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SOME REMARKS ON HARTRY FIELD’S

NOTION OF “LOGICAL CONSISTENCY”

Introduction

In this article the notion of “logical consistency” in the sense introduced by
Field in [Field 1991] is discussed. Field argues, that it is possible to introduce
the notion of “logical consistency” as a primitive metalogical notion, which
is independent from model-theoretical and proof-theoretical notions. In this
article I want to indicate some difficulties of this standpoint, and to identify
some hidden presuppositions. I also would like to show, that introducing this
concept (at least in the form considered by Field) does not really support
Field’s argumentation against realism. I confine myself to the analysis of
Field’s standpoint, and will not discuss the more general issue, whether it is
possible to treat the notion of “logical consequence” as a primitive notion.

Field’s standpoint is motivated by his discussion of Quine’s indispens-
ability argument. Field considers this argument as the only one serious and
worth discussing argument in favor of realism, but rejects its premises. In
Field’s opinion, mathematics is really dispensable, as it plays only an aux-
iliary role in empirical theories. Scientific facts, which can be proved using
mathematics can also be proved in nominalistic versions of these theories (cf.
[Field 1980]).

In Field’s argumentation, the notion of “conservativeness” plays a crucial
role. Let N be a purely nominalistic (“synthetic”) physical theory, S – a
mathematical theory, and N + S – the physical theory enriched with the
mathematical tools of S. In Field’s opinion, N + S is conservative over N ,
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which means, that no new consequences (formulated in the language LN )
can be found using N + S.

The notion of “conservativeness” can be understood in two ways:

(a) N+S is syntactically conservative over N , if each sentence σ ∈ LN , which
is a theorem of N + S, is also a theorem of N . (I.e. Cn(N + S) ∩ LN =
Cn(N), where Cn is the operator of syntactic consequence).

(b) N+S is semantically conservative over N , if each sentence σ ∈ LN , which
is the semantic consequence of N + S, is also a semantic consequence
of N .1

The notion of “semantic consequence” is defined in terms of models, the
notion of “syntactical consequence” it terms of proofs.

In [Field 1980], Field uses mainly the semantic conservativeness principle.
To justify it he uses some metamathematical theorems, which concern classes
of models for the theories in question. But this procedure enables one to
object, that Field uses realistic notions in the metatheory (i.e. notions of
“models”, “classes of models”, etc.).2

Field claims, that this difficulty can be eliminated, if a primitive notion
of “logical consistency” is introduced. Field explicitly writes about finding
“a modal surrogate of model theory and of proof theory” [Field 1991, 1],
which will make it possible to justify the claims about logical consequences
(i.e. facts of the form “ϕ is a logical consequence of T”) without making use
of the platonistic metatheory. In particular, it will make it possible to justify
Field’s claims about the conservativeness of mathematics.

The notion of “logical consistency” is — in Field’s opinion — a notion,
which cannot be reduced to the notions of “semantic consistency” or “syntac-
tic consistency”. It is independent from model-theoretic or proof-theoretic
notions. The fact, that T is logically consistent need not be (in the general
case) equivalent to the fact, that T has a model (or to the fact, that there is
no proof of a contradiction within T ). Nevertheless, both these facts make
the notion of “logical consistency” more precise. The following facts describe
the relations between these notions:

(∗) If T has a model, than T is logically consistent.

(∗∗) If T is logically consistent, than T proves no contradiction.

1 Models for N and for N + S usually are of different signatures, as the extralogical
terms of N and N + S are different, but we consider their reducts.

2 It should be noted, that even the syntactic conservativeness principle needs the notion
of “the class of all proofs”, which is also a part of the “platonistic machinery”.
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After introducing the notation 3T = “T is logically consistent”, these
facts can be written down as:

(∗) T has a model =⇒ 3T ,

(∗∗) 3T =⇒ T does not prove a contradiction.

In the case of first-order logic, due to its completeness, the following
equivalence is true:

T has a model ⇐⇒ T does not prove a contradiction.

In that case, 3T is equivalent to the usual consistency, i.e. to the fact,
that T has a model (this is a kind of “squeezing argument”, which Field
attributes to Kreisel). But, in Field’s opinion, this fact of extensional identity
is a quite accidental fact (he calls it “accident of first-order logic” [Field 1991,
4]), and the notion of “logical consistency” cannot — in the general case —
be reduced to the notion of “having a model” or the notion of “not proving
a contradiction”. Nevertheless, the meaning of 3 can be made more precise
using both these notions.3

The discussion of the indispensability argument is not the only motivation
for introducing a primitive notion of “logical consistency”. In Fields opinion,
it is quite natural in itself, and should be accepted even by a realist.

