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Franeso PaoliLOGIC AND GROUPS1. IntrodutionAbelian group logi (AGL) � in other words, the logi whih is sound andomplete w.r.t. Abelian groups � is a non-trivial inonsistent logi, i.e. whatsome paraonsistent logiians all a �dialethi� logi. AGL entered the arenaof paraonsistent researh in the late 1980s, when Casari (1989) and Meyerand Slaney (1989), quite independently of eah other, �rst axiomatized itand studied its properties (it must be said, however, that Meyer and Slaneyirulated unpublished material about Abelian group logi as early as in1981, so it seems orret to assign them hronologial priority).Casari, in partiular, onsidered Abelian groups as a borderline ase ofa more general lass of algebrai strutures (pregroups), also enompassingMV-algebras and Boolean algebras. Correspondingly, he treated AGL as aninonsistent extension of a logi aimed at formalizing the idea of a �ompar-ative impliation� (see also Casari, 1990, 1997 for details). Another paperontaining results on Abelian group logi is Restall (1993). In both Casari'sand Meyer-Slaney's approahes AGL is introdued as the intensional frag-ment of a wider logi, all it L-AGL, the logi of lattie-ordered Abeliangroups. Suh a system ontains, of ourse, onnetives of onjuntion anddisjuntion enjoying lattie properties. However, both papers also devotesome attention to the purely intensional system AGL (AI in Meyer-Slaney'sterminology).In what follows, we shall try to push further the study of AGL, trying tohighlight its extreme simpliity and simmetry, properties relatively to whihit is mathed to a omparable extent only, perhaps, by lassial logi. At thelose, we shall prove some results onerning L-AGL, too.
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110 Franeso PaoliSetion 2 will (exept for Lemma 2) be a partial survey of the work doneby Casari on AGL. Setion 3 will deal with the gentzenization of suh asystem. Setions 4 and 5 will be devoted to semantis. Setion 6 is aboutL-AGL. 2. Hilbert-style systemsThe language L (AGL) is a propositional language ontaining the onnetivesof negation (¬) and impliation (→). AGL an be axiomatized as follows(f. Casari, 1989):(A1) (A → B) → ((B → C) → (A → C))(A2) (A → (B → C)) → (B → (A → C))(A3) (A → A) → (B → B)(A4) ¬(A → A)(A5) ¬¬A → A(A6) (A → ¬B) → (B → ¬A)(A7) ¬(A → A) → (A → A)(A8) (¬(A → A) → (A → A)) → (A → A)(R1) A,A → B ⇒ BEquivalently, we an enlarge L (AGL) by the propositional onstant T(�true�) and replae A3, A4, A7, A8 by:(A3′) T → (A → A)(A3′′) (A → A) → T(A4′) ¬T(A7′) ¬T → T(A8′) (¬T → T) → TIt will turn out useful to have reorded some theses and admissible rulesof AGL (we shall heneforth drop the subsript �AGL� near the turnstilewhenever onvenient).
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Logi and groups 111Lemma 1. (i) ⊢ A → A;(ii) ⊢ A → ((A → B) → B);(iii) ⊢ (A → B) → ((C → A) → (C → B));(iv) ⊢ (A → B) → (¬B → ¬A);(v) ⊢ A → ¬¬A;(vi) ⊢ A ⇒ ⊢ ¬A;(vii) ⊢ A → B ⇒ ⊢ B → A;(viii) ⊢ ¬(A → B) → (B → A);(ix) ⊢ (A → B) → ¬(B → A);(x) ⊢ A,⊢ B ⇒ ⊢ A → B;(xi) ⊢ T;(xii) ⊢ A ⇒ ⊢ T → A.Proof. Proofs of (i)�(v) an be found in Casari (1989). As regards (vi)�(xii), it is a trivial exerise to hek the soundness of suh priniples w.r.t.the algebrai semantis whih follows. The existene of a proof for eah ofthem follows then from the ompleteness theorem below (whih of oursedoes not depend on them).If VAR is the set of propositional variables of L (AGL) and FOR is thefree algebra of formulas of AGL, an algebrai model A is a pair 〈G , ρ〉, where
G = 〈G,+,−, 0〉 is an Abelian group and the realization ρ : FOR → G is ahomomorphism extending the arbitrary mapping ρ∗ : VAR → G in suh away that:

ρ(p) = ρ∗(p);

ρ(¬A) = −ρ(A);

ρ(A → B) = −ρ(A) + ρ(B).(If the onstant T is in the language also:
ρ(T) = 0).We say that A is ρ-true in A (ρ �A A) i� ρ(A) = 0; that A is true in A(�A A) i� ρ �A A for every ρ on A ; that A is logially valid (�A-AGL A) i�

�A A for every algebrai model A .Theorem 1. ⊢AGL A i� �A−AGL A.Proof. See Casari (1989).
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112 Franeso PaoliBy an AGL-theory we mean a set M of formulas of L (AGL) s.t. if
A ∈ M and ⊢AGL A → B, then B ∈ M . It is easy to prove:Lemma 2. If M is an AGL-theory and, for some A, both ⊢ A and A ∈ M ,then AGL ⊆ M .Proof. Suppose ⊢ B and B ∈ M . Then, if C is any theorem of AGL, byLemma 1(x) we have ⊢ B → C, whene C ∈ M as M is an AGL-theory.3. Sequent systemsWe now introdue two Gentzen-style versions of AGL. First, we shall onsiderthe two-sided alulus G-AGL, with negation and impliation as primitiveonnetives.Let Γ , ∆, . . . stand for possibly empty �nite multisets of formulas of
L (AGL). The postulates of G-AGL are:(Ax) Γ ⇒ Γ(Cut) Γ ⇒ ∆,A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ(¬ L) Γ ⇒ ∆,A

