analysis applied to geometry:
Stated informally, “l is a line” iff l = the maximal class of “collinear”
points, where three distinct points  i.e., pairwise non-co-convergent 
n, p, q, are defined to be collinear (we write Coll(n, p, q)) just in case
they are all points of a common “border” of a gq, r. This in turn is
spelled out via q-sequences co-convergent with the n-sequences defining
the respective points. For example, to be a point of, say, the U (“up”)
border of gq r is to be specified by a q-sequence 〈σj〉, where σ1 = r and
σj+1 = the “UX-quadrasection of σj”, where ‘X’ can vary over relative
directions R and L. Similar patterns specify the other “border points”
of r, mutatis mutandis.

Our next two lemmas establishes the equivalence of our definition of
‘line’ with the more common one as a pair of distinct points:

15 What we call n-sequences are closely related to a special case of “representa-
tives of points”, as introduced in [5]. See also [3]. The relation of co-convergence is
analogous to the relation of mutual covering of sets of regions. Much of this work is
inspired by [13].
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Lemma 3.4. Let p and q be distinct points. Then they both lie on

exactly one line.

Proof. Invoking rectangles of an n-sequence for p, say, and rotation
of one of these if needed, one obtains a rectangle r with p and q as
adjacent corners. One of the borders, call it B, of r connects p and q.
This determines a line l thus: take the minimal closure of r under bi-
extension in the two directions orthogonal to B; l then consists of all the
points of the B-borders of these rectangles. Clearly it is a collinearity
class, and the Archimedean property insures that it is maximal. To
prove uniqueness of l, suppose both p and q also lie on a line k 6= l.
Since k and l are not parallel, they meet at a point, m, which may be
supposed to be p or q or neither. Now it is a property of gq borders
that any two points of a border are at a straight angle (of norm π) to
each other (the vertex of which is the mid-point between them). (Cf.
Lemma 3.7, below.) Suppose m is p; then there is a point n of k such
that p is equidistant from q and n (via a gq with segment pn of k as
a border congruent to a gq with a segment pq of l as a border). But
the angle qpn formed at p 6= π unless the segment pn is of line l as well
as k. In that case, by an induction, iterating this construction along
k indefinitely in both directions would show that k = l, contradicting
the hypothesis. Thus, we can suppose that pn is of k but not of l, and
q, p, n are not collinear with n, therefore p and q cannot both lie on
k, contradicting the hypothesis. The other two cases, assuming m = q

or m distinct from p and q, are argued analogously. This proves the
uniqueness of l as the maximal collinearity class determined by the pair,
p, q.

Immediate from Lemma 3.4. we obtain:

Corollary. Two distinct non-parallel lines share exactly one point in

common.

We now have a kind of “transitivity” of the collinearity relation:

Lemma 3.5. If Coll(n, p, q) and Coll(p, q, u), then both Coll(n, p, u) and

Coll(n, q, u).16

16 In this and several further lemmas and theorems, we are using vocabulary of
point-based geometry. But also such terms are used as defined in our framework of
regions, and, furthermore, they do not occur, even as defined, in our axioms (contrast
this with [12]). Thus, our procedures are entirely in line with those of a full-fledged
reduction of one theory to another.
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Proof. By definition, the hypothesis together with the previous lemma
implies that n, p, q, and u all lie on the same line, l, viz. that uniquely
determined by the pair p, q, whence the conclusion follows by definition
of the Coll relation.

For any gq, r, we have the minimal closure, ClX,Y (r), of {r} under bi-
extension in two given opposite directions (i.e. X = U, Y = D or X = L,
Y = R). Lines in our sense can be thought of as the common bi-infinite
borders of the fusion of all the gq’s in any one of these minimal closures.
It should be clear that these constructions along with Axiom 3.8 on the
“isotropy” of angles and their parent gq’s, guarantee that our space has
a plenum of lines in 1–1 correspondence with those of ordinary point-
based Euclidean geometry, or classical (Cartesian) analytic geometry.17

This much already suffices to recover half of the Euclidean Parallels
Postulate. Here is an especially easy proof:

Theorem 3.6 (Existence of parallels). Given any line l and a point p

not on l, there exists a line l′ with p on l′ such that no point lies on both

l and l′.