In this article, two groups of problems will be discussed:

(i) Some conceptual difficulties connected with the notion of “logical con-
sistency”.

(ii) The possibility of justifying the fictionalists thesis using this notion.

1. Field’s arguments for the “primitiveness” of 3

Field claims, that defining the notion of “logical consistency” in terms of
models (in the Tarskian manner) is not appropriate and leads to unwanted
consequences. He supports his thesis by the following arguments:

3 Field makes use of Kreisel’s argumentation, according to which we have an informal
understanding of a primitive predicate Val, which means, that a certain formula is satisfied
in all structures (not only in the set structures). It is formally represented by the predi-
cate V, which says, that the formula is true in all set structures. Completeness shows, that
they are coextensional, which gives more information about Val, but “that does not mean,
that Val was vague before” [Kreisel 1969, 91]). Model-theoretic and proof-theoretic notions
make it more precise, but its meaning is given independent of them, and Val cannot be
reduced by definition to these notions.
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Argument 1. Let T be the set of truths (expressed in the language of set
theory) about the set-theoretic universe. If T is true, it should be consistent.
But that means, that (under the standard interpretation) it should have a
model M . But this model M is certainly not the entire set-theoretic uni-
verse V , but a set of the form (M,E), where E ⊆ M2 is the interpretation
of the predicate of set theory.4 That means, that T is consistent not because
of the fact, that it is true, but because a certain model for T exists, which
need not really resemble the whole universe (i.e. E ⊆ M2 need not be the
“genuine ∈”). So, in order to justify the consistency of a true theory T

(which describes our world), we have to rely on the existence of a model,
which does not have the full set-theoretic reality in its domain (and in which
the interpretation of “∈” does not look like membership). So the truth of T

is not prima facie a guarantee for its consistency.

Argument 2. A similar difficulty arises in the case of logical consequence:
if ϕ is false in the world, than S (the theory of the world — i.e. a variant
of set theory) should not logically imply ϕ. None of these models is a “full”
model, i.e. no model is identical with the whole universe, so no model needs
to “mirror” the universe. So it might happen, that all models for S are models
for ϕ, i.e. S � ϕ (in Tarski’s sense). But then S logically implies ϕ, in spite
of the fact, that in our world W , S is true and ϕ is false.

Of course, it cannot happen in the case of first-order logic (due to its
completeness), but this is just an accidental feature of first-order logic, which
cannot be “transferred” onto the notion of “logical consistency” for other
logics. It means, that Tarski’s account of “logical consequence” only works
for first-order logic — and this is only “by accident”.5

Argument 3. Let T = ZFC + “there is no inaccessible cardinal” .6 The
model for T is Vλ, where λ is the least inaccessible cardinal. But in this
case, inside Vλ there is no model for ZFC2 (hence there is no model for T ).
So ZFC2 is a true description of the world Vλ, but it has no model in this
world, so it is not Tarski-consistent. But the explication, which allows true
theories to be inconsistent is surely inappropriate.7

4 V is not a model, as it is not a set. “From the point of view of V ”, V itself is not an
object, and does not formally exist. The models for T are sets, which are elements of V .

5 Let CnLog denote the “logical consequence operator” in the sense of Field. The
meaning of this term is apparently given by: ϕ ∈ CnLog(Φ) iff ∼3(Φ + ¬ϕ).

6 ZFC2 is second-order Zermelo-Fraenkel set theory with choice.
7 Of course, it cannot happen in the case of first-order logic, but this — according to
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2. The discussion of Field’s notion of “logical consistency”

3 is a primitive term, but its meaning can be clarified by establishing some
connections between 3 and model- and proof-theoretic notions.

In particular, Field explains the meaning of 3 in the following way: if S

is “some reasonable finitely axiomatized set theory” ([Field 1991, 12]), then:

3(S∗ + ∃M � ϕ) ⇐⇒ 3ϕ ,(1)

or

3(S + ∃M � ϕ) =⇒ 3ϕ .(2)

In both cases we speak about certain connections between the logical
consistency of the sentence ϕ, and the logical consistency of a theory, which
states, that ϕ has a model. This explanation gives rise to several problems,
which will be discussed in the sequel.

