Logic and Logical Philosophy Volume 24 (2015), 241–253 DOI: 10.12775/LLP.2015.001

Tomasz Skura Andrzej Wiśniewski

A SYSTEM FOR PROPER MULTIPLE-CONCLUSION ENTAILMENT

Abstract. The concept of proper multiple-conclusion entailment is introduced. For any sets X, Y of formulas, we say that Y is properly mc-entailed by X iff Y is mc-entailed by X, but no $A \in Y$ is single-conclusion entailed by X. The concept has a natural interpretation in terms of question evocation. A sound and complete axiom system for the propositional case of proper mc-entailment is presented.

Keywords: multiple-conclusion entailment

1. Introduction

1.1. Multiple-conclusion entailment

Multiple-conclusion entailment (mc-entailment for short) is a generalization of the standard, "single-conclusion" entailment (hereafter: scentailment). Mc-entailment is a semantic relation between sets of wellformed formulas (wffs) of a formal language. Assume that the language in question is supplemented with a semantics rich enough to define some relativized (to a valuation, or a model, etc.) concept of truth for wffs. By and large, a set of wffs X mc-entails a set of wffs Y iff the truth of all the wffs in X warrants the existence of at least one true wff in Y. In other words: if all the wffs in X are true, then at least one wff in Y must be true.

1.2. Mc-entailment in CPL

In order to define mc-entailment in exact terms one needs both syntax and semantics of a language in question. Let us consider the case of Classical Propositional Logic (hereafter: CPL). As for syntax, the vocabulary of the language of CPL includes denumerably many propositional variables p, q, r, s, p_1, \ldots , and the connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$. Wffs are defined in the standard way. We use A, B, C, D, with subscripts if needed, as metalanguage variables for wffs, and X, Y as metalinguistic variables for sets of wffs. As for semantics, a *Boolean valuation* is a function v that assigns a truth value, $\mathbf{1}$ or $\mathbf{0}$, to each propositional variable and is extended to all wffs in the standard manner by using the Boolean functions corresponding to the connectives. Unless otherwise stated, by a valuation we will mean a Boolean valuation. $v(A) = \mathbf{1}$ means "wff A is true under valuation v". Mc-entailment in CPL, \models , can now be defined as follows:

DEFINITION 1 (Mc-entailment in CPL). $X \models Y$ iff there is no valuation v such that $v(A) = \mathbf{1}$ for all $A \in X$, and $v(B) = \mathbf{0}$ for every $B \in Y$.

while CPL sc-entailment, \models , is defined by:

DEFINITION 2 (CPL sc-entailment). $X \models B$ iff there is no valuation v such that $v(A) = \mathbf{1}$ for all $A \in X$, and $v(B) = \mathbf{0}$.

Observe that when Y is a singleton set, mc-entailment and sc-entailment coincide: $X \models \{B\}$ holds iff $X \models B$ is the case. However, for nonsingleton Y's it happens that X mc-entails Y without sc-entailing any wff in Y. For instance, $\{p \lor q\} \models \{p, q\}$ holds, but neither $\{p \lor q\} \models p$ nor $\{p \lor q\} \models q$ is the case. Thus one cannot *define* mc-entailment of a set of wffs as sc-entailment of at least one element of the set. As for CPL, however, mc-entailment is, in a sense, reducible to sc-entailment. We have:¹

FACT 1. If X, Y are finite sets of CPL-wffs, then: $X \models Y$ iff $\bigwedge X \models \bigvee Y$.

Yet, since the syntax of CPL does not allow for infinite disjunctions and infinite conjunctions, the reduction does not hold for mc-entailment between infinite sets of wffs. On the other hand, one can show that mc-entailment in CPL is compact, i.e. $X \models Y$ iff $X_1 \models Y_1$ for some finite subsets X_1 of X and Y_1 of Y. Yet, compactness is not an intrinsic property of mc-entailment in general.

¹ We assume that $\bigwedge \emptyset = \top$ and $\bigvee \emptyset = \bot$. Note that $\emptyset \not\models \emptyset$.

Remark 1. One may wonder if mc-entailment between finite sets always coincides with sc-entailment of a disjunction of all the elements of the "premise" set. The answer is "No." For instance, take First-order Logic (FoL) and define FoL mc-entailment as follows: X mc-entails Y iff there is no (FoL)model in which all the wffs in X are true and no wff in Y is true.² The wff $x = a \lor x \neq a$, where a is an individual constant, is FoL sc-entailed by the empty set. However, the set $\{x = a, x \neq a\}$ is not mc-entailed by the empty set, since there are (FoL)models in which x = a is only satisfied but not true.