¬A,Γ ⇒ ∆(¬ R) A,Γ ⇒ ∆

Γ ⇒ ∆,¬A(→ L) A,Γ ⇒ ∆,B

B → A,Γ ⇒ ∆(→ R) A,Γ ⇒ ∆,B

Γ ⇒ ∆,A → BIn what follows, we shall sometimes �nd it more onvenient to resortto a one-sided version of Abelian group logi. The alulus O-AGL hastherefore primitive literals instead of variables and just one primitive binaryonnetive, �⊕�. Then, generalized negation is introdued as usual (f. e.g.Girard, 1987), exept for the fat that we have to take are of the self-dualityof ⊕ in the De Morgan equivalenes. A → B is de�ned as ¬A⊕B. Here arethe postulates of O-AGL:(Ax) ⇒ A1, . . . , An,¬A1, . . . ,¬An (n > 0)
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Logi and groups 113(Cut) ⇒ Γ,A ⇒ ∆,¬A

⇒ Γ,∆(⊕) ⇒ Γ,A,B

⇒ Γ,A⊕BReturning now to our main system G-AGL, we are in a position to prove:Theorem 2. ⊢AGL A i� ⊢G−AGL⇒ A.Proof. Left to right. We proeed by indution on the proof of A in AGL.Here are some examples (where in eah ase it is obvious whih rule has beenapplied):(A2)
C,B,A ⇒ C,B,A

B → C,B,A ⇒ C,A

A → (B → C), B,A ⇒ C

A → (B → C), B ⇒ A → C

A → (B → C) ⇒ B → (A → C)

⇒ (A → (B → C)) → (B → (A → C))(A3)
A,B ⇒ A,B

A → A,B ⇒ B

A → A ⇒ B → B
⇒ (A → A) → (B → B)(A4)

A ⇒ A
A → A ⇒

⇒ ¬(A → A)(A7)
A,A ⇒ A,A

A ⇒ A,A → A

¬(A → A), A ⇒ A

¬(A → A) ⇒ A → A

⇒ ¬(A → A) → (A → A)Right to left. It is enough to extend to sequents the semantial oneptsintrodued in Setion 2 and show that, if ⊢G-AGL Γ ⇒ ∆, then Γ ⇒ ∆ islogially valid. One this is done in the appropriate way, our laim beomesa onsequene of Theorem 1 for Γ = ∅ and ∆ = {A}.
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114 Franeso PaoliHene, let ρ(A1, . . . , An ⇒ B1, . . . , Bm) = −ρ(A1) + · · · + −ρ(An) +
ρ(B1) + · · · + ρ(Bm) and ρ(⇒) = 0. The sequent Γ ⇒ ∆ is said to belogially valid i� ρ(Γ ⇒ ∆) = 0 for every ρ on every algebrai model A .Now we an prove the �if� part of our theorem by a standard indution onthe length of the proof of Γ ⇒ ∆ in G-AGL. The ases (¬ L) and (→ R) areleft to the reader.(Ad Ax). ρ(A1, . . . , An ⇒ A1 . . . , An) = −ρ(A1)+· · ·+−ρ(An)+ρ(A1)+
· · ·+ ρ(An) = 0 + · · ·+ 0 = 0. Moreover, if n = 0 we are done by de�nition.(Ad Cut). Let −ρ(Γ ) + ρ(∆) = x, −ρ(Π) + ρ(Σ) = y, ρ(A) = z. By IH,
x+ z = 0 and −z+ y = 0. So 0 = 0+0 = −z+ z+x+ y = 0+x+ y = x+ y.(Ad ¬ R). If −ρ(Γ ) + ρ(∆) = x and ρ(A) = y, by IH −y + x = 0, whihis atually what we wanted to prove.(Ad → L). If −ρ(Γ ) + ρ(∆) = x, ρ(A) = y and ρ(B) = z, then by IH
−y + x+ z = 0. But then −(−z + y) + x = −y + z + x = 0.Theorem 3. G-AGL is ut-free.Proof. First, let us show that if D is a proof of the following form:

D′

Γ ⇒ ∆,A
D′′

A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)where D′ and D′′ are ut-free proofs, then the previous appliation of utan be replaed by an appliation of the following rule:(Elim) A,Λ ⇒ Ξ,A

Λ ⇒ Ξyielding the same end sequent. Indeed, if D′ and D′′ are ut-free, they arehains, sine no other rule of G-AGL has two premisses:
Φ ⇒ Φ
D′

Γ ⇒ ∆,A

Θ ⇒ Θ
D′′

A,Π ⇒ ΣHene, we an onstrut a D′′′ as follows:
Φ,Θ ⇒ Φ,Θ

D′′′

A,Γ,Π ⇒ ∆,Σ,A

Γ,Π ⇒ ∆,Σ
(Elim)A ut-elimination proedure for G-AGL an then be arried out in threesteps:
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Logi and groups 115(A) We replae one by one all appliations of (Cut) by appliations of (Elim),starting from the maximal sequents in eah branh of the proof-tree anddesending down to its root. Proof-trees beome hains.(B) We show that (Elim) is super�uous in proofs ontaining a single �nalappliation of suh a rule.(C) We extend this result in the standard way to proofs ontaining a �nitearbitrary number of appliations of (Elim).Proof of (B) is a double indution on the rank and the omplexity of theprinipal formula in the appliation of (Elim) at issue. However, we mustsuitably adapt to the present ase the ordinary de�nition of rank.Consider the following proof:
D