Proof. (sketch) The idea is to start with an arbitrary gq r with a seg-
ment b of l as one of the borders of r. (By definition of ‘line’, there is, for
any point q on l, such r with q on a border of r.) Without loss, suppose
that p is D and D′ of r, where D and D′ are two adjacent directions rel-
ative to r, e.g., U and R, and where one of these, say it’s U, is opposite
to the border b. (In favorable cases, one of the directions would suffice,
or p could already be “in r”, where that means that, for any n-sequence
σp = 〈σi〉p defining p, for some j and every m ≥ j, σm ≤ r.) Next
extend r in these directions a finite number of times in each which are
sufficient to result via fusion in a gq r′ ≥ r so that p is in r′. (Here
the Archimedean property of our space is used.) Call that fusion F . If
p already is a U-border point of r′, we’re done, as the bi-infinite L-R
extension of F then has as its U border a parallel, l′, to l. In the general
case, it is necessary to subtract a gq from an end of F (from the “top”
of F in the case where b is the D (down) border of F . (This is always
possible by sufficiently finely subdividing F , via quadrasection along the
axis determined by U, and taking fusions of Cauchy sequences of gq’s (in
this instance, strips extending from L to R) as needed.) The result of

17 In effect, we have just sketched a key part of the recovery of point-based
geometry as superstructure over our regions-based space.
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such a subtraction is then a gq, F ′, with p lying on its U border. The bi-
infinite extension of this then provides the desired parallel l′. The proof
that l′ so constructed never meets l invokes the fact that any n-sequence
defining a point of l′ is eventually discrete from any such defining a point
of l (in accordance with visualization).

To recover the uniqueness of parallels, a bit more apparatus is use-
ful, viz. the introduction of triangles and the essentially Euclidean phe-
nomenon of ever larger similar triangles to a given one. (Indeed, the
existence of similars that are non-congruent is just a version of the EPP,
inter-derivable with the Playfair version we’re recovering. The absence
of non-congruent similars is, of course, one of the key elementary features
of spaces of non-zero curvature.)

We define “triangle” as a diagonal half of a gq: Tr(t) iff ∃r, t′(r a gq &
r = t+t′ & “t, t′ result from diagonal bisection of r”), where the clause in
quotes is defined thus: t shares two adjacent borders with r and t′ shares
the other two adjacent borders with r & Cong(t, t′) & Adj(t, t′), where
a border of a gq is defined via q-sequences as above, and adjacency of
such borders is defined via disjunction of relevant pairs of border-labels,
proceeding clockwise, i.e., (U,R) ∨ (R,D) ∨ (D,L) ∨ (L,U).

To insure existence of triangles, we add to the group of axioms labeled
3.1 the following

Axiom 3.1d. Let r be a gq region. Then r has two diagonal bi-sections,
each into two congruent, non-overlapping triangles, t, t′ (with r = t+t′),
each having exactly three angles, θ, ϕ, ψ of t, θ′, ϕ′, ψ′ of t′, with
Cong(θ, θ′), Cong(ϕ, ϕ′), and Cong(ψ, ψ′), and satisfying Adj(ϕ, ψ′) and
Adj(ψ, ϕ′) with ϕ+ψ′ an angle of r congruent to ψ+ϕ′, the diagonally
opposite angle of r, and with θ and θ′ the remaining two angles of r,
respectively.

In view of our axioms on angles and gq’s, this guarantees arbitrary
triangles existing everywhere and in all orientations (“ubiquity” and
“isotropy” of triangles, inherited from those properties of gq’s).

Now suppose, as in the hypothesis of the statement of uniqueness
of parallels, we are given a line, l, and a point, p, not on l. Suppose,
further that we have available also a line, l′, through p and parallel to l,
as already established. The proof should then proceed to demonstrate
that any other line, k, through p eventually meets the given l. That
will follow by constructing ever larger similar triangles (say, by doubling
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segments) formed by segments of l′ and segments of k, both proceeding
from p (as a vertex common to all the triangles involved) in the direction
D or D− such that that half of k “lies on the l-side of l′”. Of course,
we need to be able to render this in our regions-only language. And we
need to be sure that our “lines” as defined behave in accordance with
the presupposition, that lines in the roles of l′ and k indeed “cross one
another” at p so that there are indeed a half-line of k and a direction D
such that, to the D (or D−) of p, k lies on the l-side of l′.

A couple of definitions:

Given a line l and points p and q of l, point m is between p and q,
Betw(p,m, q), just in case p and q are corners of a border, b, of a given
gq, r, such that m 6= p, m 6= q, and m is also a point of b.