Moreover, the analogues of Fact 1 do not hold for some non-classical logics. For example, take a three-valued propositional logic in which disjunction, \lor , is understood according to Table 1.³

\vee	0	i	1
0	0	i	1
i	i	i	i
1	1	1	1

Table 1. McCarthy's disjunction

In such a case $q \vee p$ is not sc-entailed by p because $q \vee p$ can take the value **i** when p takes the (designated) value **1**. On the other hand, the set $\{q, p\}$ is still mc-entailed by the singleton set $\{p\}$. Similarly, $\{p\}$ does not sc-entail $p \vee q$, but mc-entails $\{p, q\}$ when disjunction is construed in a way presented in Table 2.⁴

V	0	i	1
0	0	i	1
i	i	i	i
1	1	i	1

Table 2. Bochvar's disjunction

 $^{^2~}$ By truth in a model we mean here satisfaction by all valuations from the domain of the model.

³ We borrow the table from [2]. Unlike [2], we use "1" for truth, "0" for falsity, and "i" for the third logical value. As the authors of [2] indicate, the table expresses an idea already present in McCarthy's [8].

 $^{^4~}$ This is a table expressing the meaning of disjunction in some of Bochvar's logics; see [3].

1.3. A brief historical note

A syntactic counterpart of mc-entailment is *multiple-conclusion conse*quence (mc-consequence for short). It is sometimes claimed that the latter notion originates from Gentzen [6] due to his introduction of sequents of the form $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_k$. The sign \Rightarrow occurring in a provable sequent can be interpreted as referring to mc-consequence linking the respective sets $\{A_1, \ldots, A_n\}$, and $\{B_1, \ldots, B_k\}$, where the semantic relation between $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_k\}$ is just mc-entailment. Assuming this, a calculus of sequents operating with sequents which have more than one wff on the right side of \Rightarrow is a (single-conclusion) metacalculus for a multiple-conclusion object-level calculus. However, in some cases (Classical Logic included) a sequent $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_k$ can also be construed as a notational variant of the corresponding wff $A_1 \wedge \cdots \wedge A_n \rightarrow B_1 \vee \cdots \vee B_k$, where \rightarrow stands for the implication connective. Under this interpretation, Gentzen's calculi of sequents would be variants of the corresponding conventional calculi. Shoesmith and Smiley [10] claim that Gentzen interpreted his calculi of sequents in this latter way. If they are right, it was Carnap who first introduced the concept of mc-entailment (cf. [4]; Carnap uses the term "involution"). Its syntactic counterpart, mc-consequence, was incorporated into the general theory of logical calculi by Dana Scott [9]. Mc-consequence and related concepts (multiple-conclusion calculus, multiple-conclusion rules, etc.) are analysed in detail in the monograph [10].

According to Scott, the following constitute the basic properties of mc-consequence, $\parallel \vdash$ (Scott assumes that X and Y are finite sets of wffs of a language):

(**R**) If $X \cap Y \neq \emptyset$, then $X \Vdash Y$.

- (M) If $X_1 \Vdash Y_1$, where $X_1 \subseteq X$ and $Y_1 \subseteq Y$, then $X \Vdash Y$.
- (**T**) If both $X \models A, Y$ and $X, A \models Y$, then $X \models Y$.

One can easily show that mc-entailment in CPL, \models , satisfies the above conditions for any finite sets of wffs of the language of CPL and any wff of the language.

In what follows by a *mc-consequence* we will mean a relation between finite sets of wffs that satisfies the conditions (\mathbf{R}) , (\mathbf{M}) , and (\mathbf{T}) .

Remark 2. This definition is very general. Of course, truth/validity-preserving relations are consequence relations. However, falsity/non-validity-preserving relations are consequence relations as well (see e.g. [11, 7]).

1.4. Some interpretational problems

Allowing sets of wffs to constitute conclusions raises interpretational problems. Roughly speaking, Y on the right seems to be a kind of generalized disjunction; let us designate it by $\bigsqcup Y$. There are cases, however, in which this interpretation is problematic.

