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MEREOLOGY AND UNCERTAINTY

Many a mickle maks a muckle (Scottish)

Abstract. Mereology as an art of composing complex concepts out of sim-
pler parts is suited well to the task of reasoning under uncertainty: whereas
it is most often difficult to ascertain whether a given thing is an element
of a concept, it is possible to decide with belief degree close to certainty
that the class of things is an ingredient of an other class, which is sufficient
for carrying out the reasoning whose conclusions are taken as true under
given conditions. We present in this work a scheme for reasoning based on
mereology in which mereology in the classical sense is fuzzified in analogy
to the concept fuzzification in the sense of L.A. Zadeh. In this process,
mereology becomes rough mereology.

Keywords: knowledge; uncertainty; vaguenes; ambiguity; rough sets; fuzzy
sets; mereology; rough mereology; granulation of knowledge; granular logics;
spatial reasoning

1. Uncertainty as a philosophical problem

Uncertainty has two sources of origin: logical and physical. The latter is
known as the Heisenberg Uncertainty Principle, cf. Heisenberg [8] which
states, in essence, that the position and the momentum of a quantum
particle cannot be known exactly at the same time, and, it is summed
up by a well-known inequality:

∆q ×∆p  h

2π ,

where q denotes the position, p stands for the momentum, and, h is the
Planck constant. The Heisenberg argument points to the fundamental
uncertainty in our relations with Nature: we cannot observe exactly pro-
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cesses in the real microscopic world by the very nature of the observation
process.

The logical source of uncertainty can be traced first to Gottlob Frege’s
Basic Law V in its original form (cf. Frege [5]) which demonstrated the
insufficiency of intuition and the sense of obviousness in dealing with
concepts. The Gödel incompleteness theorem showed that uncertainty
is immanent to sufficiently rich systems (cf. [6]). In this way uncertainty
has become a permanent ingredient in scientific investigations.

2. Uncertainty of knowledge

There are many sources of uncertainty in our practical analysis of real
world phenomena. The real world is observed in order to gather knowl-
edge, which according to Bocheński is a set of relations among things and
their properties (cf. [2]). Our means of gathering knowledge restrict us
to relatively small subsets of the universe of possible things and in con-
sequence our knowledge is incomplete, uncertain, and affected by noise.
The resulting uncertainty affects our decisions and the effort in research
has been directed at finding means to reduce and evaluate uncertainty.

A pioneering in this search for models of uncertainty was an article
by Ludwik Fleck, a medical doctor from Lvov in Poland (cf. [4]) who,
appearing at the convention of some society for history of medicine at
Lvov, laid foundations for analysis of vagueness resulting from uncer-
tainty caused by overlapping of symptoms for various diseases and in
consequence necessity for dealing with complexes of illnesses.

Vagueness, characterized in the fregean spirit as the absence of a
delineation among concepts, was analyzed by Max Black [1] and Karl
Menger [10], the former in logical terms, the latter in the language of
probabilistic metric spaces.

Vagueness was characterized as a partial membership by Lotfi A.
Zadeh [27]; a vague conceptX over a universe U of things is characterized
in this approach by means of its membership function µX : U → [0, 1]
which does assign to each thing u ∈ U its membership degree µX(u), val-
ued in the interval [0, 1]. The value of 0 means that u certainly falls not
into X whereas the value of 1 does assert that u certainly falls in X. The
concept {u : µX(u) ∈ (0, 1)} is the boundary of uncertainty consisting
of things which can be assigned with certainty neither to X nor to the
complement −X witnessing vagueness of the concept X. Ambiguity of
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knowledge is discussed, e.g., in perception calculus proposed by Zadeh
[28] dedicated to queries oriented toward problems with data insufficient
for considering them in traditional frameworks. The fuzzy membership
based approach rests at foundations of the fuzzy set approach.

