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ON THE PRACTICAL VALUE

OF HERBRAND DISJUNCTIONS

Abstract. Herbrand disjunctions are a means for reducing the problem of
whether a first-oder formula is valid in an open theory T or not to the
problem whether an open formula, one of the so called Herbrand disjunctions,
is T -valid or not. Nevertheless, the set of Herbrand disjunctions, which has
to be examined, is undecidable in general. Fore this reason the practical
value of Herbrand disjunctions has been estimated negatively (cf. [30]).

Relying on completeness proofs which are based on the algebraization
technique presented in [30], but taking a more optimistic view, we show how
Herbrand disjunctions become the base of a method for building in theories
into automatic theorem provers [26]. Surveying newer results we discuss
how to treat heterogeneous theories [29] as well as practical implications of
different normal form transformations.

1. Introduction

It was one of the key points of David Hilbert’s program to find a uniform
method which allows for a given mathematical theory T and an arbitrary
given formula F to decide whether F is valid in T . Jacques Herbrand [18]
described a method which allows for any open first-order theory T and for
any formula F to enumerate a set of open formulas, the so-called Herbrand
disjunctions, such that F is T -valid if and only if for some Herbrand dis-
junction H holds

(1) T |= H.

∗ This paper has partially been supported by the Deutsche Forschungsgemeinschaft
under grant Pe 480/6-1
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This way the validity problem T |= F for an arbitrary formula F has been
reduced to the decidable validity problem T |= H for an open formula H.
This result may have been seen as a fruitful step towards the ultimate goal
formulated by Hilbert. Unfortunately, Gödel’s incompleteness theorem made
clear that, in general, Herbrand’s result may be improved at most by finding
better enumerations of the set of Herbrand disjunctions. This led logicians
to a pessimistic estimation of the practical value of Herbrand’s result. For
example, in [30] just can be read: “However, this method has no practical
meaning . . . ”.

The development of automated theorem proving showed that this view
point is over-pessimistic. Though, in general, the set of Herbrand disjunc-
tions for a given formula is (only) enumerable, there is the hope that for
certain interesting formulas in a reasonable time may be found Herbrand
disjunctions H such that T |= H. Nevertheless, substantial work has been
necessary in order to improve both the representation of Herbrand disjunc-
tions and the search for an Herbrand disjunction satisfying (1).

In particular means for treating multiple copies of subformulas (so called
amplifications) and for a more goal oriented search for instances of (sub-)
formulas had to be developed. The matings [1] or matrix method [5, 7] are
the most direct, however computationally improved, algorithmic realizations
of Herbrand disjunctions. Further techniques like theory unification as well
as the more general form of unifying theory connections had to be developed
and integrated with the matings or matrix method (cf. [3, 26]) in order to
treat theories.

In the present paper we will illustrate those refinements of the method of
Herbrand disjunctions by a case study concerning translations of Jaśkowski’s
discussive logic D2 [19]. We discuss a translation working in two steps. A
first translation step returns a modal formula F ′ such that |=d F if and only
if |=S4 F ′ for a given D2-formula F . This first translation has been described
in [19]. According to [10, 13] formula F ′ may be translated into a first-order
formula F ′′ such that |=S4 F ′ if and only if T |= F ′′ for an appropriately
chosen first-order theory T . The theory T , which has to be considered, is
open. Thus, the target logic of our translation meets the requirements of
Herbrand’s theorem.

The sub-area of automated reasoning which is investigating methods for
proving theorems under theories is called hybrid reasoning. A hybrid rea-
soning system is usually constructed from cooperating foreground reasoner
and background reasoner. The foreground reasoner takes care of the gen-
eral logical structure of a formula to be proved. The background reasoner
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is consulted whenever the meaning of a built-in theory must be considered.
In [3, 26] has been formed a general framework for building in theories. For
a newer presentation and a more complete bibliography see [4]. Different to
[3, 26], which rely on syntactical representations of theories, [9] consideres
also theories given semntically, i.e. by classes of models.

While in [3, 9, 27] have been considered homogeneous built-in theories,
in the example descussed here, we have to take care of the internal structure
of the built-in theory. For the target logic of the translation of multi-modal
logics the built-in theory is combined from two sub-theories, one being a
definite theory without equality, and the other being an equational theory.
Reasoning within this equational sub-theory may ba reduced to associative
unification with unit. Analoguously, also reasoning in the second sub-theory
has a restricted form. Moreover, both sub-theories of the built-in theories
are related to different parts of formulas.

Another reason for considering hybrid theories are normal form transfor-
mations. Usually, before any proof search starts, formulas are transformed
to some normal form because the simpler the formulas to be proved are
the simpler the proof calculus may be designed. Let us consider the fol-
lowing sequence of normal form transformations. After transformation to
negation normal form anti-prenexing for treating quantifiers is used in order
to decrease, if possible, the range of quantifiers, which are to be eliminated
later by Skolemization. Next the structure preserving transformation to def-
initional normal form should be used. The value of those transformations
has been discussed and analysed in [6, 14, 15]. Skolemization introduces
new function symbols and eventually new axioms. The definitional normal
form transformation introduces new predicate symbols of new axioms. This
means, that instead of solving the validity problem T |= F a transformed
problem T ′ |= F ′ with some, in a certain sense, less complex formula F ′

and an, in general extended, built-in theory T ′ will be attacked. Theory T ′

therefore may be treated as a hybrid theory. As a final remark in favor of the
advised normal form transformations let us mention that human readable
proof presentations may be generated easier if structure preserving normal
form transformations has been used.

This paper is organized as follows. In Section 2 will be introduced neces-
sary general notions. Section 3.1 illustrates the use of Herbrand disjunctions.
The translation of formulas of a paraconsistent logic to modal logic S4 and
further to first-order logic and the resulting target calculus will be discussed
in Section 3.2. Section 4 is devoted to the presentation of a generic approach
to building in theories into theorem provers. The application of the general
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approach to reasoning under hybrid theories will be presented in Section 4.4.
Implementation issues are briefly described in Section 5.

Related work. The algebraic translation of multi-modal logic has been de-
veloped in [2, 10, 13]. An alternative translation of modal logic to first-order
logic, the relational one, has been described by Alan Frisch and Richard
Scherl as an instance of constraint reasoning [16]. Similar to the algebraic
translation as described in [13] is the functional translation due to Hans
Jürgen Ohlbach [25]. A general approach to building in theories into theo-
rem provers via theory connections has been proposed by Wolfgang Bibel.
In [6] this approach has been illustrated by the treatment of equality by
so-called eq-connections. The extension of resolution to theory resolution
is due to Mark Stickel. Many improvements of resolution have been shown
as special kinds of theory resolution in [32]. For the lifting to the full first-
order calculus see [3] or [26]. Another approach, considering theories given
by classes of models, has been presented by Hans-Jürgen Bürckert [9]. Our
approach carries over to that case if one considers a complete set for theory
connections of each model of the considered class. The case of constraint
reasoning may be seen also as a special case of reasoning in a hybrid theory
with one theory being the empty theory.

