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TWO NEW STRATEGIES FOR

INCONSISTENCY-ADAPTIVE LOGICS

Abstract. In this paper I present two new strategies for inconsistency-
adaptive logics: the reliable sufficient information strategy of ACLuN3 and
the minimally abnormal sufficient information strategy of ACLuN4. I give
proof theory and semantics for both ACLuN3 and ACLuN4. I also com-
pare them with the well-known inconsistency-adaptive logics ACLuN1 and
ACLuN2.

1. Introduction

Inconsistency-adaptive logics are a special brand of paraconsistent logics,
and were developed by Diderik Batens around 1980.1 The best studied
inconsistency-adaptive logics are Batens’ ACLuN1 and ACLuN2 (see es-
pecially [5]). Loosely speaking, they ‘oscillate’ between a lower limit logic,
the paraconsistent CLuN, and an upper limit logic, Classical Logic (CL):
they localize the inconsistencies of a set of premises Γ , safeguard Γ for
triviality by preventing specific rules of CL being applied ‘in the neighbour-
hood of inconsistencies’, but behave exactly like CL for all other derivations
from Γ . They allow for inconsistencies but presuppose the consistency of all
sentences ‘unless and until proven otherwise’. Interpreting a set of premises

∗ Research Assistant of the Fund for Scientific Research – Flanders (Belgium)(F.W.O.).
1 See [2], although the paper was written much earlier. For a study of the predicative

version see [5]. A survey of the domain is presented in Batens [6]. For an informal
description and the relation with argumentation, see [4].
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66 Kristof De Clercq

‘as consistently as possible’, they adapt themselves to the specific incon-
sistencies that occur in it. In [6] it is shown that there are two different
strategies to do so: the reliabilitiy strategy of ACLuN1, and the minimal

abnormality strategy of ACLuN2.

For a long time, it seemed that those strategies were the only strategies
to devise inconsistency-adaptive logics. An attempt to reconstruct Default
Logic by means of an inconsistency-adaptive logic, brought me to develop
two new strategies (that are even more cautious than reliability): the reliable

sufficient information strategy of ACLuN3 and the minimally abnormal

sufficient information strategy of ACLuN4. After all, it would have been a
logical mystery that there exist exactly two and only two strategies to devise
inconsistency-adaptive logics.

ACLuN3 and ACLuN4 are based on the paraconsistent logic CLuN.
CLuN is a poor and basic paraconsistent logic. It is obtained by extend-
ing CL (with ¬ as the classical negation) with the very poor paraconsistent
negation ∼, by means of the axiom schema A ∨ ∼A (semantically, ∼ is
characterized by a negation-completeness clause only: if vM (A) = 0, then
vM (∼A) = 1). CLuN maximally isolates inconsistencies in that no con-
tradiction A & ∼A entails any other contradiction (not even one for any
subformula or superformula of A). For a detailed presentation of CLuN, as
well of ACLuN1 and ACLuN2, I refer to [5] and [7]. Albeit the fact that
classical negation, ¬, is defined in CLuN, we only allow the occurence of
paraconsistent negation, ∼, in the premises.

In section 2, I mention a problem concerning the reconstruction of non-
monotonic logics of the default-type by means of inconsistency-adaptive log-
ics. In section 3, I present the sufficient information strategy. In section 4,
I present the inconsistency-adaptive logics ACLuN3 and ACLuN4. In sec-
tion 5, I make some comparisons between ACLuN1/2 and ACLuN3/4.
I mention some open problems in section 6.

2. Inconsistency-adaptive logics as reconstruction

tools for “mixed nonmonotonic logics”2

In [3], Diderik Batens proposes an interesting procedure for the reconstruc-
tion of mixed nonmonotonic logics. The procedure consists of two compo-

2 In [3], Diderik Batens introduces the label “mixed nonmonotonic logics” for those
(popular) nonmonotonic logics in which a deductive and preferential component are
blended together (e.g. the Circumscription approach, Default Logics).
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nents. A deductive component leads from the premises to a possibly incon-
sistent consequence set. Several candidates for the deductive component are
evaluated, and inconsistency-adaptive logics prove most suitable in this re-
spect. The ensuing preferential component is formulated in terms of models
and consists itself of two parts: (i) a purely logical procedure connects a
set of consistent models to the set of (possibly inconsistent) models of the
premises; (ii) a selection procedure picks out the preferred models by relying
on the preferences.