Very often, our observations of the reality are collected as data tables,
in which things observed collected in a universe U are characterized
by means of values of selected features, attributes from a set A. Each
attribute a ∈ A is formally rendered as a mapping a : U → V from the
universe U into the value set V . The formula a(u) = v which states
that the attribute a takes the value v on the thing u is abstracted to the
formula (a, v) which denotes the possibility that a may take a value v
and is called a descriptor. The descriptor (a, v) can be given meaning,
[(a, v)], by denoting it in the universe U :

[(a, v)] = {u ∈ U : a(u) = v}.

The pair (U,A) is commonly called an information system. Things which
are assigned identical values of all attributes are regarded as indiscernible
which leads to the partition of the set of observed things into disjoint
indiscernibility classes. The indiscernibility relation INDA is formally
defined as follows:

INDA(u, v) iff a(u) = a(v) for each a ∈ A.

Equivalently, one may say that INDA(u, v) holds true if and only if for
each descriptor (a,w) the condition:

u ∈ [(a,w)] iff v ∈ [(a,w)]

is satisfied. The symbol [u]A will denote the indiscernibility class of u
with respect to the relation INDA.

On the information system (U,A) there is usually imposed an exter-
nal partition by the decision indiscernibility relation INDd into decision
classes of the form [u]d which results from an external, oracle, expert,
knowledge encoded by a decision attribute d. As both partitions are in-
dependent, ambiguity does arise from uncertainty what value of decision
d(u) to assign to a given indiscernibility class [u]A.

In the attribute-value approach adopted for dealing with data, there
are concepts X ⊆ U which are decidable, i.e., the decision problem
whether a thing u belongs in X has the deterministic solution in terms
of yes/no. It is easy to see that a concept X is decidable if and only if it
is a union of a family of indiscernibility classes. Deterministic concepts
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are also called in this formalism exact concepts; concepts non-exact are
called rough concepts.

For a rough concept X, the means to delineate it in terms of de-
scriptors (a, v) is to approximate it from below and from above with
indiscernibility classes; the lower approximation X is then the union of
indiscernibility classes contained in X:

X = {u ∈ U : [u]A ⊆ X}.

The upper approximation X is the union of indiscernibility classes which
do intersect X:

X = {u ∈ U : [u]A ∩X 6= ∅}.
As for each rough concept X, one obviously has X ⊂ X, the difference
X\X is the non-empty boundary region BdX witnessing vagueness ofX.
This approach is the cornerstone of the rough set theory by Zdzisław
Pawlak [11].

Summing up the aforesaid, two main aspects of uncertainty, viz.,
vagueness and ambiguity, are formalized by both fuzzy and rough set
theories. Both influence the development of our approach to uncertainty
called rough mereology.

3. Rough mereology

Rough mereology stems from mereology in its classical form due to Sta-
nisław Leśniewski [9]. This variant of mereological theory begins with
the notion of a part, π(u, v) in symbols, read ‘u is a part of v’ which
is a binary relation on things, irreflexive and transitive. Irreflexivity is
alleviated by the notion of an ingredient relation, ingrπ(u, v) in symbols,
which is the union of the part relation with the identity relation, and as
such is a partial ordering on things:

ingrπ(u, v) iff π(u, v) or u = v.

The important relations derived from the part relation are: the overlap
relation, Ov(u, v) in symbols which holds if and only if u and v have
an ingredient in common; the negation of the overlap relation is the
disjointness relation dis = ¬Ov:

Ov(u, v) iff there exists w such that ingrπ(w, u) and ingrπ(w, v),
dis(u, v) iff ¬Ov(u, v).
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The most important construct in mereology of Leśniewski is that of the
class. It is defined for any non-vacuous property Ψ of things as the
unique thing X = Cls Ψ such that:
(Cls 1) If Ψ(u) then ingrπ(u,X).
(Cls 2) If ingrπ(u,X) then there exist things v, w such that ingrπ(v, u),

ingrπ(v, w), Ψ(w) hold.
The class of all things disjoint to a thing x is the complement −x

to x.
The reader may consult the monograph by Simons [21] for details;

an exposition of mereology with spatial reasoning in view is given in
Casati and Varzi [3]; a discussion is also given in Polkowski [12].