Problem 1. Field, in his thesis 3ϕ ⇐⇒ 3(S + “∃M � ϕ)”, uses the notions
of “model” and “satisfaction”. I will argue, that the notion 3 is not given in a
primitive way, but that sentences of the form 3ϕ are really abbreviations for
statements about the consistency of some metatheoretical sentences. The
notion of “logical consistency” is really given in the context of a certain
metatheory, which serves as a background.

Every sentence ϕ is formulated in a certain language L. We are interested
in the logical consistency of ϕ. We must consider the problem, whether it
is necessary to use the notion of “satisfaction for L” (which is defined in
the metatheory S) to justify the statement 3ϕ, or whether it is possible
to justify this fact without making use of the notion “�L”. In particular,
we have to resolve the problem, whether 3ϕ is given in an autonomous
way and expresses certain “primitive” fact about ϕ, or whether 3ϕ is just
a notational abbreviation for the sentence 3(S + “∃M � ϕ”) (which is the
proper explication of 3ϕ).

In particular, we have to decide, for which of languages the operator 3

can be applied. In other words, for which languages is the notion of “logical
consistency” given as a primitive notion?

As we speak of “logical consistency”, the problem, which systems should
be considered as purely logical arises. Are the languages L(QH), Lω1ω,
L(Q0), etc. “purely logical”? It should be noted, that Field speaks of 3

Field — is just an accidental feature of first-order logic and does not change the inadequacy
of the model-theoretic explanation of the notion of “logical consistency”.
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not only in the context of first-order logic, but also in the context of second-
order logic, which is a quite strong system. But in that case we should be
allowed to apply the operator 3 to weaker systems as well — in particular to
the languages L(QH), Lω1ω, L(Q0). But then several problem arise, which
is illustrated by the following examples:

(A) Consider any arithmetical sentence ϕ ∈ LPA (or the theory PA). If
we accept the explication given above, 3(PA) means really, that the theory
S + “∃M � PA” (i.e. set theory S with the additional postulate, that there
exists a model M for PA) is logically consistent.

(B) Consider the theory T = Tlin + ∃yQ0x(x < y) formulated in the
language L(Q0) (Tlin is the theory of linear order). When should T be con-
sidered logically consistent? Which criteria are in use here? If we accept the
explication given above, 3T depends on 3(S + “∃M � T ”), which of course
depends on the metatheory S.

To accept the fact, that 3T depends on 3(S + “∃M � T ”) (in fact, it is
either a corollary of it or is equivalent to it), we should assume, that there
is a semantics for T , and that it is defined and described in the metatheory
S (in particular, the notion of “model for T ” is defined in S). The problem
of logical consistency of T is then reduced to the problem of the logical
consistency of S + “∃M � T ”.

(C) Similar examples can be given for logics with Henkin quantifiers, for
infinitary logics etc. When should the sentence QHϕ(x, y, x′, y′) (where QH

is the Henkin quantifier) be considered logically consistent (i.e. when are we
willing to accept 3QHϕ(x, y, x′, y′))? Is there a primitive notion of “logical
consistency for L(QH)? According to Field’s explanations, 3(QHϕ) depends
on 3(S + “∃M � QHϕ”). But this requires appealing to the metatheory S,
where the notion of satisfaction for L(QH) is defined.

(A), (B) and (C) show, that the problems of logical consistency of PA,
of the sentence QHϕ, etc. are variants of the problem of logical consistency
of the metatheory S (with the additional hypothesis about the existence of
appropriate model).8

S plays the role of a metetheory, in which model-theoretic and proof-
theoretic notions for the logics in question are defined. What are the criteria
for choosing a particular theory S as the “canonical metatheory”? What
are the criteria for defining the semantics for the logics in question in the
metatheory? We want to define the semantics in such a way, that it ful-
fills some methodological conditions and fits our intuitions (like the standard

8 Of course, if S implies the existence of such models, this hypothesis is superfluous.
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Tarski definition for elementary logic)9. This requirement should be fulfilled
not only by the elementary logic, but also by every strengthening of ele-
mentary logic (like logics with additional quantifiers or infinitary logics, and
also generalizations of a different type, like modal, temporal, dynamic logics,
etc.). But if we accept the thesis, that the problem of logical consistency of
a certain L-theory T is well-posed only if a certain “canonical” metatheory is
chosen (in which �L is defined), then the problem of the logical consistency
of T is really a special case of the problem of the logical consistency of the
theory S + ∃M � T .