Batens offers a successful reconstruction of circumscription by using the
inconsistency-adaptive logic ACLuN2 for the deductive component. Cir-
cumscription minimizes (the occurrence of) abnormality predicates in a cer-
tain order. This minimization of the abnormality predicates corresponds
to a purely logical step in the reconstruction procedure: the restriction to
ACLuN2-models of the premises minimizes inconsistencies. The order in
which abnormality predicates are minimized corresponds to the step in which
the preferences come in: the selection of the preferred models by relying on
the preferences. I will not go into details here, the interested reader should
consult [3].

In [9] I attempt to reconstruct (fragments of)3 Default Logic, using the
general procedure of [3]. It turned out that using ACLuN1 or ACLuN2
for the deductive component, the yielded consequences were in a sense too
strong. Let me illustrate this with an example. Consider the following
default theory T = 〈W,D〉, where W = {(∀x)(Px ⊃ ∼Fx), (∀x)(Px ⊃
Bx), P t,Ba} and D =

{

Bx:Fx
Fx

}

.4 The default theory T has one extension
E = Cn(W ∪ {Fa}). So Tweety is a penguin, and hence a bird, that does
not fly, and a is a flying bird.

For a reconstruction of this default theory, we take Γ = {(∀x)(Px ⊃
∼Fx), (∀x)(Px ⊃ Bx), P t,Ba, (∀x)(Bx ⊃ Fx)}. The CLuN-consequence
set of Γ contains the following formulas: Pt, Bt, Ft, ∼Ft, Ba, Fa,
(∀x)(∼Px∨(Fx&∼Fx)). If we take ACLuN1 or ACLuN2 for the deduc-
tive component, the consequence set of Γ contains the following formulas:
Pt, Bt, Ft, ∼Ft, Ba, Fa, ∼Pa, (∀x)(x 6= t ⊃ ∼Px). The last formula ex-
presses that there are no penguins other than Tweety. Albeit this is exactly
what we get following the circumscription approach of the Tweety-example,

3 The fragment of normal defaults and those semi-normal defaults that can also be
represented in a Prioritized Default Logic. See [1] and [8].

4 Interpreting P , B, F and t as resp. ‘Penguin’, ‘Bird’, ‘Fly’ and ‘Tweety’, we obtain
(a version of) the well known Tweety example.
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68 Kristof De Clercq

the default theory T does not imply that Tweety is the only non-flying
bird (i.e. Tweety is the only abnormal bird) nor that there are no penguins
other than Tweety. This difference between the circumscription approach
and Default Logic reveals different underlying intuitions behind rules with

exceptions. The circumscription approach presupposes that anything that is
not bound to be abnormal in view of the premises, is normal: as all penguins
are abnormal birds (with respect to being a flyer), all birds not given to be
non-flyers are supposed to be flyers (and hence non-penguins). In Default
Logic, the intuition behind rules with exceptions is rather different: if there
is one exception to a rule, it is plausible there will be others, so it is credu-
lous to assume that the known exceptions to a rule are the only exceptions
to that rule. As Tweety is an exception to the rule ‘Birds fly’, it is plausible
that there will be other exceptions to the rule (e.g. other penguins), hence
we do not want to conclude that there are no penguins other than Tweety.

Why is (∀x)(x 6= t ⊃ ∼Px) an ACLuN1/2-consequence of Γ ? As
(∀x)(∼Px∨(Fx&∼Fx) is true in all CLuN-models of Γ , and ACLuN1/2
presupposes that all formulas are consistent wherever the premises do not
command inconsistency (Ft &∼Ft is the only contradiction that is ‘forced’
by the premises), ACLuN1/2 presupposes that Fα&∼Fα is false for all α

other than t. Hence, (∀x)(x 6= t ⊃ ∼Px) is true in all ACLuN1/2-models
of Γ .

If we want to avoid consequences as (∀x)(x 6= t ⊃ ∼Px), we will have
to use a logic that is ‘weaker’ (or ‘more cautious’) than the inconsistency-
adaptive logics ACLuN1 and ACLuN2. At the other hand, we want a logic
that is stronger (leads to a richer consequence set) than the paraconsistent
logic CLuN (in the example, ∼Pa is not a CLuN-consequence).