Both part and ingredient relations impose an exact hierarchy on
things but in applied cases it is not often, due to uncertainty, that such a
hierarchy can be ascertained. Our work on rough sets and decision mak-
ing by tools of this paradigm, has caused us to extend the mereological
scheme by the process analogical to that of Zadeh’s, viz., by considering
the ternary relation of a part to a degree, π(u, v, r), read ‘u is a part of
v to a degree of at least r’ induced by a part relation π (cf. [12]).

As with the part relation, the relation π is bound to observe certain
postulates which reflect the most general properties of the partial con-
tainment. For a given relation π and the associated relation ingrπ, we
demand of the relation π the following:

(P1) π(u, v, 1) iff ingrπ(u, v)

This postulate asserts that parts to degree of 1 are ingredients, thus, the
relation π(u, v, 1) is identical with the relation ingr(u, v).
(P2) If π(u, v, 1) then π(w, u, r) implies π(w, v, r) for every thing w and

each r ∈ [0, 1].
This postulate does express a feature of partial containment that a ‘big-
ger’ thing contains a given thing ‘more’ than a ‘smaller’ thing. It can be
called a monotonicity condition.
(P3) If π(u, v, r) and s < r then π(u, v, s).
The generic term of rough inclusion was proposed in Polkowski and
Skowron [20] for π. We propose now to follow paths initiated by Max
Black and, respectively, by Karl Menger in logical, respectively, geomet-
ric, analysis of uncertainty.
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4. Syntax and semantics of decision rules

We address the ambiguity aspect of uncertainty related to reasoning
with data. Our context is provided by a decision system (U,A, d), i.e.,
an information system (U,A) endowed with a decision attribute d. As
in Section 2, in the triple (U,A, d), U is a set of things, A is a set of
attributes, and, d is the decision attribute. Knowledge in logical form is
encoded in the decision system by means of the set of decision rules.

In order to represent decision rules, a language should be chosen for
representing relations among attribute values and things. Commonly,
it is the language of descriptors. A descriptor, cf. Section 2, is a pair
(a, v) where a is an attribute symbol and v a value symbol. Descriptors
can be combined by means of propositional functors ∨,∧, ¬, →, to form
meaningful formulas which are interpreted in the set U of things as
follows, where [φ] stands for the meaning of the formula φ:
• [(a, v)]={u ∈ U : a(u) = v};
• [(a, v) ∨ (b, w)]=[(a, v)] ∪ [(b, w)];
• [(a, v) ∧ (b, w)]=[(a, v)] ∩ [(b, w)];
• [¬(a, v)] = U \ [(a, v)];
• [(a, v)→ (b, w)] = (U \ [(a, v)]) ∪ [(b, w)].

A decision rule is a formula of the form:

r :
∧
a∈B

(a, va)→ (d,w),

were B ⊆ A is a set of attributes, and, va is a value of the attribute a
for each a ∈ B. The rule r is said to be true in case [r] = U which is
equivalent to the condition:

(1)
⋂
a∈B

[(a, va)] ⊆ [(d,w)].

To see this, please note the meaning of the premise:

[
∧
a∈B

(a, va)] =
⋂
a∈B

[(a, va)],

hence, in accordance with the adopted meaning of implication, the mean-
ing of r is:

[r] = (U \
⋂
a∈B

[(a, va)]) ∪ [(d,w)].
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It follows that r is true, i.e., [r] = U if and only if the condition (1) is
satisfied.

Otherwise, the rule r is partially true and the degree of truth is
established relative to a rough inclusion π applied, viz., the rule r is
partially true to a degree of at least α if and only if the condition:

π(
⋂
a∈B

[(a, va)], [(d,w)], α)

is satisfied.
Partial truth of a formula can be regarded as an ambiguity condition:

we may say that a decision rule r is ambiguous to a degree of at least s if
there exist decision values w1, . . . , wk all distinct from the value w and
such that:

1. π(
⋂
a∈B[(a, va)], [(d,wi)], si) is satisfied with si > 0 for each i =

1, 2, . . . , k;
2.

∑k
i=1 si  s.

It is our aim to express the notion of truth for decision rules in logical
terms and to this end, we propose a rough mereological granular logic.
Its explanation calls first for a notion of a granule of knowledge.