2. Preliminaries

In order to keep the paper self-contained we recall basic notions concerning
logic in general and theory reasoning in particular. We assume that the
reader is familiar with the basic notions of first-order logic in clause form (cf.
[21]). We consider clauses as disjunctions of conjunctions literals and we will
ask for the validity of those formulas in a theory. Though our presentation
is formulated for clause logic it may be carried over to full first-order logic.
A clause with at most (exactly) one positive literal will be called a Horn
(definite) clause. A definite clause consisting only of equational literals will
be called a conditional equation. A clause is represented as a multi-set of
literals. A matrix is a multi-set of clauses. Multi-Sets will be denoted as
sequences of their elements. A set of copies of clauses of a matrix M will be
called an amplification of M (see [22] for a more general definition of this
notion). Clauses will be abbreviated also by Γ , C, D etc. Γ1, Γ2 denotes the
union Γ1∪Γ2, whereas Γ,L denotes Γ ∪{L} etc. A clause L1, . . . , Ln means
the conjunction (L1 ∧ · · · ∧ Ln) of its elements. The meaning of a matrix
C1, . . . , Cn is the disjunction C1 ∨ · · · ∨ Cn.
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This paper will focus on a family of proof procedures that generate goal
driven a set of instances of clauses such that its validity in a given theory
may be proved by checking a simple sufficient criterion. In order to formu-
late this criterion we first of all need the notions of a path and of a spanning
theory mating. A (partial) path (in) through a matrix M is a multi-set con-
taining (at most) exactly one literal from each clause of M . Paths will be
abbreviated also by p or q. A set of partial paths in a matrix M is called a
mating in M . A partial path u in a matrix M is spanning a path p through
M if u ⊆ p. A mating U in a matrix M is spanning if for every path p

through M exists an element u ∈ U which is spanning p. If L is a positive
literal then L̄ denotes the literal ¬L. If L has the form ¬K then L̄ denotes
the literal K. If p is the path L1, . . . , Ln then p̄ denotes the clause L̄1, . . . ,
L̄n. And, vice versa, if Γ is the clause L1, . . . , Ln then p̄ denotes the path
L̄1, . . . , L̄n. The set of variables occurring in a term t, literal L, clause Γ or
path p will be denoted by Var(t), Var(L), Var(Γ ) or Var(p) respectively.

A substitution is a mapping from the set of variables into the set of terms
which is almost everywhere equal to the identity. The domain of a substitu-
tion σ is the set D(σ) = {X | σ(X) 6= X}. The set of variables introduced
by σ is the set I(σ) =

⋃

x∈D(σ) Var(σ(X)). If the variables X1, . . . ,Xn are
the elements of the domain of a substitution σ and the terms t1, . . . , tn are
the corresponding values then σ will be denoted by {X1 7→ t1, . . . ,Xn 7→ tn}.
A substitution σ may be extended canonically to a mapping from the set of
terms into the set of terms. This extension will be denoted by σ too. For
a set of variables V and substitutions σ and ρ we write σ =V ρ if for every
element X ∈ V holds σ(X) = ρ(X). In the previous equation the lower
index V may be omitted if V is the set of all variables. The composition σθ

of substitutions σ and θ is the substitution which assigns to every variable
X the term θ(σ(X)). A substitution σ is called idempotent if σ = σσ. A
substitution σ is idempotent iff D(σ) ∩ I(σ) = ∅. If M is the multi-set of
clauses C1, . . . , Cn then M ′ = C ′

1, . . . , C
′
k is a sub-matrix of M iff there is

a sequence of pairwise disjoint indices i1, . . . , ik s.t. C ′
l is a sub-multi-set of

Cil for each l with 1 ≤ l ≤ k. A set of matrices which is closed w.r.t. the
application of substitutions, forming amplifications and sub-matrices will be
called a query language. For a path p = L1, . . . , Ln and a query language
Q we will write p ∈ Q in order to abbreviate {{L1} , . . . , {Ln}} ∈ Q.

Let T be an open, i.e. quantifier-free, theory. A T -model is an interpre-
tation satisfying T . A query (a clause, a path, a literal) S is T -satisfiable
if there is a T -model satisfying S. It is T -unsatisfiable else. A query (a
clause, a path, a literal) S is T -valid if every T -model satisfies S. Let E
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be the theory of equality, i.e. the clause set consisting of clauses expressing
reflexivity, symmetry, transitivity and functional and predicative substitu-
tivity. Let T be an arbitrary theory. Then the set of predicate (function)
symbols occurring in the formulas of a theory T be denoted by P(T ) (F(Q)
respectively).

3. Two examples illustrating Herband disjunctions

In this section we discuss two examples in order to illustrate the use of
Herbrand disjunctions and possibilities of refinements.

The first example is more devoted to the introduction of Herbrand dis-
junctions.

The second example is taken from the paraconsistent logic D2. We use
this examples in order to illustrate automated reasoning in this logic. For
this purpose we use a two-step translation of this logic into first-order logic.
The first step is Jaśkowski’s [19] translation into the modal logic S4. The sec-
ond step is the so called algebraic translation [13]. The algebraic translation
of modal logics introduces new semantical items, possible worlds, following
Kripke’s approach to the definition of semantics for modal logics [20]. More-
over, so called transitions — semantical items of a further kind — are intro-
duced. Transitions allow to pass from one world to another. The features of
specific modal logics are expressed in terms of the target logic by first-order
theories. Those theories consist of certain sub-theories. Thus, they may be
considered as hybrid theories [28, 29]. The form of those theories allows
to use general techniques, which have been developed for reasoning under
first-order theories, for theorem proving in non-classical logics as well.

3.1. Theorem proving with Herbrand disjunctions

Given a theory T1 consisting of one axiom

(2) ∀U∀V ∀W (f(U, V ) ∧ f(V,W ) → g(U,W ))

we try to prove the following theorem F

(3) ∀X∃sf(X, s) → ∀d∃Y g(d, Y )

by use of Herbrand disjunctions. In a preparatory step formula (3) is trans-
formed to negation normal form and then to prenex form (4). Dropping
leading universal quantifiers we obtain formula (5). Each of the sequences
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of formulas (5), . . . , (8) has to be understood as disjunctions — so called
Herbrand disjunctions.

∀d∃X∃Y ∀s(¬f(X, s) ∨ g(d, Y ))(4)

∃X∃Y ∀s(¬f(X, s) ∨ g(d, Y ))(5)

¬f(d, s) ∨ g(d, Y ), ∃X∃Y ∀s′(¬f(X, s′) ∨ g(d, Y ))(6)

¬f(d, s) ∨ g(d, Y ), ¬f(s, s′) ∨ g(d, Y ), ∃X∃Y ∀s′′(¬f(X, s′′) ∨ g(d, Y ))(7)

¬f(d, s) ∨ g(d, Y ), ¬f(s, s′) ∨ g(d, Y ), ¬f(X, s′′) ∨ g(d, s′),

∃X∃Y ∀s(¬f(X, s′′′) ∨ g(d, Y ))
(8)

In particular, each of the Herbrand disjunctions (6), . . . , (8) is the so-called
direct derivative of its predecessor. Each direct derivative is obtained from
its predecessor by

1. choosing a quantified disjunct of the Herbrand disjunction,

2. then instantiating the existentially quantified variables of a maximal
quantifier prefix of the form ∃X1 . . . ∃Xn∀s1 . . . ∀sm by terms,

3. afterwards dropping the universal quantifiers of that quantifier prefix,
and, finally,

4. adding a new version of the disjunct which has been obtained by bound
renaming of universal quantifiers.