3. Sufficient information strategy

3.1. Intuitive formulation

As described in section 2, attempts to reconstruct Default Logic by using
an inconsistency-adaptive logic for the deductive component, forced me into
a search for other, less powerful strategies for inconsistency-adaptive logics.
One of the most viable candidates was the following strategy:

(S) If all CLuN-models of Γ verify A (respectively ∼A) and some of them
falsify ∼A (respectively A), then eliminate the CLuN-models that
verify ∼A (respectively A).
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Two new strategies for inconsistency-adaptive logics 69

As an illustration, let Γ = {∼ p ∨ q, p}. As all CLuN-models of Γ verify p,
and some CLuN-models falsify ∼ p, all CLuN-models that verify ∼ p are
eliminated. As a result, all non-eliminated CLuN-models verify q (because
all CLuN-models of Γ verify ∼ p ∨ q). In the next subsection I will show
that this intuitive formulation (S) has two major drawbacks, so it has to be
modified.

3.2. Two problems

Consider the set of premises Γ = {p, q,∼ p ∨ ∼ q}. If we apply (S), we get
the following ‘instructions’:

(i) Because Γ �CLuN p and Γ 2CLuN ∼ p, all CLuN-models of Γ

that verify ∼ p have to be eliminated. Hence, in all non-eliminated mod-
els vM (∼ p) = 0, hence ∼ q is true in all of them.

(ii) Because Γ �CLuN q and Γ 2CLuN ∼ q, all CLuN-models of Γ

that verify ∼ q have to be eliminated. Hence, in all non-eliminated models
vM (∼ q) = 0, hence ∼ p is true in all of them.

Initially, both (i) as (ii) are applicable. However, as soon as one applies
either (i) or (ii), the other becomes inapplicable. From instruction (i) it
follows that ∼ p is false in all models, hence p & ∼ p is false in all of them,
hence ∼ q has to be true in all of them. Hence instruction (ii) becomes inap-
plicable. By analogous reasoning, the same holds if we start by instruction
(ii). It turns out that it depends merely on the accidental order in which we
apply the instructions whether ∼ p is derivable and ∼ q is not, or the other
way around.

The diagnosis of the trouble is that the premises do not provide suffi-
cient information to decide which of the sentences behaves inconsistently and
which consistently. As Γ �CLuN (p & ∼ p) ∨ (q & ∼ q) but Γ 2CLuN p & ∼ p

and Γ 2CLuN q&∼ q, p and q are connected with respect to their consistency
(in the terminology of ACLuN1: both p and q are Γ -unreliable). A remedy
is straightforward: (S) should be applied on Γ -reliable formulas only.

A second problem is that by applying (S) we do not reach a fixed point.
Consider the set of premises Γ = {p,∼ p ∨ q, r ∨ ∼ q}. As Γ �CLuN p and
Γ 2CLuN ∼ p, all CLuN-models that verify ∼ p are eliminated. This implies
that all non-eliminated models verify q (because ∼ p∨q has to be true in all of
them). Following (S) as it stands, no more models can be eliminated (hence
it can not be deduced that all non-eliminated CLuN-models verify r).5

5 Due to the specific formulation of (S): albeit all non-eliminated models of Γ verify q,
the original CLuN-models of Γ do not verify q (Γ 2CLuN q), and (S) cannot be applied.
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70 Kristof De Clercq

Now we would want to apply (S) to these non-eliminated CLuN-models:
as all non-eliminated CLuN-models verify q, and some of them falsify ∼ q,
we eliminate all (remaining) CLuN-models of Γ that verify ∼ q. Hence all
remaining CluN-models of Γ verify r.

3.3. Decent characterization of the Sufficient

Information Strategy

The improved version of the Sufficient Information Strategy, goes as follows:
(SI) If A is reliable with respect to Γ , and all remaining (i.e. not yet elim-

inated) CLuN-models of Γ verify A (respectively ∼A), then eliminate the
CLuN-models that verify ∼A (respectively A). This elimination procedure
should be iterated as long as it can (until no more models are eliminated).

It is important to notice that (SI) does indeed lead to a fixed point, and
that (SI) leads to a unique set of remaining CLuN-models, independent of
the order in which the CLuN-models are eliminated. Although this order
depends on the arbitrary picking out of Γ -reliable formulas A, this has no
impact at all on the final set of remaining (i.e. non-eliminated) CLuN-
models of the premises.6

By means of (SI) we can formulate two (slightly different) inconsistency-
adaptive logics, depending on the way in which Γ -unreliable formulas are
interpreted.