5. Granules of knowledge

Assume that a rough inclusion π is given along with the associated in-
gredient relation ingrπ, as in postulate (P1). The granule gπ(u, r) of
the radius r about the center u is defined as the class, see conditions
(Cls 1), (Cls 2) in Section 3, of property Φπu,r:

Φπu,r(v) iff π(v, u, r).

The granule gπ(u, r) is defined as:

gπ(u, r) = Cls Φπu,r.

Properties of granules depend, obviously, on the type of rough inclusion
used in their definitions. We consider separate cases, as some features
revealed by granules differ from a rough inclusion to a rough inclusion,
cf. [12] for a detailed analysis of granule properties.
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6. Rough mereological logic for reasoning about
uncertainty in decision systems

The idea of a granular rough mereological logic, see Polkowski [13], Pol-
kowski and Semeniuk-Polkowska [17], consists in measuring the meaning
of a unary predicate in the model which is a universe of a decision system
against a granule defined by means of a rough inclusion. The result can
be regarded as the degree of truth (the logical value) of the predicate
with respect to the given granule. The obtained logics are intensional
as they can be regarded as mappings from the set of granules (possible
worlds) to the set of logical values in the interval [0, 1], the value at a
given granule regarded as the extension at that granule of the generally
defined intension.

Our context requires rough inclusions on finite concepts/sets, hence,
for finite sets X,Y , we define the Łukasiewicz rough inclusion by letting:

νL(X,Y, r) iff |X ∩ Y |
|X|

 r,

where |X| denotes the cardinality of a set X.
Let us observe that νL is regular, i.e., νL(X,Y, 1) if and only if X ⊆ Y

and νL(X,Y, 0) if and only if X ∩ Y = ∅.
The second rough inclusion we may apply is the 3-valued rough in-

clusion ν3 defined via the formula:

(2) ν3(X,Y, r) iff


X ⊆ Y and r = 1
X ∩ Y = ∅ and r = 0
otherwise r = 1

2

For a collection of unary predicates Pr, interpreted in the universe U
by means of descriptor logic, and for a rough inclusion on finite sets ν,
we define the intensional logic GRMν by assigning to each predicate φ
in Pr with the meaning [φ], see Section 4, its intension Iν(φ) defined by
the collection of its extensions {I∨

ν (g) : granule g} at all granules, via:

(3) I∨
ν (g)(φ)  r iff ν(g, [φ], r).

With respect to the rough inclusion νL, the formula (3) becomes:

I∨
νL

(g)(φ)  r iff |g ∩ [φ]|
|g|

 r.
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The counterpart for ν3 is specified by definition (2), and it comes down
to the following:

I∨
ν3

(g)(φ)  r iff


g ⊆ [φ] and r = 1
g ∩ [φ] 6= ∅ and r  1

2
g ∩ [φ] = ∅ and r = 0

We say that a formula φ interpreted in the universe U of an information
system (U,A) is true at a granule g with respect to a rough inclusion ν
if and only if I∨

ν (g)(φ) = 1.
Hence, for every regular rough inclusion ν, a formula φ interpreted

in the universe U , with the meaning [φ] = {u ∈ U : φ(u)}, is true at
a granule g with respect to ν if and only if g ⊆ [φ].

In particular, for a decision rule r : p⇒ q in the descriptor logic,the
rule r is true at a granule g with respect to a regular rough inclusion ν
if and only if g ∩ [p] ⊆ [q]. We state these facts in the following

Proposition 1. For every regular rough inclusion ν, a formula φ inter-
preted in the universe U , with the meaning [φ], is true at a granule g
with respect to ν if and only if g ⊆ [φ]. In particular, for a decision rule
r : p ⇒ q in the descriptor logic, the rule r is true at a granule g with
respect to a regular rough inclusion ν if and only if g ∩ [p] ⊆ [q].

Proof. Truth of φ at g means that ν(g, [φ], 1) which in turn, by regu-
larity of ν is equivalent to the inclusion g ⊆ [φ]. a

We will say that a formula φ is a tautology of our intensional logic if
and only if φ is true at every world g.