Should we accept 3T only if it is possible to define a model for T in an ap-
propriate metatheory S? What is the role of S? Is our understanding of 3T :

(A) independent of the model-theoretic facts, which are given in the metathe-
ory S or is it

(B) just a reformulation of metatheoretical facts, which express the existence
of appropriate models?

Which notions are more fundamental from the epistemological point of
view?

According to (a), 3T ⇐⇒ 3(S + “∃M � T ”) in fact only identifies cer-
tain connections between the notion of “logical consistency” applied to T , and
the notion of “logical consistency” applied to the metatheory S. But accept-
ing 3T does not even require, that we have a knowledge of these connections,
as 3 is a primitive notion.

According to (b), 3 can be considered primitive only at the level of S,
i.e. our notion of 3T is derived from the notion of “logical consistency” for
the metatheoretical level S.

(B) seems more plausible to me. I think, that we justify the consistency
of PA or Tlin + ∃xQ0y(y < x), etc. (even on the intuitive level) using the
fact, that there is a structure, which serves as a model. I do not claim here,
that the “feeling” of consistency of e.g. PA requires the explicit use of certain
theorems of ZFC (which state the existence of ω). It is rather the case, that
thinking about the consistency of PA we really think of the existence of a
certain structure, in which the axioms of PA can be interpreted, and we think
of PA as the description of this structure. In the case of other theories, our
use of set-theoretic notions in the metatheory is even more clear. So, even if

9 It is obvious, that just an arbitrary relation � could be defined e.g. in such a way,
that every sentence is �-true in every structure. In that case every theory has a model.
This is not our aim.
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we are in the position to have an intuitive insight into the logical consistency
of theories, these intuitions can only be applied on the level of S. The state-
ments 3PA, 3T , 3ϕ etc. are in fact only notational variants of sentences of
the form 3(S + “∃M � T ”).

In this case the problem of the status of S becomes essential. The choice
of a particular S is connected with the acceptance of certain set-theoretic
assumptions as more plausible than others. This will have consequences for
the model and proof theory of the investigated languages (e.g. the complete-
ness of elementary logic depends on the axiom of choice in the metatheory).
Of course, the existence of the model for T = Tlin + “∃yQ0x(x < y)” is not a
corollary of every possible set theory S formulated in the language L(∈) as it
requires the existence of an infinite set and a relation with certain properties.
Similarly: 3PA is not compatible with ZFC\Inf + ¬Inf. Considering 3T as
plausible depends on the choice of the metatheory, and 3T , 3PA, 3ϕ etc.
are derived from metatheoretical statements of the form 3(S + ∃M � T ),
etc. (which are epistemologically prior). This leads us to the problem of the
choice and epistemological status of S.

Problem 2. From the above considerations is follows, that the sentences
3(Tlin + ∃yQ0x(x < y)), 3(QHϕ(x, y, x′, y′)) etc. really express certain
metatheoretical facts. In a sense, there are many operators 3L (one for
each language L in question), which mirror certain “ramifications” of the no-
tion of “logical consistency”, but one of these operators is really fundamental.
Field’s principle should therefore be formulated as:

3S(S + ∃M � ϕ) ⇐⇒ 3Lϕ ,

where 3L is the operator of logical consistency for L (ϕ ∈ L), and 3S is the
operator of logical consistency for S.

I argued, that 3(Tlin + ∃yQ0x(x < y)), 3(QHϕ(x, y, x′, y′)) are really
accepted, because we are able to think of certain structures, defined in the
set theory S. 3T really means 3S(S +∃M � T ). Its meaning is given via S,
and it is in fact an abbreviation for 3S(S + ∃M � T ).