4. The inconsistency-adaptive logics ACLuN3 and ACLuN4

4.1. Some definitions

In order to formulate the logics ACLuN3 and ACLuN4, we first need some
definitions. Let DEK{A1, . . . ., An} refer to ∃(A1&∼A1)∨· · ·∨∃(An&∼An)
: a disjunction of (where necessary) existentially quantified contradictions.
A DEK -formula is a formula of the form DEK{A1, . . . , An}, and A1, . . . ,
An are said to be the factors of DEK{A1, . . . , An}. Henceforth, it will be
easier to write DEK (∆), recalling that this is a formula and hence that ∆

is finite.

Definition. A DEK -consequence of Γ is a DEK -formula which is CLuN-
derivable from Γ .

Definition. DEK (∆) is a minimal DEK -consequence of Γ iff Γ �CLuN

DEK (∆) and, for no Θ ⊂ ∆, Γ �CLuN DEK (Θ).

6 Proofs of these claims will have to be postponed for another paper.
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Definition. Let U(Γ ) = {A | A ∈ ∆ for some minimal DEK -consequence
∆ of Γ}. U(Γ ) is the set of formulas that are (semantically) unreliable with
respect to Γ .

To get grip on the definitions I give a simple example. Let Γ = {p ∨
q,∼ p,∼ q}. It is obvious that Γ ⊢CLuN (p & ∼ p) ∨ (q & ∼ q), while neither
p &∼ p nor q &∼ q is CLuN-derivable from Γ . Hence, (p &∼ p)∨ (q &∼ q)
is a minimal DEK-consequence of Γ . Hence, U(Γ ) = {p, q}, which means
that both p and q are unreliable with respect to the set of premises Γ .

Definition. Where M is a model, Ab(M) = {A | vM (∃(A & ∼A)) = 1}

Definition. Where M is a model of a set of premises Γ , AbU (M) =
Ab(M) ∩ U(Γ ).

Definition. Where M is a model of a set of premises Γ , and F the set of
all formulas, AbR(M) = Ab(M) ∩ (F − U(Γ )).

It is easy to see that AbU(M)∩AbR(M) = ∅ , and AbU(M)∪AbR(M) =
Ab(M).

Definition. A CLuN-model M of Γ is minimally abnormal with respect

to the Γ -unreliable formulas iff there is no CLuN-model M ′ of Γ such that
AbU(M ′) ⊂ AbU(M).

Definition. A CLuN-model M of Γ is minimally abnormal with respect

to the Γ -reliable formulas iff there is no CLuN-model M ′ of Γ such that
AbR(M ′) ⊂ AbR(M).

4.2. The Reliable Sufficient Information Strategy of ACLuN3

4.2.1. Proof theory

The idea of the proof theory of ACLuN3 is that we apply all rules of (or
derivable in) CLuN unconditionally, whereas a conditional rule is applied
on a provisional basis and on the condition that certain formulas are reliable

(with respect to their consistent behaviour). To keep the matter algorithmic,
the consistent behaviour of a formula will be determined by the stage of the
proof. As a result (in accordance with ACLuN1/2), proofs will be dynamic
in that wffs derived at some stage of the proof may not be derivable at a
later stage.

Following [5], ACLuN3-proofs are written in a specific format. Each line
in a proof consists of five elements: (i) a line number; (ii) the wff derived;
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(iii) the line numbers of the wffs from which it is derived; (iv) the rule by
which it is derived; and (v) the set of formulas that should be reliable in
order for the wff to be derivable.

Definition. A formula A occurs unconditionally at some line of a proof iff
the fifth element of that line is empty.

Definition. A behaves consistently at a stage of a proof iff ∃(A&∼A) does
not occur unconditionally in the proof at that stage.

Definition. The consistent behaviour of A1 is connected to the consistent
behaviour of A2, . . . , An at a stage of a proof iff DEK (A1, . . . , An) occurs
unconditionally in the proof at that stage whereas DEK (∆) does not occur
unconditionally in it for any ∆ ⊂ {A1, . . . , An}.

Definition. A is reliable at a stage of a proof iff A behaves consistently
at that stage and its consistent behaviour is not connected to the consistent
behaviour of other formulas.