Thus, each direct derivative is equivalent to its predecessor. The sequence
(5), . . . , (8) represents a proof for (3). Indeed, the disjunction of under-
lined formulas in (8) is an obvious consequence of axiom (2). Therefore the
universal closure δ of the Herbrand disjunction δ in (8) is valid under T1.
Consequently, (3) is valid under T1.

In principle the method of Herbrand disjunctions could be used as a sys-
tematic method for searching proofs in predicate logic. Nevertheless, the
method suffers from sever redundancies. In the following those redundan-
cies and appropriate remedies will be discussed. The equations (9), . . . ,
(12) present a refined version of the derivation (4), . . . , (8) which has been
discussed before.

The first redundancy is introduced already in the first transformation
step. For the efficiency of the proof search it is important that quantifiers
have a possibly small range (cf. [14]). Therefore anti-prenexing should be
used instead of the transformation to prenex form. Formula (9) which is ob-
tained from formula (3) by transformation to negation normal form is already
in anti-prenex form. The next step, Skolemization, gives formula (10). Let
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us remark that, in order to keep the notation comparable with the approach
of Herbrand disjunctions, we use the positive (or affirmative) representa-
tion in opposition to the negative (or refutational) representation which is
widely used in automated theorem proving. Therefore each universal quan-
tifier is substituted by a Skolem-function depending on each variable bound
by an existential quantifier having the considered universal quantifier in its
scope.1 If the obtained formula is, in opposition to Formula (10), not yet
in disjunctive normal form, a further transformation is necessary. The dis-
junctive normal form is a disjunction of existentially closed conjunctions.
Transforming to this form it is important not to use the simple method re-
lying just on applying the de Morgan’s laws. This trivial method destroys
the formula structure and may blow up the formula size exponentially. Both
effects are undesired because of their disastrous implications for both proof
search and presentation (cf. [15]).

∃X∀s¬f(X, s) ∨ ∀d∃Y g(d, Y )(9)

∃X¬f(X, s(X)) ∨ ∃Y g(d, Y )(10)

¬f(X, s(X)) ∨ g(d, Y )(11)

(¬f(X, s(X)) ∨ ¬f(X ′, s(X ′) ∨ g(d, Y ))







X 7→ d,
X ′ 7→ s(d),
Y 7→ s(s(d))







(12)

Finally, existential quantifiers may be dropped (11). Formula (11) is not
T1-valid. But an analysis of the structure of T1 shows that two instances
of the first disjunct of Formula (10) might be helpful for completing the
proof. Indeed, a proof may be found after adding the instance ¬f(X, s(X))
and ¬f(X ′, s(X ′)) and applying the substitution {X 7→ d,X ′ 7→ s(d),
Y 7→ s(s(d))}. This way, essentially, the same proof argument has found
as before in (12). Now let us compare both approaches. First of all, let
us draw the reader’s attention to the fact that the proof search in the sec-
ond approach consists of only one step, i.e. trying new clause instances and
computing a unifier in (12). None of the three preparatory steps does con-
tain any search. The search itself is guided by the search for sets of literals
{¬f(X, s(X)),¬f(X ′, s(X ′)), g(d, Y )}, a so called theory-connection2, hav-
ing the following two properties:

1 By some abuse of notation we denote the introduced Skolem function by the same
identifier as the variable it substitutes.

2 Here a T1-connection.
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1. any two of their elements are connected by a disjunction and

2. their disjunction is valid after applying an appropriate substitution.

Moreover, this substitution may be computed in the present case by solving
the unification problem {X = d,X ′ = s(X), Y = s(X ′)}. For a wide class of
theories both the general form of the theory-connections and the unification
problems may be determined in a generic way.

3.2. Automated reasoning in para-consistent logic

In the present section we show how to translate the para-consistent logic D2

into a first-order logic. The first step of this translation uses just the defi-
nition of the discussive connectives as defined by Jaśkowski and his scholars
in terms of the modal system S4. The second step is the so-called algebraic
translation of the modal system S4 into first-order logic. For a source of para-
consistent logic the reader is referred to [11] and for a detailed presentation
of the algebraic translation of modal logics to [13]. Here we can illustrate
only basic features of the target logic of this translation. Let us consider
Formula (13) which is a tautology of Jaśkowski’s discussive logic D2.

(13) (((p →d q) ∧ (p →d (¬q))) →d (¬p))

According to the translation given by Jaśkowski [19], in order to prove this
sentence in D2, one has to prove that the modal formula (14) is valid in the
modal system S4. In order to be able to treat also multi-modal systems we
made a minor change, i.e. adding an index ‘a’ to the modalities.

(14) 3a(3a((3ap → q) ∧ (3ap → (¬q))) → (¬p))

Formula (14) may be transformed to negation normal form (15).

(15) 3a(2a((3ap ∧ ¬q) ∨ (3ap ∧ q)) ∨ ¬p)

Now, let us consider the translation of the modal system S4 into a first-order
theory. Modality 2a will be characterized by the axiom schemes (16) and
(17) within this theory. Let us remark that Φ denotes an arbitrary formula.

2aΦ → 2a2aΦ(16)

2aΦ → Φ(17)

The translation of formulas will be illustrated by the translation of Formula
(15) into Formula (18). In order to ease the comparison of the multi-modal
formula (18) and the first-order sentence in (18) the latter one has been
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written in a way emphasizing the logical structure. Modal operators, 2a and
3a, have been translated by restricted quantifiers, ∀α1:k(a,α1) and ∀α1:k(a,α1)

respectively. Moreover each predicate symbol has obtained an additional
argument, ε!α1!α2 for example.

(18)

∃γ:k(a,γ)(

∀α:k(a,α)(

(∃β:k(a,β)p(ε!γ!α!β) ∧ ¬q(ε!γ!α!β))

∨
(∃δ:k(a,δ)p(ε!γ!α!δ) ∧ q(ε!γ!α!δ))

)
∨
¬p(ε!γ)

)

First of all let us discuss the role of this additional argument. It represents
a possible world, which has been coded by a term. The term ε!α1 represents
a world, which is accessible from the initial world ε via the transition α1.
Formally this has been expressed by the infix operator !, which takes two
arguments, a world (here ε) and a possible transition (here α1), and returns
a world accessible from the given world via that transition. The operator !
associates to the left, therefore brackets will be omitted wherever possible.
Transitions can be combined by the associative binary operator ∗. Moreover,
there is a distinguished transition, which is denoted by 1. The operations ∗,
! and 1 form a monoid operating on the set of worlds, i.e. we have the equa-
tional theory T consisting of the axioms (19), . . . , (23) introduced below.

w!1 = w(19)

w!(α1 ∗ α2) = (w!α1)!α2(20)