Following Scott [9, p. 416], we say that a mc-consequence \Vdash is consistent iff there is no wff A (of the language in question) such that $\emptyset \Vdash \{A\}$ and $\{A\} \Vdash \emptyset$; \Vdash is complete iff for each wff A we have either $\emptyset \Vdash \{A\}$ or $\{A\} \Vdash \emptyset$. As Scott [9] observes, the following holds:

FACT 2. Every mc-consequence \parallel is the intersection of all consistent and complete mc-consequences containing \parallel .

A consistent and complete mc-consequence can be viewed as a *Scott* valuation. For any relation \Vdash of this kind, we define a function θ_{\parallel} from the set of wffs to a two-element set $\{\mathbf{t}, \mathbf{f}\}$ as follows:

$$\theta_{\parallel}(A) = \mathbf{t} \text{ iff } \parallel \{A\}.$$
(1)

(Here and below we write $||-\{A\}$ for $\emptyset||-\{A\}$.) Hence every mc-consequence can also be characterized by the Scott valuations corresponding to the relevant consistent and complete mc-consequences.

On the other hand, every Scott valuation θ determines a mc-consequence $\parallel_{-\theta}$ by the following condition:

$$X \Vdash_{\theta} Y \text{ iff } \theta(B) = \mathbf{t} \text{ for some } B \in Y$$

whenever $\theta(A) = \mathbf{t} \text{ for all } A \in X.$

It seems natural to construe $\bigsqcup Y$ as follows. Let θ be a Scott valuation.

$$\theta(\bigsqcup Y) = \mathbf{t} \text{ iff } \theta(B) = \mathbf{t} \text{ for some } B \in Y.$$
(2)

However, apart from situations where $\bigsqcup Y$ indeed means "or" (in the object language or in a metalanguage), there are problematic ones. For example, for any Boolean valuation v, define a relation \models^{v} by:

DEFINITION 3. $X \Vdash^{v} Y$ iff $v(B) = \mathbf{0}$ for some $B \in Y$ whenever $v(A) = \mathbf{0}$ for all $A \in X$.

It is easy to check that \Vdash^{v} is a mc-consequence. Also, since v is a function, the relation is consistent and complete. Consider the corresponding Scott valuation $\theta_{\parallel^{-v}}$. We have: $\theta_{\parallel^{-v}}(A) = \mathbf{t}$ iff (by (1)) $\Vdash^{v} \{A\}$

iff (by Definition 3) v(A) = 0. Hence, by (2), we get:

$$v(\bigsqcup Y) = \mathbf{0}$$
 iff $v(B) = \mathbf{0}$ for some $B \in Y$.

It seems that $\bigsqcup Y$ is here a conjunction rather than a disjunction

Remark 3. Scott valuations were introduced in [9, p. 416], as valuations corresponding to arbitrary consistent and complete consequence relations. In general, a Scott valuation need not be a truth valuation (that is, a valuation determined by truth tables in which \mathbf{t} means "true"). Note that in the above example \mathbf{t} means "false".

Scott valuations are called models by Gabbay [5]. In [9] the term " $\{\mathbf{t}, \mathbf{f}\}$ -valuation" is used.

Anyway, it is worth studying not only the general theory of mcconsequence but also specific types of multiple-conclusion relations having natural motivations.

1.5. Proper mc-entailment

As we have mentioned, mc-entailment generalizes sc-entailment. In particular, we have:

$$X \models A \text{ iff } X \models \{A\}$$

and hence

If
$$X \models A$$
 for some $A \in Y$, then $X \models Y$. (3)

However, the converse of (3) does not hold, that is, it happens that $X \models Y$, but $X \not\models A$ for every $A \in Y$. A simple example has been presented in Section 1.1. Here is another:

$$\{ p \land q \to r, \neg r \} \models \{ \neg p, \neg q \}$$
$$\{ p \land q \to r, \neg r \} \nvDash \neg p$$
$$\{ p \land q \to r, \neg r \} \nvDash \neg q$$

Thus mc-entailment of *non-empty sets* splits into two sub-types: the first, in which a set of wffs is mc-entailed and, at the same time, an element of the set is sc-entailed, and the second, where a set is mc-entailed, but no element of this set is sc-entailed. We will label the second type of mc-entailment of non-empty sets as *proper mc-entailment*, and we will use || d| as the sign for proper mc-entailment. More precisely, we put:

DEFINITION 4 (Proper mc-entailment). Let $Y \neq \emptyset$. $X \models Y$ iff $X \models Y$ and $X \not\models A$ for every $A \in Y$. Let us note the following.