Π ⇒ Σ
A,Γ ⇒ ∆,A

(Rule)
Γ ⇒ ∆

(Elim)We stipulate that the left rank of A (rl(A)), i.e. the rank relative to the �rstourrene of A, remains unaltered in passing from Π ⇒ Σ to A,Γ ⇒ ∆,Aif (1) that ourrene of A was obtained by a rule other than (Ax) and (2) theseond ourrene of A is the prinipal formula of the appliation of (Rule);otherwise it inreases by one unit. Similar onsideration apply to the rightrank of A (rr(A)). As usual, r(A) is de�ned as rl(A) + rr(A).Basis (r(A) = 2). Due to the absene of strutural rules, there are justthree ases to onsider (up to trivial simmetries suh as permutation of theorder of inferenes).First ase:
D: A,Γ ⇒ Γ,A

Γ ⇒ Γ
(Elim)

D′: Γ ⇒ ΓSeond ase:
D: A,Γ ⇒ ∆,A

¬A,A, Γ ⇒ ∆
(¬L)

¬A,Γ ⇒ ∆,¬A
(¬R)

Γ ⇒ ∆
(Elim)

D′: A,Γ ⇒ ∆,A

Γ ⇒ ∆
(Elim)Third ase:

D: A,B, Γ ⇒ ∆,A,B

A → B,A, Γ ⇒ ∆,B
(→ L)

A → B,Γ ⇒ ∆,A → B
(→ R)

Γ ⇒ ∆
(Elim)

D′: A,B, Γ ⇒ ∆,A,B

B,Γ ⇒ ∆,B
(Elim)

Γ ⇒ ∆
(Elim)
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116 Franeso PaoliStep (r(A) > 2). For the same reason as above, the only main ase to betreated remains the one onerning inversion of rules. Examples:
D: A,Γ ⇒ ∆,A,B

A,¬B,Γ ⇒ ∆,A
(¬L)

¬B,Γ ⇒ ∆
(Elim)

D′: A,Γ ⇒ ∆,A,B

Γ ⇒ ∆,B
(Elim)

¬B,Γ ⇒ ∆
(¬L)

D: A,B, Γ ⇒ ∆,C,A

A,C → B,Γ ⇒ ∆,A
(→ L)

C → B,Γ ⇒ ∆
(Elim)

D′: A,B, Γ ⇒ ∆,C,A

B,Γ ⇒ ∆,C
(Elim)

C → B,Γ ⇒ ∆
(→ L)This onludes the proof of our theorem.4. Denotational semantisAbelian group logi has a semantis of proofs. We an easily obtain it bysuitably trivializing some distintions available in Girard's denotational se-mantis for linear logi (Girard, 1987; Troelstra, 1992). Remark that inGirard's semantis the multipliative truth and falsity onstants are inter-preted by the same oherent spae, and this may be seen as a shortoming ofthis semantis. In our dialethi setting, however, this feature, far from beinga drawbak, is indeed a desideratum.An AGL-oherent spae is an ordered triple S = 〈X,R, S〉, where X isa set and R, S are irre�exive symmetri relations on X s.t. R ∪ S ∪ I is aovering of X2 (�I� denotes here the identity relation).We de�ne two operations on AGL-oherent spaes: orthogonality (unary)and sum (binary).If S = 〈X,R, S〉, then

S
⊥ df
= 〈X,S,R〉 .It is easily heked that S ⊥ is well-de�ned and S ⊥⊥ = S .If S = 〈X,R, S〉 and S ′ = 〈X,R

′, S′〉, then
S + S

′ df
= 〈X ×X ′, R′′, S′′〉 ,where for any x, y, x′, y′ ∈ X we have:

(x, x′) R′′ (y, y′) i� x R y or x′ R′ y′ ,and
(x, x′) S′′ (y, y′) i� x S y or x′ S′ y′ .Are R′′ and S′′ well-de�ned? They are both irre�exive, sine, for example,

(x, x′) R′′ (x, x′) i� x R x or x′ R′ x′, i.e. never; symmetry of R′′, S′′ follows
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Logi and groups 117likewise from symmetry of R, S, R′, S′. It remains to prove that either
(x, x′) R′′ (y, y′) or (x, x′) S′′ (y, y′) or (x = y and x′ = y′), but this istantamount to: either x R y or x′ R′ y′ or x S y or x′ S′ y′ or (x = y and
x′ = y′), and this follows from the properties of R, S, R′, S′.We an also de�ne another binary operation on AGL-oherent spaes, i.e.impliation: if S = 〈X,R, S〉 and S ′ = 〈X ′, R′, S′〉, then

S → S
′ df
= 〈X ×X ′, R′′, S′′〉 ,where for any x, y, x′, y′ ∈ X we have:

(x, x′) R′′ (y, y′) i� x S y or x′ R′ y′ ,and
(x, x′) S′′ (y, y′) i� x R y or x′ S′ y′ .The following isomorphisms between AGL-oherent spaes are provable:De Morgan equalities:

S → S
′ ∼= S

⊥ + S
′ ;(1)

(S + S
′)⊥ ∼= S

⊥ + S
′⊥ .(2)Commutativity isomorphisms:

S → S
′ ∼= S

′⊥ → S
⊥ ;(3)

(S → S
′)⊥ ∼= S

′ → S ;(4)
S + S

′ ∼= S
′ + S .(5)Assoiativity isomorphisms:

S → (S ′ + S
′′) ∼= (S → S

′) + S
′′ ;(6)

S + (S ′ + S
′′) ∼= (S + S

′) + S
′′ .(7) As an example we prove (2) and (4), whih are not valid in linear logi.Ad (2): (x, x′) R (y, y′) in (S + S ′)⊥ i� (x, x′) S (y, y′) in S + S ′i� (x S y in S or x′ S y′ in S ′) i� (x R y in S ⊥ or x′ R y′ in S ′⊥) i�

(x, x′) R (y, y′) in S ⊥ + S ′⊥. Dually, we an repeat the same reasoningfor S.Ad (4): (x, x′) R (y, y′) in (S → S ′)⊥ i� (x, x′) S (y, y′) in S → S ′ i�
(x R y in S or x′ S y′ in S ′) i� (x, x′) R (y, y′) in S ′ → S . Again, theargument relative to S is symmetrial.Let us now return to our one-sided alulus O-AGL of Setion 3 and seehow it an be interpreted within our semantial frame.Let SP be an (at least denumerable) set of AGL-oherent spaes, ontain-ing the empty one (the empty set with two empty relations on it) and losed
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118 Franeso Paoliunder the operations of orthogonality and sum. If LIT is the set of literals of
L (AGL) and L is the omplementary literal of L, then given any mapping
v∗ : LIT → SP s.t. v ∗ (L) = v∗(L)⊥, a valuation v transforms sequents ofO-AGL into members of SP aording to the following lauses:

v(L) = v∗(L) ;

v(A⊕B) = v(A) + v(B) ;

v( ⇒ A1, . . . , An) = v(A1) + · · ·+ v(An) .The valuation v is in itself far from su�ient, sine what we are afteris a semantis of proofs. So, if D is a proof of ⇒ Γ in O-AGL, where
v( ⇒ Γ ) = 〈X,R, S〉, we interpret it by a mapping j s.t. j(D) ⊆ X. Weshall then show that, for every proof D of ⇒ Γ in O-AGL, j(D) is a liquein v(⇒ Γ ), i.e. that if x, y both belong to j(D), then x R y or x = y in
v( ⇒ Γ ) (as a matter of onvention, we stipulate that the only subset of ⇒is a lique in the empty AGL-oherent spae).We indutively de�ne j as follows (boldfae letters stand for n-tuples):� j( ⇒ A1,¬A1, . . . , An,¬An) = {x1, x1, . . . , xn, xn : xi ∈ Xi}, where
v(Ai) = Si = 〈Xi, Ri, Si〉 and v(¬Aj) = v(Aj)

⊥; for n = 0, j( ⇒
A1,¬A1, . . . , An,¬An) = ∅.� If D proves ⇒ Γ,A, D′ proves ⇒ ∆,¬A, and D′′ proves ⇒ Γ,∆ bya ut rule from D and D′, then j(D′′) = {x,x′ : ∃y(x, y ∈ j(D) and
x
′, y ∈ j(D′))}.� If D proves ⇒ Γ,A,B and D′ proves ⇒ Γ,A⊕B by a plus rule from D,then j(D′) = {x, (y, z) : x, y, z ∈ j(D)}.Theorem 4. If D proves ⇒ Γ in O-AGL, then j(D) is a lique in v( ⇒ Γ ).Proof. Indution on the length of D. Sine the indutive step is proved asin Girard (1987), we shall fous on the basis of the indution.We have to show that either (x1, x1, . . . , xn, xn) R (y1, y1, . . . , yn, yn) or

(x1 = y1 and . . . and xn = yn), i.e. either x1 R1 y1 or x1S1y1 or . . . or
xn Rn yn or xnSnyn or (x1 = y1 and . . . and xn = yn). But this followseasily from the fat that for eah i 6 n, Ri ∪ Si ∪ I is a overing of X2

i (if
n = 0, we are OK by de�nition).In fat, our axioms of the form ⇒ A1,¬A1, . . . , An,¬An are nothing elsethan generalized exluded thirds atually embodying a omposition rule �a restrited form of weakening whih is known to be sound in Girard's se-mantis (f. e.g. Blute and Sott, 1996).
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Logi and groups 1195. Kripke-style semantisCoherent spae semantis is a semantis of proofs, not provability. Moreover,interesting logis whih have denotational models, in primis linear logi, areusually shown to be sound, not omplete, w.r.t. suh an interpretation. So,as we have just seen, does also AGL. It is then desirable to have a moretraditional semantis � di�erent from the immediate algebrai one presentedin Setion 2 � whih a�ords a proper ompleteness proof.With suh an aim in mind, we now proeed to introdue a relationalsemantis for the Hilbert-style system AGL, taken in its axiomatization witha primitive propositional onstant T (see above).A G-frame is an ordered quadruple F = 〈W,R, 1 ,∗ 〉, where:
• W is a nonempty set ontaining 1 .
• R is 3-plae relation on W satisfying:

R1 R1xx;
R2 Rxyz ⇒ Ryxz,
R3 R2(xy)zw ⇒ R2(xz)yw,
R4 Rxyz & w ≤ z ⇒ Rwyz.As usual (f. Dunn, 1986), R2(xy)zw is short for ∃u(Rxyu & Ruzw),whereas x ≤ y stands for R1xy.