(α1 ∗ α2) ∗ α3 = α1 ∗ (α2 ∗ α3)(21)

1 ∗ α = α(22)

α ∗ 1 = α(23)

Now let us consider the restricted quantifiers, which have been introduced
by the translation, in more detail. The restricted quantifier ∀α1:k(a,α1) is the
translation of the modal operator 2a. The sort information α1 : k(a, α1)
given by the restricted quantification of variable α1 just says that this vari-
able is related to the interpretation of the modality 2a. The term ε!α1!α2!α3

represents a world which may be accessed from world ε making use of three
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p(ε!γ1!sk(ε!γ1)!β),

p(ε!γ2!sk(ε!γ2)!δ),

¬p(ε!γ3),

¬q(ε!γ1!sk(ε!γ1)!β),

q(ε!γ2!sk(ε!γ2)!δ),

k(a, γ1),

k(a, γ2),

k(a, γ3)

k(a, β)

k(a, δ)

1

�
�

�
�

2

�
�

�
�

3

�
�

�
�

4

�
�

�
� 5

�
�

�
�

6

�
�

�
� 7

�
�

�
�

8

�
�

�
�

Figure 1. The matrix form of the translated D2-formula

transitions α1, α2 and α3, one after the other. The properties of the modal-
ity will be expressed by the clauses (26) and (27) given below. After this
preparation we are ready to consider the translation of Formula (18) into
clause normal form (24).

(24)

∃γ ¬k(a, sk(ε!γ)) ∧ k(a, γ)
∨
∃γ ∃ β p(ε!γ!sk(ε!γ)!β) ∧ ¬q(ε!γ!sk(ε!γ)!β) ∧ k(a, β) ∧ k(a, γ)
∨
∃γ ∃δ p(ε!γ!sk(ε!γ)!δ) ∧ q(ε!γ!sk(ε!γ)!δ) ∧ k(a, δ) ∧ k(a, γ)
∨
∃γ ¬p(ε!γ) ∧ k(a, γ)

In the first disjunct of formulas (24) occurs only the predicate symbol
k. Therefore we decide to consider the negation of this clause as part of the
built-in theory (25) . . . (27) rather than this clause as a part of the formula
to be proven. In Figure 1 we write the instantiated part of a Herbrand dis-
junction of formula (24) as a matrix with the literals of each clause forming a
row. Each clause is interpreted as the conjunction of its literals, whereas the
clauses are connected by disjunction. The 3 clauses in Figure 1 correspond
to the three main sub-formulas of Formula (18). The matrix in Figure 1
has to be proved under the union of the theories T , consisting of Formulas
(19), . . . , (23), and ℜ, consisting of formulas (25), . . . , (27) as axioms. Let
us recall, that the properties (16), . . . , (17) of the modal system S4, which
characterizes the modality 2a, are expressed by clauses (26), . . . , (27) in
terms of the target logic. Clause (25) characterizes the properties of the
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Instantiated ℜ-connection Used axioms

k(a, 1), k(a, 1), k(a, 1), k(a, 1) (27)
k(a, 1 ∗ sk(ε!1) ∗ 1) (25), (26), (27)

Table 1. Solving constraints of the matrix in Figure 1

Skolem function sk which had to be introduced for the universal quantifier
∀α:k(a,α). For details see [13].

¬k(a, α) ∨ k(a, sk(ε!α))(25)

¬k(a, α1) ∨ ¬k(a, α2) ∨ k(a, α1 ∗ α2)(26)

k(a, 1)(27)

The proof task in the target logic is to show that the matrix in Figure 1 is
valid in the union of the theories T and ℜ. The last mentioned matrix has
the following syntactic properties.

1. Equality does not occur as a predicate symbol in the matrix.

2. Sort literals (i.g. k(a, β)) are positive.

From the first observation we deduce that all theory connections within
the boxed part of the matrix in Figure 1 are binary connections of the form
p(t),¬ p(s) where the tuples of terms t and s are component-wise T -unifiable.
The second syntactic property and the form of theory ℜ make sure that sort
literals occurring in the matrix in Figure 1 may be elements only of unary
ℜ-connections.

Now we can discuss the remaining details of Figure 1. Three T -connec-
tions are indicated by arcs in the boxed part. They may be simultaneously
T -unified by the substitution

(28) {γ1, γ2, β, δ 7→ 1, γ3 7→ 1 ∗ sk(ε!1) ∗ 1}

It is easy to verify that every sort literal in the dashed boxed sub-matrix
in Figure 1 is an ℜ-connection. Substitution (28) is also a simultaneous ℜ-
unifier for these ℜ-connections. Table 1 gives for each of those ℜ-connections
the axioms which have to be used for proving this statement. The mentioned
theory connections may be found subsequently by theory inference steps of
the form given in Example 4.5. An appropriate calculus will be introduced

© 2001 by Nicolaus Copernicus University



On the practical value of Herbrand disjunctions 165

in Section 4.3. The reader may have observed that none of the equational
axioms (19), . . . , (23) has been mentioned in Table 1. Indeed, the following
proposition holds.

Proposition 3.1. Suppose that the equation t = s is valid in the equational
theory T . Then for the literal k(a, s) (and analogously for k(b, s)) holds that
k(a, s) is ℜ-valid iff k(a, t) is ℜ-valid.

From this observation follows that for proving the ℜ-validity of a literal
k(a, t) we don’t need to apply equational axioms. Speaking more opera-
tionally, when inferencing within the constraint theory ℜ there is no need to
apply T -unification but only syntactical unification. This is a useful feature
of the target logic of multi-modal logic. Assumption (1) of Proposition 4.4
is related to this feature.

4. A generic approach to theory reasoning

In the present section we introduce a formal framework for constructing com-
plete total theory reasoning calculi for open, i.e. quantifier free, theories. A
complete theory reasoning calculus for an open theory needs the following
key capabilities: (1) finding theory connections, (2) computing unifiers for
theory connections, and (3) managing amplifications and representations of
sets of paths which are not spanned by a currently found theory mating. The
ingredients for constructing a complete theory reasoning calculus — a com-
plete set of theory connections (Definition 4.3) with a solvable unification
problem (Definition 4.4) and a calculus managing amplifications of matrices
and keeping track of unsolved goals — will be introduced in the subsections
4.1, 4.2 and 4.3 respectively. Implementation issues are discussed in Sec-
tion 5. In the present section we formalize what it means to have for a
given theory “enough” theory connections in order to prove all theory valid
matrices which belong to a given query language. We formulate a Herbrand
theorem by use of this notion (cf. Subsection 4.1). The notion of a complete
set of unifiers for a theory connection generalizes the notion of complete set
of theory unifiers of a pair of terms.

4.1. Complete sets of theory connections

In order to formulate sufficient conditions for the completeness of a theory
reasoning calculus we introduce the notion of a set of theory connections
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which is complete with respect to a given query language. For an open the-
ory first-order T , given as a set of clauses, we formalize (see Definition 4.3),
what it means, to have “enough” theory connections in order to prove all
theory valid matrices, which belong to a given query language.