Remark 4. $\{A\} \not\models \{A\}$ for any wff A.

Remark 5. $X \parallel \triangleleft Y$ cannot be expressed as $\bigwedge X \models \bigvee Y$. For example, we have $\{p,q\} \not\models p \land q\} \models p \lor q$.

Our aim is to present an axiom system for proper mc-entailment. We remain at the CPL-level. We coin the system PMC.

2. The system PMC

2.1. Terminology and notation

By a sequent we mean an expression of the form $X \vdash Y$, where X and Y stand for finite sets of CPL-wffs, and $Y \neq \emptyset$. The antecedent of a sequent can be empty; in such a case we write $\vdash Y$. By a *literal* we mean a propositional variable or the negation of a propositional variable. We say that two literals are complementary iff one of them is the negation of the other. A clause is a literal or a disjunction of literals. A sequent $X \vdash Y$ is in normal form iff every $A \in X$ is a clause and every $B \in Y$ is a conjunction of clauses. By the rank of the succedent Y of a sequent in the normal form we mean the number of occurrences of the conjunction connective, \land , in Y; the rank of Y is designated by r(Y). We abbreviate " $A_1 \rightarrow (A_2 \rightarrow \ldots \rightarrow (A_n \rightarrow B) \ldots)$ " as " $\{A_1, \ldots, A_n\} \rightarrow B$ ". The inscription " $A \in CPL$ " means: "A is a thesis of CPL." We characterize finite sets of wffs by listing their elements; curly brackets are thus omitted. As usual, X, A abbreviates $X \cup \{A\}$.

2.2. Axioms

Axioms of PMC are sequents in the normal form falling under the following schema: $\vdash Y$, where Y is of rank 0, $\bigvee Y \in \mathsf{CPL}$, and $B \notin \mathsf{CPL}$ for each $B \in Y$.

Here are simple examples of axioms of PMC:

$$\vdash p, \neg p \\ \vdash p \lor \neg q, q \lor \neg p$$

It is easily seen that the following hold:

COROLLARY 1. If a sequent $\vdash Y$ is an axiom of PMC, then no single clause of Y involves complementary literals, but Y involves complementary literals.

247

Tomasz Skura and Andrzej Wiśniewski

COROLLARY 2. If a sequent $\vdash Y$ is an axiom of PMC, then $\emptyset \parallel \forall Y$.

Remark 6. As Remark 4 illustrates, one cannot use $A \vdash A$ as a schema of axioms of PMC. Similarly, $X \vdash X$ is useless. For instance,

$$\{p,\neg p\} \not\models \{p,\neg p\}.$$

2.3. Rules

Here are the (primary) rules of PMC.

$$\mathsf{R}_{1}: \qquad \frac{X \vdash Y, A \quad X \vdash Y, B}{X \vdash Y, A \land B}$$

 $\frac{X \vdash Y, A}{X \vdash Y, B}$

$$R_2$$
:

$$\mathsf{R}_3: \qquad \frac{X \vdash A \to B_1, \dots, A \to B_k}{X, A \vdash B_1, \dots, B_k}$$

The rule R_1 preserves proper mc-entailment (only) from top to bottom, that is, the following holds:

COROLLARY 3. If $X \parallel \forall Y, A$ and $X \parallel \forall Y, B$, then $X \parallel \forall Y, A \land B$.

where $(A \leftrightarrow B) \in \mathsf{CPL}$

The rules R_2 and R_3 , in turn, preserve proper mc-entailment in both directions. To be more precise, we have:

COROLLARY 4.

1. Let $(A \leftrightarrow B) \in \mathsf{CPL}$. Then $X \parallel \forall Y, A$ iff $X \parallel \forall Y, B$. 2. $X \parallel \forall A \rightarrow B_1, \dots, A \rightarrow B_k$ iff $X, A \parallel \forall B_1, \dots, B_k$.

PROOF. The case of (1) is obvious.

As for (2), assume that $X \models A \to B_1, \ldots, A \to B_k$. Hence: (a) $X \models A \to B_1, \ldots, A \to B_k$ and (b) $X \not\models A \to B_i$ for $1 \le i \le k$. Suppose that $X, A \models B_1, \ldots, B_k$. Hence $X \models A \to B_1, \ldots, A \to B_k$. A contradiction. Suppose that $X, A \models B_i$ for some $1 \le i \le k$. Therefore $X \models A \to B_i$. A contradiction again.