Given these definitions, proofs in ACLuN3 are governed by an uncon-

ditional rule, a conditional rule and a deletion rule. An application of RU
or RC to a proof at a stage produces the next stage.

RU All derivation rules of CLuN are unconditionally valid in any
ACLuN3-proof. The fifth element of the new line is the union of
the fifth elements of the lines mentioned in its third element.

RC If A (resp. ∼A) occurs as the second element of a line in the proof
at depth zero (i.e. not depending on any hypothesis), then you may
derive ¬∼A (resp. ¬A) provided that A is reliable at that stage of
the proof. The fifth element of the new line is the union of the fifth
element of the line on which A (resp. ∼A) occurs and {A}.

RD If C is not (any more) reliable, then delete from the proof all lines the
fifth element of which contains C.

Wffs that occur unconditionally are CLuN-derivable from the premises (and
cannot possibly be ‘deleted’ later). The unconditional occurence of DEK -
formulas at a stage determines which formulas are reliable at that stage. Wffs
that occur in the proof at a stage are derivable at that stage. Of course, we
need a more stable notion, final derivability, that does not depend on the
stage of the proof.

Definition. A is finally derived at some line in an ACLuN3-proof iff, (i) A

is the second element of the line and (ii) where ∆ ( ⊆ ∅) is the fifth element
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of the line, any extension of the proof can be furter extended in such a way
that it contains a line that has A as its second element and ∆ as its fifth
element.

Definition. Γ ⊢ACLuN3 A (A is an ACLuN3-consequence of Γ ) iff A is
finally derived at some line in an ACLuN3-proof.

4.2.2. Semantics

The ACLuN3-semantics is obtained from the CLuN-semantics by defining,
for each Γ , a subset of the CLuN-models of Γ . The idea is that any Γ

defines a set of (semantically) unreliable formulas, and that the ACLuN3-
models of Γ are those CLuN-models that are not eliminated by the sufficient
information strategy.

Definition. M is an ACLuN3-model of Γ iff (i) M is a CLuN-model of
Γ and (ii) M is not eliminated by the sufficient information strategy.

Definition. Γ �ACLuN3 A iff A is true in all ACLuN3-models of Γ .

4.3. The Minimally Abnormal Sufficient

Information Strategy of ACLuN4

4.3.1. Semantics

For ACLuN4, it appears advisable to start from the semantics. The cen-
tral difference withe the ACLuN3-semantics is that a stronger selection of
CLuN-models occurs: all ACLuN4-models of Γ are ACLuN3-models of
Γ , but the converse does not always hold. If, e.g., DEK{p, q} is the only
minimal DEK -consequence of Γ , then, unlike for ACLuN3-models of Γ ,
either p & ∼ p or q & ∼ q is false in any ACLuN4-model of Γ .

Definition. M is an ACLuN4-model of Γ iff (i) M is a CLuN-model of
Γ and (ii) there is no CLuN-model M ′ such that AbU(M ′) ⊂ AbU(M) and
(iii) M is not eliminated by the sufficient information strategy.

Definition. Γ �ACLuN4 A iff A is true in all ACLuN4-models of Γ .

4.3.2. Proof theory

The format of proofs is as for ACLuN3, except that no lines are deleted
in ACLuN4-proofs, but that there may be tentative lines, indicated with a
mark ‘OUT’. Marked lines are not considered as occurring in the proof and
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may not be relied upon for adding further lines. After each step, the marks
are updated, viz. removed or added.

The updating of the marks is governed by an integrety criterion, as pre-
sented in [5]. The intuitive idea is as follows. Suppose that A is derived on
one or more lines the fifth element of which is not empty. A is considered
as derived (at a stage of the proof) and the lines become a full part of the
proof if A comes out true under any maximally normal ‘interpretation’ of
the least DEK -formulas (at that stage).

As the integrity criterion will look at combinations of factors of DEK -
formulas, it is useful to remark that some DEK -formulas that occur uncon-
ditionally in a proof may be disregarded. Suppose that a Gödel-numbering
(or some other ordering) of formulas is given. Where A and B are DEK -
formulas, the following definitions can be given:

Definition. A ≺ B iff either (i) A ⊢CLuN B and B 0CLuN A, or (ii) A

and B are CLuN-equivalent and the Gödel-number of A is smaller than the
Gödel number of B.