The preceding proposition implies that:

Proposition 2. For every regular rough inclusion ν, a formula φ is
a tautology if and only if Cls(G) ⊆ [φ], where G is the property of being
a granule; in the case when granules considered cover the universe U this
condition simplifies to [φ] = U . This means for a decision rule p ⇒ q
that it is a tautology if and only if [p] ⊆ [q].

Hence, the condition for truth of decision rules in the logic GRM ν is
the same as the truth of an implication in descriptor logic, under caveat
that granules considered cover the universe U of objects.

In Polkowski [13], relations between granular logics and Łukasiewicz
multi-valued logics were examined, some results are as follows.
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Proposition 3. Each tautology of 3-valued Łukasiewicz logic is a tau-
tology of rough mereological granular logic in case of a regular rough
inclusion on sets.
Proposition 4. Each tautology of infinite-valued Łukasiewicz logic is a
tautology of rough mereological granular logic in case of a regular rough
inclusion on sets.

It follows from Proposition 4 that all tautologies of Basic logic, cf.
Hájek [7], i.e., logic which is the intersection of all many-valued logics
with implications evaluated semantically by residual implications of con-
tinuous t-norms are tautologies of rough mereological granular logic for
each regular rough inclusion ν.

Modalities can be defined in the rough mereological universe by
means of the relation of an ingredient as an accessibility relation. Thus,
we adopt the collection of granules induced by a rough inclusion π as
the set W of possible worlds, and the accessibility relation R(g, h) will
be defined as the ingredient relation ingrπ(h, g):

R(g, h) iff ingrπ(h, g),

i.e., a world (granule) h is accessible via R from a world (granule) g
if and only if h is an ingredient of g.

For a predicate ψ, and a granule g, it follows that ψ is necessarily
true at g if and only if ψ is true at every ingredient h of g, which means
that, for a regular rough inclusion ν on sets, h ⊆ [ψ] for each ingredient
h of g. Possibility of ψ at g means that there exists a granule h with
ingrπ(h, g) such that ψ is true at h, i.e., h ⊆ [ψ].

As the ingredient relation is reflexive and transitive, see sect. 3, we
have:
Proposition 5. The modal logic obtained by taking the ingredient rela-
tion on granules as the accessibility relation R and granules of knowledge
as possible worldsW satisfies requirements for the system S4 in the frame
(W,R).

Possibility and necessity are expressed in rough set theory of concepts
by means of approximations, the upper and the lower, respectively, see
Section 2. Both are defined with the help of indiscernibility relations,
see, loc.cit. We recall that for an information system (U,A), the indis-
cernibility over A is the relation:

INDA(u, v) iff a(u) = a(v), for each a ∈ A.
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For a concept X ⊆ U , the lower, resp. the upper approximation is the
set X = {u ∈ U : [u]A ⊆ X}, resp., X = {u ∈ U : [u]A ∩ X 6= ∅},
see Section 2. Logical rendering of these modalities in rough mereologi-
cal logics exploits the approximations. We define two modal operators:
M (possibility) and L (necessity). To this end, we let:

I∨
ν (g)(Mα)  r iff ν(g, [α], r)
I∨
ν (g)(Lα)  r iff ν(g, [α], r)

Then we have the following criteria for necessarily or possibly true for-
mulas.

A formula α is necessarily true at a granule g if and only if g ⊆ [α]; α
is possibly true at g if and only if g ⊆ [α]. Then one has, cf. [12, Ch. 7]:

Proposition 6. For each regular rough inclusion on finite concepts ν,
the modal logic induced by lower and upper approximations is the modal
logic S5.