Definition 4.1 (T -complementary, T -unifier). A path u is called T -com-
plementary if and only if the universal closure of the disjunction of the
elements of u, ∀̄

(
∨

L∈u L
)

, is T -valid. A substitution σ is a T -unifier of u

if and only if σ (u) is T -complementary.

Remark 4.1. The T -complementarity of a path u has been defined via the
T -validity of the universal closure of the disjunction of the elements of u ac-
cording to the positive representation which has been chosen in the present
paper. In the negative representation T -complementarity of a path u we
would have been defined via the T -unsatisfiability of the conjunction of the
elements of u. The remaining notions and results may be defined indepen-
dently on the chosen (positive or negative) representation.

Definition 4.2 (Connection, T -Connection)). Let T be a theory, M a ma-
trix, U a set of multi-sets of literals and Q a query language. Any partial
path u in M will be called a T -connection in M if there exists a T -unifier
for u. If T is the empty theory then the prefix T may be omitted.

Definition 4.3 (Complete set of theory connections). Let T be a theory,
M a matrix, U a set of T -connections and Q a query language.

1. Any set of T -connections in a matrix M , which are elements of U , is
called a U -mating in M .

2. A decidable set U of T -connections which is closed w.r.t. application of
substitutions will be called T -complete w.r.t. Q if

(a) for each T -complementary ground path p ∈ Q exists u ∈ U such that
u ⊆ p and

(b) for each T -complementary ground path of the form σ (u) ∈ U such
that u ∈ Q holds u ∈ U .

Example 4.1. In the simplified version of equational reasoning, discussed
in Section 3.2, the equality symbol does not occur in the query language.
The following characterization may be specialized, setting n = 1, to the case
studied in Section 3.2. In terms of Definition 4.3 the set UT of connections of
the form p(t1, . . . , tn),¬p(s1, . . . , sn) for simultaneously pairwise T -unifiable
terms ti and si is complete w.r.t. to the query language QT .
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Example 4.2. Let us now consider the query language Qℜ discussed in Sub-
section 3.2. It contains only positive clauses with a single predicate symbol
k and the function symbols as in Example 4.1. The theory ℜ is formed
from the definite clauses (25) and (27) given in Subsection 3.2. As an exam-
ple consider the positive clause k(a, γ2), k(a, δ) which occurs as a fragment
of the second clause in Figure 1. Each literal of this clause becomes ℜ-
valid after applying the substitution {γ2 7→ 1, δ 7→ 1} . Since ℜ is definite all
ℜ-connections in queries from Qℜ are units. Thus, the set Uℜ of positive
literals with predicate symbol k having a ℜ-unifier is a set of ℜ-connections
complete with respect to the query language Qℜ.

The less literals a connection consists of the more paths it may span.
Therefore, we are interested to find theory connections which are minimal
with respect to set-theoretical inclusion. Every extra literal may cause that
additional sub-goals have to be solved. The following proposition makes
sure that a complete set of theory connections contains also all minimal
connections.

Proposition 4.1 (Properties of complete sets of theory connections).
Let the set of T -connections U be T -complete with respect to the query lan-
guage Q. Let u be a path such that u ∈ Q. If u is minimal T -complementary
then u ∈ U .

Having a complete set of theory connections a Herbrand theorem may be
proved. The following version of Herbrand’s theorem applies to the discussed
examples 4.1 and 4.2.

Theorem 4.1 (Herbrand’s theorem). Let T be an open theory, Q a query
language, U a set of T -connections which is complete w.r.t. to Q. Then
for every T -valid matrix M ∈ Q there exists an amplification M ′ of M , a
U -mating U which is spanning in M ′ and a substitution σ such that σ (u)
is T -complementary for each u ∈ U .

4.2. The unification problem for sets of theory connections

The Herbrand theorem gives neither a hint how to find the substitution σ

nor how to decide the existence of σ. In order to obtain a proof calculus for
a given complete set of T -connections U we also need to be able to compute
or to represent for every u ∈ U all substitutions σ such that σ (u) is T -valid.
This will be formulated in the following definition.
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Definition 4.4 (more general T -unifier, T -unification problem in U).
Let U be a set of multi-sets of literals.

(1) Let ̺ and σ be T -unifiers of a path u ∈ U such that D(̺),D(σ) ⊆
Var(u). Then ̺ is called more general than σ if there exists η such that
̺η =Var(u) σ. This will be denoted by ̺ ≤ σ.

(2) A set S of T -unifiers of a multi-set u ∈ U will be called complete if for
each T -unifier σ of u exists a substitution ̺ ∈ S such that ̺ ≤ σ.

(3) We say that the T -unification problem in U is solvable if

(a) for every u ∈ U there exists an enumerable complete set Su of
T -unifiers for u and

(b) for a given u ∈ U it is decidable whether Su 6= ∅.

(4) A substitution σ is called a simultaneous T -unifier of a set U of multi-
sets of literals if and only if σ (u) is T -complementary for every u ∈ U .

Example 4.3. Let Uupp
T

be the subset of T -connections defined in Exam-
ple 4.1 obeying the following, so called, unique prefix property (cf. [12]). A
formula or a term has the unique prefix property if the binary symbol ∗
does not occur and for each variable α introduced for a modal operator
holds that it occurs always in the same left context. Formulas obtained by
the algebraic translation have this property. This corresponds to the fact
that each variable introduced for a modal operator occurs always in the
same modal context. For those restricted T -unification problems exists an
efficient unification algorithm [12].

In a connection calculus we have to find a simultaneous T -unifier of
a spanning mating of T -connections incrementally. The solvability of the
unification problem in a set of theory connections U implies the solvability
of the simultaneous unification problem in U .

Proposition 4.2. Suppose that the T -unification problem is solvable for the
set of T -connections U and that Su denotes the complete set of T -unifiers for
each u ∈ U . Then every simultaneous T -unifier θ of a set of T -connections
U ⊆ U can be approximated incrementally. Indeed, for each enumera-
tion u1, . . . , un of the elements of U may be constructed sequences {σi}

n
i=1,

{ηi}
n
i=0, {̺i}

n
i=0 such that

(1) η0 = θ and ̺0 = { } and

(2) for every i, 1 ≤ i ≤ n

(a) σi ∈ S̺i−1(ui),
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(b) σiηi = ηi−1 and
(c) ̺i = ̺i−1σi.