The reasoning in the other direction is analogous.

A proof of a sequent $X \vdash Y$ in PMC is a finite labelled tree regulated by the rules of PMC where the leaves are labelled with axioms with axioms and $X \vdash Y$ labels the root. A sequent $X \vdash Y$ is provable in PMC iff $X \vdash Y$ has at least one proof in PMC. Here are examples of proofs:

Example 1. $p \lor \neg p \vdash p, \neg p$

$$\begin{array}{c} \vdash p, \neg p \quad (Ax) \\ \vdash p \lor \neg p \to p, \neg p \quad (R_2) \\ \vdash p \lor \neg p \to p, p \lor \neg p \to \neg p \quad (R_2) \\ p \lor \neg p \vdash p, \neg p \quad (R_3) \end{array}$$

Example 2. $p \land q \rightarrow r, \neg r \vdash \neg p, \neg q$

$$\begin{array}{c} \vdash q \lor r \lor \neg p, p \lor r \lor \neg q \quad (Ax) \\ \vdash \neg q \to r \lor \neg p, p \lor r \lor \neg q \quad (R_2) \\ \vdash \neg p \lor \neg q \lor r \to r \lor \neg p, p \lor r \lor \neg q \quad (R_2) \\ \vdash (p \land q \to r) \to (\neg r \to \neg p), p \lor r \lor \neg q \quad (R_2) \\ \vdash (p \land q \to r) \to (\neg r \to \neg p), \neg p \to r \lor \neg q \quad (R_2) \\ \vdash (p \land q \to r) \to (\neg r \to \neg p), \neg p \lor q \lor r \to r \lor \neg q \quad (R_2) \\ \vdash (p \land q \to r) \to (\neg r \to \neg p), (p \land q \to r) \to (\neg r \to \neg q) \quad (R_2) \\ \vdash (p \land q \to r) \to (\neg r \to \neg p), (p \land q \to r) \to (\neg r \to \neg q) \quad (R_2) \\ p \land q \to r \vdash \neg r \to \neg p, \neg r \to \neg q \quad (R_3) \\ p \land q \to r, \neg r \vdash \neg p, \neg q \quad (R_3) \end{array}$$

Example 3.
$$p \lor q \vdash p, q, r$$

$$\vdash \neg q \lor p, \neg p \lor q, \neg p \lor r \quad (Ax) \qquad \vdash \neg q \lor p, \neg p \lor q, \neg q \lor r \quad (Ax)$$

$$\vdash \neg q \lor p, \neg p \lor q, (\neg p \lor r) \land (\neg q \lor r) \quad (R_{1})$$

$$\vdash p \lor q \rightarrow p, \neg p \lor q, (\neg p \lor r) \land (\neg q \lor r) \quad (R_{2})$$

$$\vdash p \lor q \rightarrow p, p \lor q \rightarrow q, (\neg p \lor r) \land (\neg q \lor r) \quad (R_{2})$$

$$\vdash p \lor q \rightarrow p, p \lor q \rightarrow q, p \lor q \rightarrow r \quad (R_{2})$$

$$p \lor q \vdash p, q, r \quad (R_{3})$$

Remark 7. It is natural to ask if the above approach can be extended to non-classical logics. The rule R_1 is obvious. The rule R_2 is a kind of replacement rule. It is R_3 that may be a problem. However, the following holds for many-valued logics. Let v be a valuation in a matrix with a set D of designated values. R_3 is a rule for the logic determined by such a matrix if the following condition is satisfied.

$$v(A \to B) \notin D$$
 iff $v(A) \in D$ and $v(B) \notin D$.

For example, the connective \supset studied by Avron in [1] satisfies this condition.

249

2.4. Soundness and completeness

The following holds:

THEOREM 1 (Soundness of PMC). If a sequent $X \vdash Y$ is provable in PMC, then $X \models Y$.

PROOF. By Corollary 2, Corollary 3, and Corollary 4.

In order to prove completeness we need:

LEMMA 1. Let $\vdash Y$ be a sequent in the normal form. If $\emptyset \parallel \forall Y$, then $\vdash Y$ is provable in PMC.

PROOF. We proceed by induction on r(Y), i.e. the rank of Y.

(1) r(Y) = 0. Assume that $\emptyset \parallel \forall Y$. Then $\vdash Y$ is an axiom of PMC, so the sequent is provable in the calculus.