6.1. An example of reasoning in rough mereological logic:
the calculus of perceptions

Calculus of perceptions, posed as an idea by Zadeh [28], intends to solve
problems which are definitely ill-posed by standards of, e.g., probability
calculus, nevertheless, those problems occur at many practical tasks of
our everyday life, hence, they deserve attention and an attempt at solving
them in some way. This calculus does address ambiguous statements and
queries, and answers them with ambiguous decisions. Here, we apply
granular mereological logics toward this problem. To this end, we would
like to borrow a part of a complex percept, i.e., a set of vague statements,
from [28] and interpret it in terms of granular logic. This example is
taken from [12]. Please observe how in it, vagueness and ambiguity are
intertwined: we need data to base our reasoning on, and, we need vague
concepts related to terms in the query, and, finally, we need a mechanism
for reasoning in order to produce an ambiguous decision.

The percept is: (i) Carol has two children: Robert who is in mid-
twenties and Helen who is in mid-thirties with a query (ii) how old is
Carol. To interpret it, we begin with Table 1 in which a training decision
system Age is given with attributes n the number of children, ai  the
age of the i-th child for i ¬ 3, and with the decision age  the age of the
mother.
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object n age1 age2 age3 Age

1 3 15 22 30 58
2 3 10 12 16 42
3 2 6 10 – 30
4 2 24 33 – 56
5 2 28 35 – 62
6 3 22 33 40 67
7 2 18 25 – 60
8 2 26 35 – 63
9 2 22 38 – 70
10 3 8 12 16 38
11 2 22 32 – 58
12 3 24 36 40 63
13 2 28 34 – 60
14 3 26 30 35 65
15 3 18 25 35 60
16 3 6 12 16 40
17 3 22 30 35 65
18 2 24 34 – 60
19 3 22 30 34 58
20 2 24 35 – 62

Figure 1. Decision system Age

We define for a fuzzy conceptX represented by the fuzzy membership
function µX on the domain DX , the c-cut where c ∈ [0, 1] as the concept
Xc = {x ∈ DX : µX(x)  c}; the value xs such that µX(xs) = c is the
support of c, suppc in symbols. Concepts in mid-twenties, in mid-thirties
are represented by fuzzy membership functions, µ20, µ30, respectively:

µ20(x) =


0.25(x− 20), x ∈ [20, 24]
1, x ∈ [24, 26]
1− 0.25(x− 26), x ∈ [26, 30]

µ30(x) =


0.25(x− 30), x ∈ [30, 24]
1, x ∈ [34, 36]
1− 0.25(x− 36), x ∈ [36, 40]

The concept old is interpreted as:

µold(x) =


0.02(x− 30), x ∈ [30, 60]
0.04(x− 60) + 0.6, x ∈ [60, 70]
0 else.
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We interpret our query by a function q : [0, 1]3→ [0, 1], where f(u, v, w) =
t would mean that for cut levels u, v, w, respectively for old, in mid-
twenties, in mid thirties, t is the truth value in the statement Carol is
at least suppu old to the degree of t with respect to v, w.

In our example, letting u = 0.6, we obtain old0.6 = [60, 70]; let-
ting v = 0.5 = w, we obtain in mid twenties0.5 = [23, 27] and in mid
thirties0.5 = [33, 37]. In order to evaluate the truth degree t, we refer
to the world knowledge of Table 1 and we find the set of objects Λv,w
with two children of ages respectively in the intervals [23, 27], [33, 37]
corresponding to values of v, w as well as the set of objects Γu having
the value of Age in oldu. In our case we have Λ0.5,0.5 = {4, 8, 12, 18, 20}
and Γ0.6 = {5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 20}.
Finally, we evaluate the truth degree of the predicate in old0.6(x) rep-
resented in the universe of Table 1 by the set Γ0.6 with respect to the
granule Λ0.5,0.5. We obtain, by applying the Łukasiewicz rough inclusion
νL, that:

(IνL

Λ0.5,0.5
)∨(old0.6(x)) = |Λ0.5,0.5 ∩ Γ0.6|

|Λ0.5,0.5|
= 0.8

The result is the statement: Carol is over 60 years old to the degree
of 0.8 under the assumed interpretation of in mid twenties0.5, in mid
thirties0.5 with respect to knowledge in Table 1. The remaining degree of
0.2 is split among other decision values for the age of Carol, in accordance
with our notion of an ambiguous decision rule.