(3) ̺nηn = θ and

Example 4.4. Let θ be the simultaneous T -unifier (28) of the 8 connections
(three binary and 5 unary) indicated in Fig. 1. That 8 connections may be
found in 8 deduction steps. Those inferences determine the unifiers σ1, . . . ,
σ8 which are subsequent approximations of the simultaneous T -unifier of the
three connections. We have θ = σ1σ2σ3σ4σ5σ6σ7σ8 with

(29)

σ1 = {γ3 7→ γ1 ∗ sk(ε!γ1) ∗ β} σ4 = {γ2 7→ 1}

σ2 = {γ1 7→ γ2, β 7→ δ} σ5 = {δ 7→ 1}

σ3 = σ6 = σ7 = σ8 = {}

4.3. The pool calculus with built-in theory

In this section we introduce a generalization of the pool calculus [24] towards
theory reasoning. For an amplification M ′ of the matrix M to be proved
a pool of so-called hooks represents the set of paths through M ′ which are
not spanned by the set of theory connections which have been found up to
the current proof state. Each hook, denoted by (p ⊥ Γ ), and consisting of
a partial path p in M ′ and a partial clause Γ in M ′, represents all paths
through M ′ continuing p via some literal of Γ . Figure 2 shows a three-step
derivation under the built-in theory T given by the equations (19), . . . , (23).
In each deduction step a T -connection is detected and a most general T -
unifier has to be computed. The T -connections are drawn as arcs. The final
proof state is the rightmost in the second row in Figure 2. The mating U

formed by those T -connections is spanning that matrix.
Let us consider the derivation in Figure 2 in more detail. A diagonal

arrow pointing to the current goal appears in every but the lower rightmost
matrix. The current path p is given by the set of boxed literals. In each
of the inference steps a T -connection is found which contains the current
goal L. In the last inference the found connection is subset of p ∪ {L}.
This so-called reduction step does not generate additional goals. This is
not the case in the first two inference steps, so-called extension steps. The
first extension step solves the initial goal ¬p(ε!γ3) with the substitution σ1

but opens a new goal ¬q(ε!γ1!sk(ε!γ1)!β) in the second clause. This goal is
solved by extension step 2 extending the current substitution to substitution
σ2. Extension step 2 in turn opens the goal p(ε!γ2!sk(ε!γ2)!δ) in the third
clause. The latter is solved by the last inference.
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p(ε!γ1!sk(ε!γ1)!β),

p(ε!γ2!sk(ε!γ2)!δ),

¬p(ε!γ3)

¬q(ε!γ1!sk(ε!γ1)!β) ⊢

q(ε!γ2!sk(ε!γ2)!δ)

ր

p(ε!γ1!sk(ε!γ1)!β),

p(ε!γ2!sk(ε!γ2)!δ),

¬p(ε!γ3)

σ1 = {γ3 7→ γ1 ∗ sk(ε!γ1) ∗ β}

¬q(ε!γ1!sk(ε!γ1)!β) ⊢

q(ε!γ2!sk(ε!γ2)!δ)

1

�
�

�
�

ր

p(ε!γ1!sk(ε!γ1)!β),

p(ε!γ2!sk(ε!γ2)!δ),

¬p(ε!γ3)

σ2 =







γ3 7→ γ2 ∗ sk(ε!γ2) ∗ δ,

γ1 7→ γ2,

β 7→ δ







¬q(ε!γ1!sk(ε!γ1)!β)

q(ε!γ2!sk(ε!γ2)!δ)

1

�
�

�
�

2

�
�

�
�

ր

⊢ p(ε!γ1!sk(ε!γ1)!β),

p(ε!γ2!sk(ε!γ2)!δ),

¬p(ε!γ3)

σ3 =







γ3 7→ γ2 ∗ sk(ε!γ2) ∗ δ,

γ1 7→ γ2,

β 7→ δ







¬q(ε!γ1!sk(ε!γ1)!β)

q(ε!γ2!sk(ε!γ2)!δ)

1

�
�

�
�

2

�
�

�
�

3

�
�

�
�

Figure 2. A Sample Deduction
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Now we look at the general case. In order to describe a state of the
derivation we have to represent the set of complete paths which still have to
be considered. For this purpose we use hooks (p ⊥ Γ ). A hook represents
all those paths which continue the path fragment p via one of the literals
of the clause fragment Γ . We use the sign ⊥ in order to indicate that the
partial path p and the clause Γ are in a sense orthogonal. The elements of Γ

are called goals. The current goal of the hook has to be solved by applying
an inference rule. Inference rules describe how new hooks are generated from
a given hook. A derivation starts with an initial hook which has the form
(∅ ⊥ Γ ) where Γ contains all literals of a given goal clause. Hooks of the
form (p ⊥ ∅) are said to be solved. Solved hooks need not to be considered
any more. A derivation is complete if no more unsolved hooks are left. For
more details see also [24], [27] or [4].

Definition 4.5 (Pools, hooks). A hook for a matrix M is a pair (p, Γ ) where
p is a partial path in an amplification M ′ of M and Γ is a sub-clause of a
clause Γ ′ ∈ M ′ such that p ∩ Γ = ∅. The hook (p, Γ ) will be denoted by
(p ⊥ Γ ). The partial path p is called the current path. The elements of Γ

are called goals. The set of paths represented by the hook (p ⊥ Γ ) is the
set Paths(p ⊥ Γ ) = {p′ | ∃L(p ∪ {L} ⊂ p′, p′ ∩ Γ = {L}), p′ is a path through
M ′}. A hook (p ⊥ ∅) will be called a solved hook, and a hook of the form
(∅ ⊥ Γ ) is called an initial hook.

An inference step chooses a hook, removes it from the pool, and even-
tually produces some new hooks. The rules of a calculus describe how to
construct new hooks from a chosen hook.

Definition 4.6 (T -connection inference). Let U be a complete set of
T -connections and M a matrix. A T -connection inference is an inference
rule of the form

(p ⊥ Γ0, L0) Γ1 ∪ {L1} , . . . , Γn ∪ {Ln}

(p ⊥ Γ0), (p, L0 ⊥ Γ1), . . . , (p, L0, . . . , Ln−1 ⊥ Γn) σ

where (1) (p ⊥ Γ0, L0) is a hook, called the chosen hook, (2) if 0 < n

then the clauses Γ1 ∪ {L1}, . . . , Γn ∪ {Ln} are copies of clauses from M ,
called the extension clauses, (3) σ is a substitution, (4) the hooks (p ⊥ Γ0),
(p, L0 ⊥ Γ1), . . . , (p, L0, . . . , Ln−1 ⊥ Γn) are called new hooks and (5)
there exists a sub-path q of p such that u ∈ U and σ (u) is T -complementary
for the partial path u = q∪{L0, . . . , Ln}. A T -connection inference is called
an extension step if n 6= 0 and a reduction step else.
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Example 4.5. Let us return to the sample derivation in Figure 2. In that
example an equational theory T has been assumed which contains the equa-
tion (ε!α)!β = ε!(α ∗ β). Let U be the set of all unordered pairs of literals
{p(t1, . . . , tn),¬ p(t′1, . . . , t

′
n)} such that for each i with 1 ≤ i ≤ n the terms

ti and t′i are T -unifiable. A theory extension is an inference rule of the form

(p ⊥ L0, Γ0) L1, Γ1

(p ⊥ Γ0), (p, L0 ⊥ Γ1)
σ

where (1) L1, Γ1 is a copy of a clause from M , called the extension clause
and (2) for u = {L0, L1} holds u ∈ U and σ (u) is T -complementary. A
theory reduction rule has the form

(p ⊥ L0, Γ0)
(p ⊥ Γ0)

σ

where for some literal L1 ∈ p and u = {L0, L1} holds u ∈ U and σ (u) is
theory complementary.