• ∗ is a 1-plae operation on W satisfying:
∗1 x∗∗ = x,
∗2 Rxyz ⇒ Rxz∗y∗,
∗3 1 ≤ x ⇐⇒ 1 � x∗.A G-model for AGL is a pair M = 〈F ,�〉, where F is a G-frame and

� ⊆ W × FOR is a relation satisfying:
�1 x � p & x ≤ y ⇒ y � p;
�2 x � T ⇐⇒ 1 ≤ x;
�3 x � ¬A ⇐⇒ x∗ 2 A;
�4 x � A → B ⇐⇒ ∀yz(Rxyz & y � A ⇒ z � B).A G-model M is unit-splitting (or, for short, u-splitting) i� the foringrelation satis�es, for every A:
�5 1 � A ⇐⇒ 1

∗ 2 A.
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120 Franeso PaoliOf ourse we have to show that this last onstraint is not inompatiblewith the previous ones, i.e. that there are u-splitting G-models. But this willbe proved through our ompleteness theorem below.A is said to be true in M (M � A) i� 1 � A; to be an Abelian logiallaw (�K-AGL A) i� M � A for every u-splitting G-model M .Lemma 3. In every u-splitting G-model M :(i) x � A & x ≤ y ⇒ y � A. (Heredity)(ii) ∀x(x � A ⇒ x � B) ⇒ 1 � A → B. (Veri�ation)(iii) 1 � A ⇐⇒ 1 � ¬A.(iv) 1 � A ⇐⇒ 1
∗ � ¬A.(v) If, for some A, 1 � A and x � A, then 1 ≤ x.Proof. (i)�(ii) See Anderson, Belnap and Dunn (1992), Dunn (1986) orRoutley-Meyer (1972).(iii) Left to right: 1 � A ⇒ (�5) 1 ∗ 2 A ⇒ (�3) 1 � ¬A. Right to left:

1 � ¬A ⇒ (�5) 1 ∗ 2 ¬A ⇒ (�3, ∗1) 1 � A.(iv) Symmetrial.(v) Suppose 1 � B, x � B and 1 � x. By (∗1) and (∗3), this last implies
1 ≤ x∗. 1 � B implies instead 1 � ¬B by (iii) above. Hene, by (i), x∗ � ¬B,i.e., in virtue of (�3) and (∗1), x 2 B, whih is a ontradition.Theorem 5. ⊢AGL A implies �K-AGL A.Proof. Standard indution on the length of derivations. In partiular, (A1),(A2), (A5), (A6), and (R1) are veri�ed as in Dunn (1986) or in Routley-Meyer(1972). We now argue for the rest of the postulates. Lemma 3(ii) will beused without speial mention in what follows.(A3′). Suppose x � T. Then, by (�2), 1 ≤ x. Now assume Rxyz and
y � A; by (R4), then, y ≤ z. Hene Lemma 3(i) implies z � A.(A3′′). It is easy to hek that 1 � A → A. Suppose now x � A → A; byLemma 3(v) we onlude that 1 ≤ x, i.e. x � T.(A4′). Sine 1 ≤ 1 , by (∗3) it is not the ase that 1

∗ ≤ 1
∗, i.e. (�2)

1
∗ 2 T. By (�3), then 1 � ¬T.(A7′). Suppose x � ¬T . Then x∗ 2 T, aording to (�3). Sine 1 � T(as 1 ≤ 1 ), by Lemma 3(i) it is not the ase that 1 ≤ x∗. But this amountsto 1 ≤ x in virtue of (∗3). Hene (�2), x � T.(A8′). This axiom is veri�ed exatly like (A3′′), sine 1 � ¬T → T, aswe have just seen.

© 2001 by Nicolaus Copernicus University



Logi and groups 121Theorem 6. �K-AGL A implies ⊢AGL A.Proof. We prove the ontrapositive: assuming that it is not the ase that
⊢ A, we show that there is an u-splitting G-model (the anonial model ofAGL) s.t. 1 2 A.Our anonial model C = 〈〈W,R, 1 ,∗ 〉,�〉 is onstruted as follows:� W is the set of all AGL-theories;� Rxyz holds i� A → B ∈ x and A ∈ y jointly imply B ∈ z;� 1 is AGL;� x∗ = {A : ¬A /∈ x};� x � A holds i� A ∈ x.Sine W ontains AGL, it is of ourse a nonempty set ontaining 1 .That R satis�es R1�R4 an be shown as in Dunn (1986), exploiting (A2)and Lemma 1(i)�(iii).By (A5), (A6) and Lemma 1(iv)�(v) the operation ∗ maps theories totheories and satis�es (∗1) and (∗2).As to (∗3), we �rst prove that 1 ≤ x implies 1 � x∗. Suppose 1 ≤ x,whih is easily seen to mean that x extends AGL. We have to show that forsome A and B, B /∈ x∗ although ⊢ A and ⊢ A → B. But x∗ = {C : ¬C /∈ x};now, take A = D → D and B = E → E; you have ⊢ A, ⊢ A → B and ⊢ ¬B,hene, by our hypothesis, ¬B ∈ x, i.e. B /∈ x∗.For the onverse impliation, suppose that there are A and B s.t. ⊢ A,
⊢ A → B and B /∈ x∗, i.e., ¬B ∈ x. It follows from ⊢ A and ⊢ A → B that
⊢ B, hene (Lemma 1(vi)) ⊢ ¬B. Then, in virtue of Lemma 2, x extendsAGL, i.e., 1 ≤ x.Now we have to show that � is a well-behaved foring relation. The readeris one again referred to Dunn (1986) or Routley-Meyer (1972) for proofs that
� meets the riteria (�1), (�3) and (�4). As to (�2), suppose 1 ≤ x. But if xextends AGL, then it surely ontains T in virtue of Lemma 1(xi). Conversely,suppose that x ontains T. Now, by Lemma 1(xii), given any theorem A ofAGL, T → A is a theorem of AGL too; hene ∈ x. It follows that x extendsAGL.The very last thing left to prove is that C is u-splitting. Remember that
1
∗ = {A :0 ¬A}. But 1 � A implies 1