(2) $\mathsf{r}(Y) > 0$. Assume that $\emptyset \models Y$, where $Y = \{A_1, \ldots, A_n\}$. Then there is $1 \leq i \leq n$, say i = 1, such that $A_1 = C_1 \land \ldots \land C_m$ and m > 1. At the same time $\not\models A_1$ and thus for some j, where $1 \leq j \leq m$, it holds that $\not\models C_j$. Consider:

$$Y_j = \{C_j, A_2, \dots, A_n\} \ (1 \le j \le m)$$
$$Y'_j = \{\bigwedge \{C_k : k \ne j\}, A_2, \dots, A_n\}$$

We have $\mathsf{r}(Y_j) < \mathsf{r}(Y)$ and $\mathsf{r}(Y'_j) < \mathsf{r}(Y)$, so by the induction hypothesis:

(a) if $\emptyset \parallel \forall Y_j$, then $\vdash Y_j$ is provable in PMC;

(b) if $\emptyset \parallel Y'_j$, then $\vdash Y'_j$ is provable in PMC.

But when $\emptyset \parallel \triangleleft Y$ holds, we have both $\parallel \models Y_j$ and $\parallel \models Y'_j$. Yet, it also holds that $\not\models C_j$. Thus $\emptyset \parallel \triangleleft Y_j$ and hence, by (a), $\vdash Y_j$ is provable in PMC.

 $(Case \ 1) \not\models \bigwedge \{C_k : k \neq j\}$. Then $\emptyset \mid \bowtie Y'_j$, so, by (b), $\vdash Y'_j$ is provable in PMC. Since we have rules R_1 and R_2 , and $\vdash Y_j$ is provable as well, it follows that $\vdash Y$ is provable in the calculus.

 $(Case \ 2) \models \bigwedge \{C_k : k \neq j\}$. Then A_1 is CPL-equivalent to C_j , so, by $\mathsf{R}_2, \vdash Y$ is provable in PMC.

LEMMA 2. Let $X \vdash Y$, where $X \neq \emptyset$, be a sequent in the normal form. If $X \parallel \forall Y$, then $X \vdash Y$ is provable in PMC. PROOF. Let $Y = \{B_1, \ldots, B_k\}$ and $X = \{C_1, \ldots, C_n\}$. Assume that $X \parallel \forall Y$. Then, by Corollary 4, we have:

$$\emptyset \mid \bowtie X \to B_1, \dots, X \to B_k$$

Since each $X \to B_i$ is CPL-equivalent to a conjunction of clauses, then, by Lemma 1 and rule R_2 the following sequent:

 $\vdash X \to B_1, \ldots, X \to B_k$

is provable in PMC. We extend the proof of the above sequent by applying rule R_3 *n* times.⁵ As the result we get a proof of the sequent $\{C_1, \ldots, C_n\} \vdash \{B_1, \ldots, B_k\}$, i.e. of $X \vdash Y$.

THEOREM 2. Let X, Y be finite sets of CPL-wffs. If $X \parallel \forall Y$, then the sequent $X \vdash Y$ is provable in PMC.

PROOF. Immediately by Lemma 1 or Lemma 2 if $X \vdash Y$ is in the normal form.

Assume that $X \vdash Y$ is not in the normal form. Suppose that $X \models Y$. Let $X = \{C_1, \ldots, C_n\}$ and $Y = \{B_1, \ldots, B_k\}$.

By Corollary 4, $X \parallel \triangleleft Y$ holds iff

$$\emptyset \mid \bowtie X \to B_1, \dots, X \to B_k \tag{4}$$

is the case.

Each of $X \to B_i$ is CPL-equivalent to a conjunction D_i of clauses. Clearly, (4) holds iff the following is the case:

 $\emptyset \parallel D_1, \ldots, D_k$

Observe that the corresponding sequent:

$$\vdash D_1, \dots, D_k \tag{5}$$

is in the normal form. Therefore, by the initial assumption and Lemma 1, the sequent (5) is provable in PMC. By applying rule $R_2 k$ times one can extend a proof of (5) into a proof of the sequent:

$$\vdash X \to B_1, \dots, X \to B_k \tag{6}$$

Then, by applying rule R_3 *n* times one can extend a proof of (6) into a proof of the sequent $X \vdash Y$.

⁵ Recall that " $X \to B_i$ " abbreviates " $C_1 \to (C_2 \to \ldots \to (C_n \to B_i) \ldots)$ ".