Definition. A is a least DEK-formula (at a stage of the proof) if it occurs
unconditionally in the proof and no DEK -formula B, such that B ≺ A,
occurs unconditionally in the proof.

If DEK (Γ ∪ {Px}) and DEK (Γ ∪ {Py}) occur unconditionally in the
proof and the Gödel-number of the former is smaller than that of the latter,
then at best the former will be a least DEK -formula. Neither of them is
a least DEK -formula if DEK (Γ ∪ {Pa}) also occurs unconditionally in the
proof. Clearly, if one disjunct of each least DEK -formula is true, then all
DEK -formulas are true (at that stage).

Let ∗Φs be the set of all sets that contain one factor out of each least
DEK -formula (at stage s of the proof). ∗Φs may contain redundant elements
for two different reasons. The first is related to the individual variables.
Where neither x nor y occurs free in A(z), ∃(A(x) & ∼A(x)) is CLuN-
equivalent to ∃(A(y) & ∼A(y)). But A(x) may be a factor of some least
DEK -formula and A(y) of another. Hence, ∗Φs may contain {Px,Py}, or
may contain both {Px, p} and {Py, p}. To reduce these, ◦Φs is defined from
∗Φs by relettering all open formulas in the members of ∗Φs in such a way
that the free variables occur always in the same order (for all formulas, the
first occurring free variable is always x1, the second always x2, etc.). The
second reason for redundant elements is that the same factor may occur in
different least DEK -formulas. If DEK{p, q} and DEK{p, r} are the least

© 2001 by Nicolaus Copernicus University



Two new strategies for inconsistency-adaptive logics 75

DEK -formulas, ∗Φs = ◦Φs = {{p}, {p, r}, {p, q}, {q, r}}. Of these {p, r} and
{p, q} are redundant: both DEK{p, q} and DEK{p, r} are true if p & ∼ p is
true; there is no need that also r & ∼ r or q & ∼ q be true. So, let Φs be
obtained from ◦Φs by eliminating elements from it that are proper supersets
of other elements. The members of Φs are sets of formulas, such that, if
∃(A & ∼A) is true for all members A of such a set, then all DEK -formulas
that occur unconditionally in the proof are true. To see this, it is sufficient
to realize that, if A and B are different formulas (and not reletterings of
each other with respect to the individual variables), then ∃(A & ∼A) and
∃(B &∼B) are CLuN-independent formulas — remember that CLuN does
not spread inconsistencies.

Definition. Where A is the second element of line j, line j fulfils the
integrity criterion (at stage s) iff (i) the intersection of some member of Φs

and of the fifth element of line j is empty, and (ii) for each ϕ ∈ Φs there is
a line k such that the intersection of ϕ and of the fifth element of line k is
empty and A is the second element of line k.

As a (very) simple illustration, consider:

(j) DEK{p, q, r} ∅
(j + 1) A . . . . . . {p, q}
(j + 2) A . . . . . . {q, r}
(j + 3) A . . . . . . {p, r}

If (j) is the only least DEK -formula in the proof, Φs = {{p}, {q}, {r}} and
lines (j+1)−(j+3) fulfil the integrity criterion. They also fulfil the integrity
criterion if the second element of line (j) is DEK{p, q, r, s}.

Let us now turn to the ACLuN4-rules.

RU As for ACLuN3.

RC If A (resp. ∼A) occurs as the second element of a line in the proof at
depth zero (i.e. not depending on any hypothesis), then you may derive
¬∼A (resp. ¬A) provided that, at that stage, A behaves consistently.
The fifth element of the new line is the union of the fifth element of
the line on which A (resp. ∼A) occurs and {A}.

RQ+ A mark is added to a line that does not fulfil the integrity criterion,
and to all lines derived from it.

RQ− If a line fulfils the integrity criterion and is marked, the mark is re-
moved.
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Definition. A is finally derived at some line in an ACLuN4-proof iff A is
the second element of that line and any (possibly infinite) extension of the
proof can be further extended in such a way that the line is unmarked.

Definition. Γ ⊢ACLuN4 A (A is an ACLuN4-consequence of Γ ) iff A is
finally derived at some line of an ACLuN2-proof from Γ .