What is the status of S? Is it a “fundamental” level or should we think of
3S in a similar way we think of 3L? Consider the following two possibilities:

(1). 3S(S + ∃M � PA) should be explained using the meta-metatheory,
i.e. by a reduction to a deeper level:

3S(S + ∃M � ϕ) ⇐⇒ 3S1
(S1 + ∃M1 �1 S + “∃M � ϕ”) .

where S1 is the metatheory for S, �1 is the satisfaction relation for S, defined
within the metatheory S1, and M1 is a model for the theory S + “∃M � ϕ” .
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But if we accept this point of view, we are threatened by an infinitary
regress. In this case the notion of “logical consistency” lacks any precise
sense — we will always be compelled to claim, that it can be reduced to a
deeper level. This is an idle point of view.

(2). There is a “fundamental” level for 3. What is this level? It depends
on the choice of the metatheory S, and the meaning of 3 depends on this
choice. But if the sense of the term “logical consistency” depends on the
choice of S, it is quite difficult to uphold the thesis, that it is a primitive and
intuitively given notion. It would be necessary to justify, that exactly one of
the possible metatheories is the “genuine” one. But what are the arguments
for choosing ZFC2, or MK or BG (or any other theory, like ZF + AD) as S?
It should be noted, that the possibility of formulating arguments (1) and (3)
(which are intended to show the inadequacy of the model-theoretic account
of logical consistency) depends on the choice of S.10 Moreover, if 3 applies to
a particular set theory only, it is not quite clear, why it should be considered
a purely logical notion.

Problem 3. In his argumentation, Field uses the notion of “truth in the
universe”. How should this notion be understood, and on which assumption
is the use of this notion based?

Field’s arguments (1) and (3) have the following form:

1. Consider T , which describes the world W . Of course T is true in W .

2. The world W has the property, that inside W there is no model for T .

3. So T is logically inconsistent.

4. But that means, that the model-theoretic explication of logical consistency
is bad, as there is a true, but logically inconsistent theory.

Field uses the notion of “truth in the world W ” (where T is formulated
in the language of set theory). Using this notion, he argues, that the model-
theoretic explication of the intuitive, informal notion of logical consistency
is not satisfactory.

In which sense is the notion “a true sentence” understood? Consider two
possibilities:

Possibility 1. The truth of the sentence ϕ ∈ L(∈) in the world W is given
in terms of the satisfaction relation � which is defined for the language L(∈).
But this would mean, that W is a model for L(∈), since only in this case we

10 The problem arises, whether Field’s claims are not simply analytical claims, i.e. mean-
ing postulates about the terms “3” and “�” (given in the context of the metatheory S).
But this would be inconsistent with Field’s claim, that the meaning of 3 is primitive.
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can think, whether ϕ is satisfied in W . But this simply means, that W � ϕ,
which is impossible, as we assumed, that ϕ has no model. So, the truth of
the sentence ϕ cannot be given in terms of the satisfaction relation �. So,
the second possibility must be the case:

Possibility 2. The notion of “truth of the sentence ϕ ∈ L(∈) in the
world W ” should be understood in a different way — independent of the se-
mantics ‘�’ for the language L = L(∈). We are confronted with the following
situation:

2.1. A semantics (i.e. a satisfaction relation �) for the language L is
formally defined (within a metatheory S). That means, that in our world
W the class Str[L] and the satisfaction relation � are given. The models
M ∈ Str[L] are elements of W (or, more generally speaking, they are some-
how “connected” with W ). If W is given, Str[L] is given in a “canonical”
way. W itself is not an element of Str[L]. The expression W � ϕ does not
make sense — but we can speak about the truth of ϕ in W in a different —
informal — sense.

2.2. An informal notion of “truth in W ” is given. It cannot be reduced
to �.11

In that case, every sentence ϕ ∈ L can be evaluated in two different ways:
2.2.a. In an informal way in the world W. Here we rest on the assumption,

that the notion of “truth” does not have a formal, technical sense, but can
be “grasped” on the non-formal level.

2.2.b. In formal terms (using the satisfaction relation �) in the models
M ∈ Str[L] (which are given together with the world W , e.g. as its elements).

Let TR(ϕ) be the abbreviation for “ϕ is true in the world W ”. The prob-
lem arises, whether the informal notion of truth TR can be “modeled” using �.
Of course, several methodological assumptions concerning � and the notion
of “model for L” must be fulfilled, in order to satisfy the pre-formal intuitions.