Definition 4.7 (Rule application). A rule

h Γ1, . . . , Γn

H
σ

may be applied to a pool P if h ∈ P . The new pool is obtained from P

by removing h, then adjoining those hooks from H which are not solved
and finally applying the substitution σ to the resulting pool. The clause
copies used in an inference within a derivation must have always a set of
new variables, i.e. those not occurring already in the pool. Moreover if
u ∈ U is the T -connection chosen in the considered rule application then the
variables from Var(σ) \ Var (u) must not occur in P .

An initial pool in a derivation consists of a single initial hook. Now a
derivation may be defined as a sequence of rule applications which starts
from an initial pool. A derivation is called ground if the unifier in every
T -connection step is empty. A derivation is successful if its last element is
the empty pool. The calculus is sound, because in every state of a derivation
the pool represents all paths, such that there still have to be found theory
connections spanning them.

Proposition 4.3 (Soundness). The theory connection calculus is sound.
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The completeness proof consists of the steps Herbrand theorem, ground
completeness and lifting lemma. The Herbrand theorem (4.1) and the lifting
lemma rely on the completeness of a given set of theory connections U and
the solvability of the theory unification problem in U . The proof of the
ground completeness relies on the properties of minimal spanning matings.
The following result may be found already in [27].

Theorem 4.2 (General Completeness theorem). Suppose that for a theory
T and a query language Q there is given a decidable set U of T -connections
which is T -complete w.r.t. Q and the T -unification problem in U is
solvable. Then for every T -valid query from Q exists a clause Γ ∈ Q and
a successful derivation starting from the initial pool {( ⊥ Γ )} such that
in each inference according to Definition 4.6 for the chosen connection u

holds u ∈ U and the chosen T -unifier σ is an element of the complete set of
T -unifiers Su for u.

4.4. Hybrid theories

In Section 3 we have discussed the translation of the paraconsistent logic D2
to a first-order theory via the modal logic S4. This translation justifies the
treatment of the background reasoner of a hybrid reasoner as a hybrid system
itself. Let us now forge precise notions which enable us to construct a T ∪ℜ-
reasoner from a T -reasoner and a ℜ-reasoner. A formula will be considered
as consisting of a T -layer and an ℜ-layer. The intended T ∪ ℜ-reasoner
should try to find a UT -connection if the current goal is in the T -layer and a
Uℜ-connection if the current goal is in the ℜ-layer. We formulate sufficient
conditions such that UT ∪UR is a complete set of T ∪ℜ-connections for Q if so
are UT for QT and UR for Qℜ. If, moreover, the theory unification problems
in both UT and UR do not interfere, we just can use the unification algorithms
for the connections belonging to one of both layers without change.

Definition 4.8. Let a theory be given by its sub-theories T and ℜ which
are formulated within the signatures Σ and ∆ respectively. Then we say
that T and ℜ form a hybrid theory in the union Σ ∪ ∆ of both signatures.

Definition 4.9. Let the theories T and ℜ form a hybrid theory in the union
Σ ∪ ∆ of their signatures and let Q be a query language formulated in a
signature which contains Σ ∪ ∆.

Every clause C in a matrix M ∈ Q contains then two sub-clauses CT

and Cℜ consisting of literals L expressed in signature Σ (respectively L′
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expressed in signature ∆). The set of nonempty sub-clauses CT of M will
be called the T -layer of M . Analogously will be defined the ℜ-layer of M .
By QT (analogously Qℜ) will be denoted the set of all matrices being the
T -layer (respectively the ℜ-layer) of a query from Q. QT (analogously Qℜ)
will be called the T -layer (respectively the ℜ-layer) of Q. If for a matrix
M ∈ Q every of its clauses is the union of its T - and ℜ-layers then M will
be called covered by its T - and ℜ-layers. If every matrix M ∈ Q is covered
by its T - and ℜ-layers then query language Q is said to be covered by its T -
and ℜ-layers.

Example 4.6. In the example in Figure 1 the signatures Σ of the T -layer
and ∆ of the ℜ-layer share the function symbols !, ε, ∗, sk and a. Σ con-
tains p and q as the only predicate symbols, ∆ contains k and the equality
symbol =. The target language of the algebraic translation of multi-modal
logic is covered by its T - and ℜ-layers. Since the sets of predicate symbols
of the T -layer and the ℜ-layer are disjoint, for each literal L the sets of T -
and of ℜ-connections L might belong to are disjoint.

Definition 4.10. Let T and ℜ form a hybrid theory in the union Σ ∪∆ of
signatures. Let Q be a query language formulated in a signature containing
both signatures Σ and ∆. Moreover, let UT and Uℜ be sets of T -connections
and of ℜ-connections. We say that UT and Uℜ are separated w.r.t. Q if and
only if there does not exist connections u ∈ UT and u′ ∈ Uℜ with ∅ 6= u∩u′.

The following proposition 4.4 gives sufficient criteria for the theory com-
pleteness of the union of sets of theory connections that are theory complete
with respect to the constituent sub-theories of a hybrid theory. The case of
the target logic of the multi-modal logic will be covered by Proposition 4.4.

Definition 4.11. Let M be a set of instances of clauses and U a mating in
M . For every literal L in M we define the set RL of clauses reachable from
L via U as the least set being closed with respect to the following condition:
If there exists a connection u ∈ U such that one of the literals of u is L or
a literal in a clause being element of RL then also any clause containing a
literal of u different from L belongs to RL.

Proposition 4.4. Let theories T and ℜ be expressed in the signatures Σ

and ∆ respectively form a hybrid theory such that T ∪ℜ is consistent. The
query language Q is formulated in the union Σ∪∆ of signatures. Moreover
suppose that:
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(1) The sets of T -connections UT and of ℜ-connections Uℜ are complete
w.r.t. QT and Qℜ respectively.

(2) In Q equality literals occur only negative.

(3) In both theories positive equality literals may occur only within condi-
tional equations.

(4) The sets of predicate symbols occurring in T ∪ QT and ℜ ∪ Qℜ are
disjoint.

(5) If equality occurs in T ∪ℜ then let T1 be that of the sub-theories T and
ℜ that does not contain equality and U1 be the set of theory connections
for that sub-theory. Moreover let E be the set of equational axioms in
T ∪ ℜ. For every u ∈ U1 and substitution σ holds E ∪ T1 |= σ (

∨

ū) if
and only if T1 |= σ (

∨

ū).

Then the sets of T -connections UT and ℜ-connections Uℜ are separated
with respect to Q and UT ∪ Uℜ is T ,ℜ-complete with respect to Q.