7. Mereogeometry induced by rough inclusions

We now address the geometric aspect of uncertainty. For this section,
we modify the rough inclusion νL to the form:

νL(X,Y, r) iff ‖X ∩ Y ‖
‖X‖

 r,

where X,Y are bounded regions in Euclidean space of finite number of
dimensions and ‖X‖ denotes the area of X. The mereological distance
κ(X,Y ) between X and Y is defined as:

κ(X,Y ) := min{max{r : νL(X,Y, r)},max{s : νL(Y,X, s)}}.

We also remind that the mereological distance κ(X,Y ) takes on the
value 1 when X = Y and the minimal value of 0 means that X ∩ Y ⊆
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Bd(X)∩Bd(Y ), where Bd stands for the ‘boundary’. For details of this
approach, please consult [12, 14, 15, 16].

Alfred Tarski in His lectures at Warsaw University in 1929 introduced
a system of axioms for planar Euclidean geometry based on predicates
of equidistance and betweenness (cf. [25]). Modifications to those pred-
icates and some new ones, were introduced by van Benthem (cf. [26]).
A new predicate of nearness, N(X,U, V ) in symbols, redefined in the
mereological context, is as follows:

N(X,U, V ) iff κ(X,U) > κ(V,U).

The formula N(X,U, V ) reads ‘X is closer to U than V is to U ’.
The betweenness relation in the van Benthem sense, TB in symbols,

is defined as:

(4) TB(Z,U, V ) iff for each W : Z = W or N(Z,U,W ) or N(Z, V,W ).

The formula TB(Z,U, V ) reads ‘Z is between U and V ’.
Uncertainty in geometry terms means uncertainty of localization, po-

sition estimation, which bear on, e.g., planning motion for autonomous
agents. Mereological geometry based on the distance function κ can be
applied in control of autonomous mobile agents and their formations.
For instance, when our agents are spatially represented as rectangles
with sides parallel to the cartesian coordinate axes, the definition (4)
comes down to the following (see [16]).
Proposition 7. TB(Z,U, V ) holds if and only if Z is contained in the
smallest rectangle containing U and V .

For a collection of agents A = {A1, A2, . . . , Ak}, a formation on A is
A with a relation TB on A. Flexibility of this definition of a formation, in
contrast to rigid constraints imposed on formations in, e.g., traditional
intelligent robotics, allows agents to travel in difficult environments with-
out violating the formation conditions, cf. [16]. The following Figure 2,
due to Paul Ośmiałowski, cf. [14]–[16], shows trails of a team of intelligent
agents (mobile robots) in a formation, navigating in an environment.

8. Mereology in approximate spatial reasoning

Mereology allows for topological notions, cf. e.g. [3, 21, 12]. Rough mere-
ology provides a richer topology, albeit granulation radii force it to be



Mereology and uncertainty 463

Figure 2. Trails of robots arranged in the cross formation

of a quasi-metric in type. To introduce the rough mereological topology,
we assume a rough inclusion π and we refer to the notion of a granule
gπ(u, r), cf. Section 5.

The granule collection {gπr (x) : x ∈ U ; r ∈ (0, 1)} on a set of things
U can be taken as a neighborhood base for a topology on U that may
be called the granular topology. We assume that the rough inclusion π
in question is transitive which means that:

If π(x, y, r) and π(y, z, s), then π(x, z, φ(r, s)),

where φ in this case is a t-norm function, i.e., a function T : [0, 1] ×
[0, 1] → [0, 1] which is symmetric, associative, non-decreasing in each
coordinate and such that T (x, 0) = 0; T (x, 1) = x for each x ∈ [0, 1].
For this notion see e.g. [7].

Open base for a topology is then the collection of sets of the form:

N(x, r) = Cls(ψπr,x),

where:
ψπr,x(y) iff there is s > r such that π(y, x, s).