Field claims, that TR cannot be modeled in a satisfactory way using �,
and that the model-theoretic account has as a consequence, that there are
true but inconsistent theories. His argument has the following structure:

(i) For logics where completeness holds these notions are coextensional,
but this is just an accidental fact, and the models for T can be quite
“unnatural”.12

11 If we assume, that our universe is described e.g. within ZFC2, and we speak about
“truth in the universe”, than we assume, that we can understand (“grasp”) the concept of
“being an element of”, “arbitrary subset”, “power set” etc.

12 The problem arises, whether inner models for ZFC are natural or not. Every inner
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(ii) For incomplete logics it can happen, that there are true sentences
without a model. So � is not an adequate formal representation of
TR. In this context, Field considers the theory ZFC2 + ¬∃ Inacc. If
this theory is true (i.e. if the universe really is Vλ, where λ is the least
inaccessible cardinal), then there is no model for this theory within the
universe. It is true and logically inconsistent, which is not a satisfactory
state of affairs.

This argument has a conditional character: if the world has certain
properties, then the notion of truth has no adequate formal counterpart.
It is quite unclear, whether this argument is really plausible and whether
its presuppositions are acceptable. This argument presupposes some strong
assumptions about the structure of the universe. Loosely speaking, these as-
sumptions state, that the world W does not contain any objects which would
make it possible to represent the notion TR in a satisfactory way. The inad-
equacy of the formal explication of TR is a corollary of these assumptions.
But it is not a priori obvious, that the world has to be like that. It is
possible, that the structure of the universe W makes it possible to give a
formal counterpart of the notion of truth TR. What exactly does it mean?
If we assume, that:

(a) the notion of TR is clear;

(b) it should be possible to give a formal counterpart in terms of ‘�’;

we are led to a reflection principle:

(REF) for any ϕ ∈ L, TR(ϕ) =⇒ ∃M ∈ Str[L]M � ϕ .13

3. 3 and the conservativeness of mathematics

Here I shall discuss the problem, whether introducing the concept 3 (even
disregarding the problems discussed above) makes it possible to formulate a
conclusive argument in favor of fictionalism (which was Fields original moti-

model contains all the ordinal number, so it differs from the universe V only “in width”,
not “in height” (e.g. L differs from V only in that it contains constructible sets only). ‘∈’ in
the inner model is inherited from the universe. An inner model is not a set “from the point
of view of V ”, so it formally does not even exist. Of course we cannot prove the existence
of such a model in ZFC, but we can do it in the metatheory. What happens, if such a
model is also a model for the theory of our world? Will it be considered “natural” or not?

13 If this reflection principle is true, that it cannot be maintained, that there is a true
formula without a model. In this case Field’s argumentation is “blocked”.
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vation). Can this notion be applied to the discussion of the indispensability
argument and to the problem of ontological commitments, and does it give
any conclusive arguments in this discussion?14

To make Field’s argument for fictionalism work, we need some counter-
part of the conservativeness principles. The following formulation seems the
most reasonable choice:

(3-CONS) 3N =⇒ 3(N + S) .

It expresses the fact, that if N is logically consistent, then it remains
consistent after some mathematical assumptions S are added.15

Does 3-CONS together with (∗) and (∗∗) make it possible to justify
conservativeness of mathematics?16 This is not the case:

1. Let us assume, that N + S proves ϕ ∈ LN . Does it mean, that N

proves ϕ? In the general case the answer is negative. Consider the following
reasoning: N + S proves ϕ ⇐⇒ N + S + ¬ϕ is inconsistent =⇒ ∼3(N +
S+¬ϕ) (by (∗∗)) =⇒ ∼3(N +¬ϕ) (by 3-CONS) =⇒ N +¬ϕ has no model
(by (∗)).

If there is no equivalence in (∗∗) (and — according to Field — it is not
necessary), then the fact, that N + S proves ϕ implies only, that N + ¬ϕ

has no model. But this is not — in the general case — equivalent to the fact,
that N proves ϕ. That means, that proving syntactic conservativeness is not
possible.

2. The situation is even worse in the case of semantic conservativeness. If
N+S semantically implies ϕ, that means, that N+S+¬ϕ has no model. But
this fact does not say anything ∼3(N + S +¬ϕ), as there is no equivalence
in (∗). We cannot even start the reasoning.