Proof. Let us suppose that theories T and ℜ, signatures Σ and ∆, query
language Q and the sets of T -connections UT and of ℜ-connections Uℜ

satisfy the assumptions of the proposition. In order to show that UT and
Uℜ are separated with respect to Q it is sufficient to observe that the sets
of predicate symbols occurring in T ∪QT and ℜ∪Qℜ are disjoint. In order
to show that UT ∪ Uℜ is T ,ℜ-complete with respect to Q we show first of
all that UT ∪ Uℜ has property (2.1) formulated in Definition 4.3. Let p be
a T ,ℜ-complementary ground path. We have to show that there exists a
sub-path such that u ∈ UT ∪ Uℜ. We consider p as a set of unit clauses. By
the compactness theorem for first-order logic there exists a finite set M of
instances of clauses of T and of ℜ and a minimal mating U spanning M ∪ p.
Let u be the multi-set of all literals of p which are element of a connection
in U . Then u is not empty because of the consistency of T ∪ℜ. Because the
sets of predicate symbols occurring in T ∪QT and ℜ∪Qℜ are disjoint either
for every connection u′ ∈ U holds u ∈ QΣ or for every connection u′ ∈ U

holds u ∈ Q∆. Therefore, u is either element of QT or of Qℜ. If u ∈ QT (the
case u ∈ Qℜ may be treated analogously) then there exists u′′ ∈ UT such
that u′′ ⊆ u, and therefore u′′ ⊆ p, because UT is T -complete with respect to
QT . Both UT and Uℜ satisfy condition (2.2) of Definition 4.3. Therefore also
UT ∪ Uℜ has this property.

Example 4.7. Let us observe that in a matrix, which belongs to the target
language of the algebraic translation of multi-modal logic, theory connections
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either are in the non-sort part, i.e. those discussed in Example 4.1, or in
the sort part, i.e. those discussed in Example 4.2. This is obvious because
both parts of the hybrid theory are expressed by use of disjoint sub-sets
of predicate symbols and equality does not occur in the query language.
Therefore, in order to obtain a complete set of theory connections for the
hybrid theory consisting of T and ℜ it is sufficient to take just the union of
the complete sets of theory connections UT and Uℜ.

Now we discuss briefly the unification problem in sets of hybrid theory
connections. We restrict our attention to the case that for given theories T
and ℜ a complete set of theory connections is given by the union of sets of
theory connections that are complete with respect to the respective theories.
What we have in mind is that unification of a theory connection u is either
T -unification if u is a T -connection or ℜ-unification otherwise. This leads
to the notion of non-interfering unification problems.

Definition 4.12. Let Uℜ and UT be sets of theory connections for the
components of a hybrid theory T ,ℜ. We say that the unification problems
in Uℜ and UT do not interfere if and only if

(1) For every u ∈ UT and for every substitution σ holds: σ is a T -unifier of
u if and only if σ is T ,ℜ-unifier of u, and

(2) for every u ∈ Uℜ and for every substitution σ holds: σ is a ℜ-unifier of
u if and only if σ is T ,ℜ-unifier of u.

Let UT ∪Uℜ be the set of theory connections discussed in Section 3.2 for
the target logic of the algebraic translation of multi-modal logic. Then the
unification problems in UT and Uℜ do not interfere.

Proposition 4.5. Let theories T and ℜ, which are expressed in the sig-
natures Σ and ∆ respectively, form a hybrid theory, such that T ∪ ℜ is
consistent. The query language Q is formulated in the union Σ ∪ ∆ of sig-
natures. Moreover suppose that the assumptions (1)–(5) of Proposition 4.4
are satisfied. Then the unification problems in UT and Uℜ do not interfere.

Proof. In the non-trivial direction of the equivalence to be proved we have
to show that every T ∪ ℜ-unifier of a T -connection u ∈ UT is a T -unifier of
u and that every T ∪ ℜ-unifier of a ℜ-connection u ∈ Uℜ is a ℜ-unifier of
u. The latter claim is satisfied because T and ℜ have no common predicate
symbols and ℜ does not contain the equality sign. The former claim follows
from assumption (5).
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Now a completeness theorem for hybrid theories may be proved.

Theorem 4.3 (Completeness theorem for hybrid theories). Let Q be a
query language expressed in a signature containing Σ and ∆. Moreover,
let Qℜ and QT be the ℜ-layer and T -layer of Q respectively. Let Uℜ and
UT be complete sets of ℜ-connections and T -connections which satisfy the
assumptions of Proposition 4.4. Then for every T ,ℜ-valid query M ∈ Q
exists a clause Γ ∈ M and a successful derivation starting from the initial
pool {( ⊥ Γ )} such that in each inference according to Definition 4.6 for the
chosen connection u holds either u ∈ Uℜ or u ∈ UT and for the chosen theory
unifier σ ∈ Su, with Su being the set of T -unifiers or, respectively, ℜ-unifiers.

Proof. Due to Proposition 4.4 the set of T ,ℜ-connections Uℜ∪UT is T ,ℜ-
complete w.r.t. query language Q. Due to Proposition 4.5 the unification
problem in Uℜ ∪ UT is solvable and applying the T -unification procedure to
UT -connections and the ℜ-unification procedure to Uℜ-connections provides
a solution to the Uℜ∪UT -unification problem. Thus the assumptions of The-
orem 4.2 are satisfied and the calculus for the hybrid theory is complete.

Let UT and Uℜ be the set of theory connections discussed in Section 3.2
for the target logic of the algebraic translation of multi-modal logic. Then
we obtain a complete calculi instantiating the theory pool calculus (cf. Sec-
tion 4.3) as a corollary of Theorem 4.3.

5. Concerning implementation

A prover for multi-modal logic has been implemented by a joint effort of re-
search groups in Leipzig and Caen. We used the calculi description interface
CaPrI of the PTTP-prover ProCom [23]. The algebraic translation of Fran-
coise Debart and Patrice Enjalbert from multi-modal logic to a language of
constrained clauses has been implemented by Zoltán Rigó [31]. The trans-
lation generates a constraint theory that provides information about the
interaction between modalities, the properties of the occurring modalities
and the dependencies introduced by Skolemization. For reasoning in the
non-constraint part of a matrix being element of the target language an A1-
unification algorithm due to Francoise Debart and Patrice Enjalbert [12] is
used. The algorithm has been tuned for this application. The used imple-
mentation is due to Gilbert Boyreau [8]. ProCom and his interface has been
implemented by Gerd Neugebauer. He also integrated constraint reasoning
into ProCom.
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6. Conclusion

In the present paper we examined how to develop applicable proof procedures
from the rather theoretical concept of Herbrand disjunctions. The presented
approach has been illustrated by target logics obtained from a certain trans-
lation of the paraconsistent logic D2 into first-order theories. The first step
of the translation is Jaśkowski’s [19] translation into the modal logic S4. The
second step is the so called algebraic translation [13]. To the target of this
translation we applied a general framework which allows to build in theories
into provers which are based on the connection method. For this purpose
we introduced the notion of a hybrid theory. We obtained a completeness
result for a connection method based calculus dealing with hybrid theories.
A brief overview about an implementation has been given.
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[31] Z. Rigó. Untersuchungen zum automatischen Beweisen in Modallogiken. Mas-
ter’s thesis, Universität Leipzig, 1995.

[32] M. Stickel. Automated deduction by theory resolution. J. of Automated Rea-
soning 4(1):333–356, 1985.

Uwe Petermann

Leipzig University of Applied Sciences
Dept. of Computer Sciences
Postfach 300066
D-04251 Leipzig,Germany
uwe@imn.htwk-leipzig.de

© 2001 by Nicolaus Copernicus University