We declare the system {N(x, r) : x ∈ U ; r ∈ (0, 1)} to be a neighborhood
basis for a topology θπ. This is justified by the following:

Proposition 8 ([12, Ch. 7]). Properties of the system N = {N(x, r) :
x ∈ U ; r ∈ (0, 1)} are as follows:

1. For all x, y ∈ U and t ∈ (0, 1): if ingrπ(y,N(x, r)), then there is δ > 0
such that ingrπ(N(y, δ), N(x, r)).
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2. For all x ∈ U and r, s ∈ (0, 1): if s > r then ingrπ(N(x, s), N(x, r)).
3. For all x, y, z ∈ U and r, s ∈ (0, 1): if ingrπ(z,N(x, r)) and ingr(z,
N(y, s)), then there is δ > 0 such that ingrπ(N(z, δ), N(x, r)) and
ingrπ(N(z, δ), N(y, s)).
This topology can be applied in, e.g., boundary characterizations in

approximate reasoning (cf. [18, 19]).
We begin an analysis of the notion of a boundary, an important notion

both theoretically as well as from the point of view of applications (cf.
e.g. [22, 23, 18, 18]) with a definition of an open set as a collection of
neighborhoods; the predicate open(F ) is therefore defined as:

open(F ) iff for each z: if z ∈ F , then z is N(x, r), for some x, r.

It is now possible to define open things as classes of open collections:

open(x) iff there is F such that open(F ) and x is Cls(F ).

Closed things are defined as complements to open things, where the
complement −x to a thing x is the class of things disjoint to x, i.e.,
having no common ingredient with x, see sect. 3:

closed(x) iff open(−x).

We may need as well the notion of a closed collection, as the complement
to an open collection:

closed(F ) iff open(−F ),

where, clearly, the complement −F is the collection obtained by applying
the mereological complement − to each member of F . To give an account
for the notion of a boundary, we consider a thing x in our mereological
universe U along with its complement −x. On the family N of basic
open sets, we consider the collection of all non-empty sub-families with
the part relation ⊂ of the strict containment, the resulting ingredient
relation ⊆ of the containment, and, the induced class operation of the
union of sets. We define the interior open collection of x, INT (x,N ) as:

N(x, r) ∈ INT (x,N ) iff ingrπ(N(x, r), x).

In the same way, we define the complementary open collection of x,
INT (−x,N ) as:

N(x, r) ∈ INT (x,N ) iff ingrπ(N(x, r),−x).
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We denote by the symbol Clsπ the class operator associated with the
part relation π, in order to discern between it and the union class oper-
ator on N . We define the boundary of x with respect to the family N ,
symbolically Bd(x,N ), as:

Bd(x,N ) = −[Clsπ INT (x,N ) + Clsπ INT (−x,N )],

where the addition operator + is the addition operator in the Tarski
mereological algebra (see [24]), defined as:

for every t: ingrπ(t, x+ y) iff ingrπ(t, x) or ingrπ(t, y).

Informally, one may see that the boundary defined in that way com-
prises things whose each neighborhood neither is contained in x nor
misses it. Let us make this statement precise.

Proposition 9. If ingrπ(y,Bd(x,N )), then there exists z such that
Ov(y, z) and dis(z,Clsπ[INT (x,N ) + Clsπ INT (−x,N )]). A fortiori,
each neighborhood of y is neither an ingredient of x nor an ingredient
of −x.

Proof. Assume that ingrπ(y,Bd(x,N )). By the class property (Cls 2)
(see Section 3) there exist w and z such that ingrπ(w, y), ingrπ(w, z), and
dis(z,Clsπ INT (x,N ) + Clsπ INT (−x,N )). Hence, dis(w,Clsπ INT (x,
N )+Clsπ INT (−x,N )). It follows that y has an ingredient w, which ob-
viously is an ingredient in every neighborhood of y, disjoint with classes
of neighborhoods contained in x or −x. a

Clearly, the class Clsπ INT (x,N ) can be regarded as the interior of
x, and, the class Clsπ INT (−x,N ) can be regarded as the interior of −x
which does coincide with the complement to the closure of x.

As the collection INT (x,N )∪INT (−x,N ) is open, Clsπ INT (x,N )+
Clsπ INT (−x,N ) is an open thing, hence, the boundary Bd(x,N ) is
closed.

This boundary renders a mereotopological witness of vagueness of x
with respect to the induced topology.
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