14 In the literature concerning the philosophy of mathematics the idea of eliminating the
ontological commitments in favor of introducing modal notions is quite often discussed.
The semantics for mathematics would be then given in terms of possibilia (possible struc-
tures, possible models, possible languages, etc.). Field’s idea is similar, nevertheless his 3

is not a modal operator. He claims, that it is rather a kind of logical modality.
15 Conservativeness means: 3N =⇒ 3(N +S). So ∼3(N +S) =⇒ ∼3N . In particular

∼3(N + S + ¬ϕ) =⇒ ∼3(N + ¬ϕ) (for ϕ ∈ LN ). So ϕ ∈ CnLog(N + S) =⇒ ϕ ∈

CnLog(N), where CnLog is the informal consequence operator, defined by ϕ ∈ CnLog(T )
iff ∼3(T + ¬ϕ). 3-CONS can be formulated in the equivalent version: ϕ ∈ CnLog(N +
S) =⇒ ϕ ∈ CnLog(N).

16 Here I mean one of the standard senses (which is also assumed in [Field 1980]). If we
define the conservativeness of mathematics as 3-CONS, then the problem is reduced to
the problem of justifying 3-CONS. But if we use the term “conservativeness” in one of the
standard senses, then we must investigate the problem, whether 3-CONS allows to prove
any of these standard conservativeness principles.
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The principle 3-CONS in the version given above does not make it pos-
sible to justify any of the conservativeness principles. But the idea behind
the notion of “logical consistency” was to make the reasoning in favor of
fictionalism work. What are the possible strategies for the fictionalist?

(A) Assume the equivalences in (∗) and (∗∗), but at the same time main-
tain, that the notions of “proof” and “model” are independent of 3, and that
these notions “fit” (in the case of a complete logic) only by accident. The
argumentation of the fictionalist would then have the following scheme:

(i) A primitive notion of logical consistency is given.

(ii) Mathematical theory N + S is semantically conservative over the “syn-
thetic” theory N : it is possible to prove, that N +S � ϕ implies N � ϕ.

(iii) But ∃M � S if and only if 3S, as these notions are coextensional.

(iv) The fact, that N+S is semantically conservative over N makes it pos-
sible to justify the principle 3-CONS: 3S =⇒ 3(N + S). But in this
principle we only speak about 3, not about models.

(v) So the argumentation in favor of conservativeness uses only the notion
3, which has the same sense as the notion “having a model”. But
that these notions are independent, and our epistemic access to 3 is
independent from model-theoretic considerations.

Of course, this kind of argument cannot be treated serious, as here model-
theoretic notions are used as well as the arbitrary assumption, that the mean-
ing of 3 and “having a model” are coextensional, but have different meanings.
Field does not give any axioms, which would make it possible to distinguish
these meanings. But in this case the statement, that the notion 3 really has
a different meaning than the notion “having a model” lacks justification.17

(B). Introduce a new concept of conservativeness, given by 3-CONS. But
as there is no equivalence in (∗) i (∗∗), this new notion of conservativeness
does not say anything about the semantic or syntactic conservativeness. It
only states a fact about conservativeness in the sense of CnLog (defined by
3). But it is quite implausible, that it is precisely 3-CONS, which adequately
expresses the fact, that mathematics is just an useful tool.18

17 Shapiro in [1993, 457–458] expresses doubts about the thesis, that there is a notion
of logical consequence given, which fits exactly the model-theoretic notion, but is given in
a primitive way.

18 Here I do not discuss the problem, how 3-CONS can be justified. I think, that the
only possibility would be to claim, that it expresses a primitive fact about 3. But, as it
speaks about empirical and mathematical theories it is doubtful, why it should be true (as
3 should be “purely logical”).
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Both (A) and (B) are not satisfactory. So, even disregarding the difficul-
ties presented in paragraph 2, introducing the notion of “logical consistency”
does not give any arguments in favor of the fictionalists standpoint.

4. Summary

1. It is not clear, at what level should the notion of “logical consistency” be
applied.

2. The criteria for choosing the “fundamental level” are not given.

3. Field assumes: (i) that the notion of “truth in the universe” can be
grasped; (ii) that the universe is “too small” to make a formal represen-
tation of this notion possible. But a counterargument, based on certain
reflection principles can be formulated. It is far from obvious, that Field’s
strategy of eliminating ontology in favor of epistemological assumptions
is really better.

4. Even introducing the concept of “logical consistency” does not give a con-
vincing argument in favor of fictionalism.

In short, Field’s standpoint has several weaknesses, which make in not
plausible.
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