What about proper mc-entailment between infinite sets of CPL-wffs? The following holds:

COROLLARY 5. If $X \parallel Y$, then $X_1 \parallel Y_1$ for some finite sets X_1, Y_1 such that $X_1 \subseteq X$ and $Y_1 \subseteq Y$.

Hence the following is true:

THEOREM 3 (Weak completeness of PMC). If $X \models Y$, then there exists a sequent $X_1 \vdash Y_1$ such that $X_1 \subseteq X$ as well as $Y_1 \subseteq Y$, and $X_1 \vdash Y_1$ is provable in PMC.

3. Proper mc-entailment and question evocation

As we mentioned in Section 1.4, allowing sets of wffs to constitute conclusions raises interpretational problems. However, the case in which a set of wffs is properly mc-entailed seems less problematic. It is quite natural to think of a properly mc-entailed set of wffs as of the set of *direct answers to a question*, where a direct answer is a possible answer that provides neither less nor more information than is required by the question. Assuming this, the first clause of the definition of proper mcentailment amounts to: if all the wffs in X are true, then the question whose set of direct answers is Y must be sound, i.e. at least one direct answer to the question must be true. The second clause, in turn, says the following: no direct answer to the question is (sc)-entailed by X. Thus the truth of all the wffs in X warrants the *existence* of a true direct answer but does not determine *which* direct answer is true. In other words: the question is sound relative to X, but it expresses a problem which is open with respect to X. A reader familiar with Inferential Erotetic Logic (IEL for short) immediately notices that $X \mid \triangleleft Y$ holds iff X evokes a question whose set of direct answers is Y.⁶ The concept of question evocation, however, plays a crucial role in IEL. In particular, *validity* of inferences leading from declaratives to questions is defined in terms of evocation. PMC can thus be interpreted as an axiom system for question evocation. Let us add: the first known system of this kind.

Funding. This work was supported by funds of the National Science Centre, Poland (DEC-2012/04/A/HS1/00715 to A.W.).

⁶ For IEL and question evocation see, e.g., [12].

References

- Avron, A., "Natural 3-valued logics characterization and proof theory", Journal of Symbolic Logic, 56 (1991): 276–294. DOI: 10.2307/2274919
- [2] Avron, A., and A. Zamansky, "Completeness and axiomatizability in many-valued logic", pages 227–304 in volume 16 of *Handbook of Philo*sophical Logic, Springer, Dordrecht, 2011.
- [3] Bolc, L., and P. Borowik, Many-Valued Logics 1. Theoretical Foundations, Springer, Berlin/Heilderberg/New York, 1992.
- [4] Carnap, R., Formalization of Logic, Harvard University Press, Cambridge, MA, 1943.
- [5] Gabbay, D. M., Semantical Investigations in Heyting's Intuitionistic Logic, Reidel, Dordrecht, 1981.
- [6] Gentzen, G., "Investigation into logical deduction", pages 68–131 in The Collected Papers of Gerhard Gentzen, M.E. Szabo (ed.), North-Holland, 1969.
- [7] Kracht, M., "Judgement and consequence relations", Journal of Applied Non-Classical Logics, 20 (2010): 423–435. DOI: 10.3166/jancl.20.423-435
- [8] McCarthy, J., "A basis for a mathematical theory of computation", pages 33–70 in *Computer Programming and Formal Systems*, P. Braffort and D. Hirshberg (eds.), North-Holland, Amsterdam, 1963.
- [9] Scott, D., "Completeness and axiomatizability in many-valued logic", pages 411–435 in volume 25 of *Proceedings of Symposia in Pure Mathematics*, American Mathematican Society, Providence, Rhode Island, 1974.
- [10] Shoesmith, D. J., and T. J. Smiley Multiple-conclusion Logic, Cambridge University Press, Cambridge, 1978.
- Skura, T., "A refutation theory", *Logica Universalis*, 3 (2009): 293–302.
 DOI: 10.1007/s11787-009-0009-y
- [12] Wiśniewski, A., Questions, Inferences, and Scenarios, vol. 46 of Studies in Logic, College Publications, London, 2013.

TOMASZ SKURA Institute of Philosophy University of Zielona Góra Zielona Góra, Poland T.Skura@ifil.uz.zgora.pl

ANDRZEJ WIŚNIEWSKI Department of Logic and Cognitive Science Institute of Psychology Adam Mickiewicz University Poznań, Poland Andrzej.Wisniewski@amu.edu.pl 253