Let l be a line; then a (finite) segment s of l is the set or plurality of

all points between any two given points, p and q, of l.
The next lemma states a fact cited above in the proof of Lemma 3.4:

Lemma 3.7. Let l be a given line with p an arbitrary point on l. Then

p is the vertex of a straight angle (of norm π) formed by a segment of l

about p.

Proof. Since p is defined by an n-sequence, indeed of rectangles, it
is also a “corner” of four rectangles, meeting at p as center of a larger
rectangle. By a simultaneous rotation of these rectangles, the same
border of two of them adjacent to each other, we obtain a segment of l
about p as desired.

Lemma 3.8. Let lines l and l′ meet at p. Then segments of them form

four angles at p such that the two opposite angles of either of the two

pairs of opposite angles are congruent to one another.

The proof employs Lemma 3.7 repeatedly and is just the familiar one
of standard Euclidean geometry, and it is left to the reader.

We will also need an axiom to insure the obvious requirements that
congruence of two gq’s suffices for congruence of the triangles of one with
those of the other, and that congruence of two gq’s or of two triangles
implies congruence of corresponding angles of those respective figures.

Axiom 3.9a. Let Cong(r, r′) for gq’s r and r′, and let t and t′ be triangles
of r and r′, respectively. Then Cong(t, t′).
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Axiom 3.9b. Let Cong(r, r′) for gq’s r and r′ and let the four angles θi

of r correspond to the four angles θ′

i of r′, as indicated by their indices.
Then Cong(θi, θ

′
i), each i.

Axiom 3.9c. Let Cong(t, t′) for triangles t and t′ and let the three angles
θi of t correspond to the three angles θ′

i of t′, as indicated by their indices.
Then Cong(θi, θ

′
i), each i.

The pieces are now in place to prove the uniqueness part of the
Euclidean Parallels Postulate:

Theorem 3.9 (Uniqueness of parallels). Given a line l and a point p not

on l, there is a unique line l′ through p that is parallel to l.

Proof. Assume, for a contradiction, that, in addition to a parallel, l′, to
l through p (constructed as in the proof of Theorem 3.5), there is a second
parallel, k, to l through p. By lemmas 3.6, 3.7, and 3.8, k and l′ form an
angle θ < π on the l side of l′. For ease of exposition, suppose that l is
“down” relative to the gq’s defining l′, and that k proceeds “down” and
“left” relative to those gq’s. Further, we may assume, without loss, that
those gq’s are rectangles 〈rj〉, j = . . . − 2,−1, 0, 1, 2, . . ., and that it is
their “up” borders that define l′ (so that they extend toward l). Either
one of those rectangles (say r0) or a rectangle that is a proper part of
one of them has point p as its UR corner. Let q0 be any other point
of k down and left of p, chosen so that q0 lies “up” from given line l.
There is a rectangle, s0, with p as its UR corner, q0 as its DL corner,
with its UL corner a point m on l′, and with its DR corner a point
p0 on a line l⊥ through p perpendicular to l′ and l. (By bisecting the
straight angle centered on p, licensed by Axiom 3.2, a perpendicular to
a given line at one of its points always exists and is unique. That a line
perpendicular to both l′ and l exists is guaranteed by the construction
of parallels, as in the proof of Theorem 3.5, where the gq’s involved are
taken to be rectangles.) By Axiom 3.1d, there is a triangle, t0, derived
from s0 by diagonal bisection, with corners (vertices) p, q0, m0. Now,
quadra-extending s0 down and left and quadra-extending the left one
down, construct a larger rectangle, s1, with s0 forming its UR quadrant.
In addition to p as UR corner of s1, designate the other corners p1 (DR),
q1 (DL) and m1 (UL). Then the diagonal bisection of s1 defined by a
segment of k (from p to q1), yields as upper triangle t1 containing t0
as a proper “initial” part (proceeding down and left from p). Claim:
Triangles t0 and t1 are similar. Proof of Claim: By Axiom 2.1, the
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four rectangles making up s1 are congruent; so, in particular, the two
pairs of triangles formed by k as constituting the UR quadrant and the
DL quadrant of s1 are all congruent, whence  by Axiom 3.9c  so are
their corresponding angles, in particular the two formed by k and the
“verticals” perpendicular to l′, proving the claim. It follows that the
respective borders of t1, in particular the verticals just mentioned, are
twice the length of those of t0. (This can be taken as a definition of rel-
ative lengths of line segments.) Since, by the Archimedean property, the
vertical distance between l′ and l is finite, a finite number of doublings
of rectangles, of sequence 〈si〉, and their (upper) triangles, 〈ti〉, suffices
to insure that some ti overlaps one of the rectangles whose U borders
serve to define the given line l.18 The existence of an intersection point
of k and l can now be established as follows. Call the triangle t1 defined
above a “DL-extension” of t0, i.e., with t0 similar to t1 and with segment
p, q1 = p, q0 + q0, q1 as hypotenuse of t1 (and likewise, mutatis mutandis,
for the arms of t1. Similarly, the rectangle s1 from which t1 is derived
is a DL-extension of s0 from which t0 is derived. Now we generalize
this so that DL-extensions of a triangle or rectangle can be of any size
greater than the given figures, but retaining similarity. This is assured
by the existence of perpendiculars from arbitrary points of l′ and l⊥,
which always meet k (by the Archimedean property and the derivation
of lines from strings of gq’s or rectangles). Now form the fusion F of all
rectangles s which are DL-extensions of s0 such that s is discrete from
the half-space  call it HD  down from given line l. We claim that F is
a rectangle whose D border is a segment n of l, and hence a point, call
it q∗, of which is also a point of k, in fact the point being the DL corner
of F. Suppose not: there are two cases.