∗ 2 A, sine ⊢ A implies ⊢ ¬A byLemma 1(vi) and so ¬A ∈ 1 , i.e. 1 ∗ 2 A. Conversely, if ¬A ∈ 1 then byLemma 1(vi) again A ∈ 1 . Hene 1
∗ 2 A implies 1 � A.This onludes the proof of our theorem.
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A, (A → A) ⇒ A, (A → A)

⇒ A, (A → A) → A, (A → A)
(→R)

A,A ⇒ A,A

A ⇒ A, (A → A)
(→R)

A ⇒ A ∨ ¬A,A → A
(∨R)

A ⇒ A ∨ ¬A,A → A
(∨R)

A,A ⇒ A,A

A ⇒ ¬A,A,A
(¬R)

A ⇒ A ∨ ¬A,A → A,A
(∨R)

A ⇒ A ∨ ¬A,A,A
(∨R)

A → A ⇒ A ∨ ¬A,A, (A → A)
(→L)

A, (A → A) ⇒ A ∨ ¬A,A → A
(∨L)

A, (A → A) → A, (A → A) ⇒ A ∨ ¬A
(→L)

⇒ A ∨ ¬A
(Cut)Figure 1. Exluded third without ontration6. From Abelian group logi to Abelian l-group logi6.1. Proof theoryIf we extend our language with the onnetive �&� and add to AGL thestandard semilattie axioms for onjuntion and the adjuntion rule:(A9) A&B → A(A10) A&B → B(A11) (A → B) & (A → C) → (A → B &C)(R2) A,B ⇒ A&Bwe get L-AGL, i.e. Abelian l-group logi. Disjuntion an now be de�ned asusual via the De Morgan laws. The orresponding Gentzen-style system (GL-AGL) an be obtained from G-AGL by adding the standard rules for additive(lattie-theoretial) onjuntion. Algebrai semantis (w.r.t. l-groups) for thenew systems an easily be reovered from the one presented in Setion 1, bystipulating that ρ(A & B) = ρ(A) ∧ ρ(B), and that A is ρ-true in A i�

0 ≤ ρ(A). It is possible to prove:Theorem 7. ⊢L-AGL A i� ⊢AL-AGL ⇒ A i� �AL-AGL A.The addition of lattie onnetives to Abelian group logi has its pros andons. One of the advantages is that it a�ords nie ontration-free proofs oflassial tautologies essentially depending on ontration, e.g. the exludedthird and the law of distribution (f. Fig. 1 and Fig. 2 on p. 123).Among the disadvantages, there is loss of ut elimination.Theorem 8. GL-AGL is not ut-free.
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A ⇒ A

⇒ A → A
(→R)

B ∨ C ⇒ B ∨ C

⇒ (B ∨ C) → (B ∨ C)
(→R)

B,A,A ⇒ A,A,B

B, A,A ⇒ A, A,B ∨ C
(∨R)

B,A, A & (B ∨ C) ⇒ A, A,B ∨ C
(&L)

B, A,B ∨ C ⇒ B,A,B ∨ C

B,A,A & (B ∨ C) ⇒ B,A,B ∨ C
(&L)

B,A,A & (B ∨ C) ⇒ A & B,A,B ∨ C
(&R)

B, A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A,B ∨ C
(∨R)

C,A, A ⇒ A,A, C

C, A,A ⇒ A, A,B ∨ C
(∨R)

C, A,A & (B ∨ C) ⇒ A,A,B ∨ C
(&L)

C,A,A & (B ∨ C) ⇒ A & C,A, B ∨ C
(&R)

C, A,B ∨ C ⇒ C,A, B ∨ C

C, A,A & (B ∨ C) ⇒ A,AB ∨ C
(&L)

C,A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A, B ∨ C
(∨R)

B ∨ C,A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A,B ∨ C
(∨L)

(B ∨ C) → (B ∨ C), A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A
(→L)

A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A
(Cut)

A → A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C)
(→L)

A & (B ∨ C) ⇒ (A & B) ∨ (A & C)
(Cut)Figure 2. Distribution without ontration
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124 Franeso PaoliProof. As we have seen, the exluded third is provable in our system. WereGL-AGL ut-free, by the subformula property its atomi instanes should beprovable using just the onjuntion and negation rules and the rule (Ax).But, as it an be seen by inspetion, there is no ombination of suh rulesyielding the desired result. Hene GL-AGL is not ut-free.6.2. Phase semantisThe relational semantis of Setion 5 is no good for L-AGL, sine it restsupon harateristi properties of AGL that are not shared by the full system.However, we an provide a relational semantis for L-AGL by onstrutingappropriate phase models (f. Girard, 1987).Remember that a phase struture is a pair F = 〈M ,⊥〉, where M =
〈M, ·, 1〉 is an Abelian monoid and ⊥ is a distinguished subset of M . Insteadof x · y we shall usually write xy. We de�ne, as usual, for X,Y ⊆ M :

XY = {xy : x ∈ X & y ∈ Y },

X⊥ = {x : ∀y(y ∈ X ⇒ xy ∈ ⊥)},

X ⊕ Y = (X⊥Y ⊥)⊥.The operation c(A) = A⊥⊥ is a losure operation on M . We de�ne
C(M) = {X ⊆ M : X = c(X)} .

F is an Abelian phase struture i�:(a) 〈⊥, ·, 1〉 is a submonoid of M ;(b) for every y ∈ M and every X ∈ C(M), X{y} ⊆ X implies ⊥{y} ⊆ ⊥.Lemma 4. In every Abelian phase struture F = 〈M ,⊥〉, for every X ∈
C(M): (i) ⊥⊥ = ⊥, (ii) ⊥ = ⊥⊥, (iii) X ⊕X⊥ = ⊥, (iv) X ⊕⊥ = X.Proof. (i) ⊥⊥ ⊆ ⊥ sine 〈⊥, ·, 1〉 is a submonoid of M ; for the same reason
1 ∈ ⊥, hene if x ∈ ⊥, x = x ∈ ⊥⊥.(ii) ⊥⊥ = {x : ∀y(y ∈ ⊥ ⇒ xy ∈ ⊥)}. If x ∈ ⊥, then, by (a), x ∈ ⊥⊥.Conversely, if ∀y(y ∈ ⊥ ⇒ xy ∈ ⊥), hoose y = 1 to obtain x ∈ ⊥.(iii) We have to prove that (X⊥X)⊥ = ⊥. The inlusion from right to leftfollows from standard phase semantis. Suppose now w ∈ (X⊥X)⊥, whihby ordinary theory of phase semantis means X{w} ⊆ X. Then, by (b),
⊥{w} ⊆ ⊥, whih amounts to w ∈ ⊥ by (ii) above.(iv) As regards X ⊕ ⊥ ⊆ X, suppose x ∈ X ⊕ ⊥, i.e., ∀y(∀z(z ∈ ⊥ ⇒
zy ∈ ⊥) ⇒ xy ∈ X). Let y = 1. Sine the anteedent is trivially satis�ed,
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x ∈ X. Conversely, if x ∈ X we have to prove that ∀y(∀z(z ∈ ⊥ ⇒ zy ∈
⊥) ⇒ xy ∈ X). By (ii) and (iii) above, X ⊕ X⊥ = ⊥⊥, so we an replae
∀z(z ∈ ⊥ ⇒ zy ∈ ⊥) by ∀z(z ∈ X ⇒ zy ∈ X), whene our onlusionfollows.Remark that an a�ne phase struture (Lafont, 1997) is a phase struturewhere X ∈ C(M) implies ⊥X ⊆ ⊥. In any a�ne phase struture, X ∈ C(M)implies ⊥ ⊆ X ⊆ ⊥⊥ = M .Lemma 5. If F is an a�ne Abelian phase struture, then M = ⊥ and
C(M) = {M}.Proof. Sine M is losed, ⊥M ⊆ ⊥. But 1 ∈ ⊥, so for every x in M ,
x = 1x ∈ ⊥. Sine X ∈ C(M) implies M = ⊥ ⊆ X ⊆ ⊥⊥ = M , then
C(M) = {M}.Theorem 9. Let Π ⊆ C(M) be losed w.r.t. ⊥, ⊕, and ontain ⊥.1 Then
S = 〈Π,⊕,⊥,⊥,⊆〉 is an Abelian po-group. IfΠ is losed w.r.t. intersetion,then S is an Abelian l-group.Proof. 〈Π,⊕〉 is an Abelian po-semigroup by standard phase semantis.By Lemma 4(iv) ⊥ is a zero and by Lemma 4(iii) ⊥ is an inverse operation.If Π is losed w.r.t. intersetion, then by ordinary phase semantis 〈Π,⊆〉 isa lattie where joins are represented by (X ∪ Y )⊥⊥.Theorem 10. Every Abelian po-group G = 〈G,+,−, 0,≤〉 is isomorphito an Abelian po-group S of sets. Moreover, if G is lattie-ordered, S islattie-ordered.Proof. Let G = 〈G,+,−, 0,≤〉 be an Abelian po-group. Then G ∗ =
〈G,+, 0〉 is an Abelian monoid and I(0) = {x : x ≤ 0} is a distinguishedsubset of G. Hene F = 〈G ∗, I(0)〉 is a phase struture. We an thusde�ne on it operations of generalized produt, orthogonality, and sum ex-atly as above. Notie that X⊥ = {y : ∀x(x ∈ X ⇒ x + y ≤ 0)};sine x + y ≤ 0 i� 0 ≤ −(x + y) = −x + −y i� x ≤ −y, we have that
X⊥ = {y : ∀x(x ∈ X ⇒ x ≤ −y}.Let also I(x) = {y : y ≤ x} and Π = {I(x) : x ∈ G}. Now we prove:(a) Π ⊆ C(G);(b) Π ontains ⊥;1 Hene ⊥