Case 1. F overlaps HD. This is impossible, since by mereology, if
a fusion of objects meeting a condition C overlaps an object x, then
at least one of the C objects overlaps x, and, in this case, C requires
discreteness from HD.

Case 2. Some region r is down from F but up from HD (in this
sense, “lying between” F and HD. But this too is impossible, since then
there would be a DL-extension of s0 beyond F and overlapping r yet
still discrete from HD, contradicting the hypothesis that F is the fusion

18 In a point-based analytic treatment, an analogue of the intermediate value
theorem would establish that line k meets line l. That argument, of course, is not yet
available in our framework, so we still must establish an intersection point of k and l.
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of all DL-extensions of s0 discrete from HD. That such a DL-extension
of F exists can be seen by taking a rectangular part of r, guaranteed
by Axiom 10 of the previous section, re-orienting it (via a rotation)
if necessary so that its Up and Down borders are parallel with l, and
extending it Left so the DL corner of the extended rectangle meets k,
and extending it Right to meet l⊥ as needed to construct a DL-extension
of F , contradicting the definition of F . Thus, F is indeed adjacent to
a rectangular strip of HD bounded above by the D-border of F, i.e., that
border of F must indeed coincide with a segment of l, which we labeled
n. Furthermore, the L-border of F does not overlap the half-space HL

defined as follows: let q be any point of k lying within the half-space
HD (i.e., such that any n-sequence for q eventually is part of HD), and
let vq be the vertical line through q perpendicular to l′. Let Hvq

be the
half-space left of vq, and let HL be the fusion of all Hvq

as q varies over
the points of k lying in HD. By construction of F , it must be discrete
from HL. Furthermore, by an argument exactly analogous to that just
given relating the D-border of F to HD, it follows that the L-border
of F is adjacent to a rectangular strip of HL defined up and down by
the parallels l and l′, respectively. This enables a definition (via an n-
sequence) of the DL corner of F , and this specifies a point q* as the
intersection point of l and k.

4. Closing Reflections

The above thus recapitulates the essentials of Euclidean geometry in
a regions-based framework. In particular, the “points”, defined above,
are isomorphic to R2. As in the one dimensional case, it is also fairly
straightforward to construct models of the regions-based theory (or the-
ories) in the more usual punctiform R2. In one such model, the “regions”
are regular, open sets of points, and the “gq’s” are open parallelograms.
In another model, the “regions” are regular closed sets of points, and the
“gq’s” are closed parallelograms. In both cases, a “region” m is part of
a “region” m′ if m ⊆ m′. The other primitives are straightforward.

It is also fairly straightforward to extend the two-dimensional theory
to three or more dimensions. We’d begin with the notion of a “general-
ized rectangular solid” and go from there. It is perhaps not so straight-
forward to develop various regions-based non-Euclidean geometries (es-
pecially of variable curvature). That is work in progress.
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