⊥; not neessarily, however, M and ∅.
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126 Franeso Paoli() Π is losed w.r.t. ⊥ and ⊕ (also set-theoretial intersetion if G is lattie-ordered);(d) F is an Abelian phase struture.Ad (a): I(y)⊥⊥ = {x : ∀z(∀w(w ≤ y ⇒ w ≤ −z) ⇒ x ≤ −z)}. Wehave to show that x ∈ I(y)⊥⊥ ⇒ x ≤ y. Choose z = −y to get the desiredonlusion.Ad (b): ⊥ = I(0) belongs to Π.Ad (): We show that: I(x)⊥ = I(−x); I(x)⊕I(y) = I(x+y); I(x)∩I(y) =
I(x∧ y) (if binary meets exist everywhere). In the �rst plae, remember that
I(x)⊥ = {y : ∀z(z ≤ x ⇒ z ≤ −y)}. If y ≤ −x, i.e. x ≤ −y, and z ≤ x, then
z ≤ −y by transitivity. Conversely, if ∀z(z ≤ x ⇒ z ≤ −y), hoose z = x toget x ≤ −y, i.e. y ≤ −x.As regards sum, by what we have just proved it is enough to show that
I(x+ y) = (I(−x) I(−y))⊥. Suppose then z ≤ x+ y, z′ ≤ −x, z′′ ≤ −y. Wehave to show that z′ + z′′ ≤ −z. But z′ + z′′ ≤ −x+−y = −(x+ y). Hene
z ≤ x + y ≤ −(z′ + z′′). Contraposing, z′ + z′′ ≤ −z. Conversely, suppose
∀w(w = w′ + w′′ & w′ ≤ −x& w′′ ≤ −y ⇒ w ≤ −z). Choose w = −x+−y.You get −x+−y ≤ −z, that is z ≤ −(−x+−y) = x+ y.As for meets, if 〈G ,≤〉 is a lattie, then I(x) is the prinipal l-ideal gener-ated in G by x, and we know from lattie theory that I(x) ∩ I(y) = I(x ∧ y).Ad (d): First of all, remark that 0 belongs to I(0) and that x ≤ 0, y ≤ 0imply x + y ≤ 0 + 0 = 0. Moreover, X{y} ⊆ X implies ⊥{y} ⊆ ⊥, i.e. if
z ≤ x implies z ≤ y = x, then z ≤ 0 implies z + y ≤ 0. In fat, if z ≤ 0,then z ≤ x +−x; adding x on both sides, z + x ≤ x. Hene z + x+ y ≤ x.Adding −x on both sides, z + y ≤ 0.So, by Theorem 9, S = 〈Π,⊕,⊥, I(0),⊆〉 is an Abelian po-group ofsets. Moreover, the map turning x into I(x) is learly an order-preservingbijetion and, as we have seen, preserves inverses, sums and meets. Hene Gis isomorphi to S .Now, we an de�ne a relational model for L-AGL as a triple R = 〈F ,
Π, v〉, where F = 〈M, ·, 1,⊥〉 is an Abelian phase struture (alled frame),
Π is a subset of C(M) losed w.r.t. the phase-semantial operations de�nedas above, and v is a map assigning to every variable of the language of L-AGLan element of Π, extended to a homomorphism by the lauses:

v(¬A) = v(A)⊥,

v(A&B) = v(A) ∩ v(B),

v(A → B) = v(A)⊥ ⊕ v(B).
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Logi and groups 127This allows to de�ne a binary aessibility relation on M setting Rxy
df

⇐⇒
xy /∈ ⊥. Notie that, like in the semantis for intuitionisti logi, x ∈ v(¬A)i� ∀z(Rxz ⇒ z /∈ v(A)).We stipulate that A is v-true in R (v �R A) i� 1 ∈ v(A); that A is truein F (�F A) i� v �R A for every v on F ; that A is logially valid (�L-AGL A)i� v �R A for every relational model R.Theorem 11. For every algebrai model A = 〈G , ρ〉 there is a relationalmodel RA = 〈F ,Π, v〉 suh that for every formula A, ρ �A A i� v �RA A.Likewise, for every relational model R = 〈F ,Π, v〉 there is an algebraimodel A R = 〈G , ρ〉 suh that for every formula A, v �R A i� ρ �A R A.Proof. As regards the �rst statement, given A = 〈G , ρ〉, let F be 〈G,+,
0, I(0)〉, Π be the set of all prinipal l-ideals of G , and v(A) = {x ∈ G :
x ≤ ρ(A)}. By Theorem 10, F is a frame and it is easy to hek (sine themap x 7→ I(x) preserves the operations of the l-group) that v(¬A) = v(A)⊥,
v(A → B) = v(A)⊥ ⊕ v(B) and v(A & B) = v(A) ∩ v(B). Thus, v is wellde�ned. Moreover, ρ �A A i� 0 ≤ ρ(A) i� 0 ∈ v(A) i� v �RA A.For the seond part of the theorem, given R = 〈F ,Π, v〉 with F =
〈M, ·, 1,⊥〉, let G = 〈Π,⊕,⊥,⊥,⊆〉, onstruted as in Theorem 9, and
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