5. Some comparisons

5.1. The difference between ACLuN3 and ACLuN4

Here is an example of an ACLuN3-proof.7

1. s & q prem ∅
2. t ∨ p prem ∅
3. ∼ q ∨ t prem ∅
4. ∼ p prem ∅
5. r ∨ ∼ s prem ∅
6. p ∨∼ q prem ∅
7. s 1 ∅
8. q 1 ∅
9. ¬∼ s 7 {s}
10. ¬∼ q 8 {q} out

11. t 3, 8 {q} out

12. ¬∼ t 11 {q, t} out

13. r 5, 9 {s}
14. ¬∼ r 13 {r, s}
15. ¬p 4 {p} out

16. t 2, 15 {p} out

17. ¬∼ t 16 {p, t} out

18. (p & ∼ p) ∨ ∼ q 4, 6 ∅
19. (p & ∼ p) ∨ (q & ∼ q) 8, 18 ∅

Line 9 is a typical conditional derivation. From s we derive ¬∼ s, as s

is reliable at that stage of the proof. We mention s as the fifth element of
line 9. Line 10 is also a conditional derivation. From q we derive ¬∼ q, as
q is reliable at that stage of the proof. At a later stage, viz. after writing
down line 19, it is discovered that the consistent behaviour of p is connected
with the consistent behaviour of q, and thus that p becomes Γ -unreliable.

7 I omit the names for the (derivable) natural deduction rules.
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The deletion rule forces us to remove all lines the fifth element of which
contains q: lines 10, 11 and 12 are marked ‘out’ and do not longer belong
to the proof. By similar reasoning, lines 15, 16 and 17 are removed from the
proof at stage 19 (because p is also Γ -unreliable). It is easy to see that all
formulas that occur on unmarked lines are finally ACLuN3-derivable from
the premises, whereas those that occur on marked lines are not.

The picture looks rather different if we regard the above proof as an
ACLuN4-proof. If we apply the integrity criterion to the proof, we see
that Φ19 = {{p}, {q}. Line 10 should be marked at stage 19: ¬∼ q is not
derived at some line the fifth element of which does not contain q. Line 15
should also be marked at stage 19: ¬p is not derived at some line the fifth
element of which does not contain p. However, lines 11, 12, 16 and 17
should be unmarked, as they fulfil the integrity criterion at stage 19 of the
proof. It is easily seen that all formulas that occur on unmarked lines are
finally ACLuN4-derivable from the premises, whereas those that occur on
marked lines are not. Hence, the ACLuN4-consequence set of Γ is richer
(it contains t and ¬∼ t) than the ACLuN3-consequence set of Γ .

5.2. Differences between ACLuN1/2 and ACLuN3/4

It should be noticed that we can give alternative characterizations of
ACLuN1- and ACLuN2-models, by means of the definitions given in sec-
tion 4.

Definition. M is an ACLuN1-model of Γ iff M is a CLuN-model of Γ

that is minimally abnormal with respect to the Γ -reliable formulas.

Definition. M is an ACLuN2-model of Γ iff M is a CLuN-model of
Γ that is minimally abnormal with respect to both the Γ -reliable as the
Γ -unreliable formulas.

As the sufficient information strategy leads to a much weaker selection
of CLuN-models than the minimal abnormality strategy with respect to
Γ -reliable formulas, there will be in general less ACLuN1/2-models of Γ

than ACLuN3/4-models of Γ , and hence more ACLuN1/2-consequences
from Γ than ACLuN3/4-consequences. Let me illustrate this with a few
examples:

(i) From Γ = {p,∼ p∨ q}, q is (finally) derivable both with ACLuN1/2
as with ACLuN3/4 (as p is Γ -reliable and verified by all CLuN-models of
Γ , whereas ∼ p is not).
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(ii) Let Γ = {(p &∼ p)∨ q}. Then Γ ⊢ACLuN1/2 q. However q is neither
derivable by ACLuN3 nor ACLuN4: p is reliable with respect to Γ , but
neither p nor ∼ p is verified by all CLuN-models of Γ .

(iii) From Γ = {p ⊃ q,∼ q}, ∼ p is (finally) derivable both with
ACLuN1/2 as with ACLuN3/4 (as ∼ q is Γ -reliable and verified by all
CLuN-models of Γ , whereas q is not).

(iv) Let Γ = {p ⊃ q, p ⊃ ∼ q}. Then Γ ⊢ACLuN1/2 ∼ p. With
ACLuN3/4, ∼ p is not derivable from Γ : q is reliable with respect to Γ ,
but neither q nor ∼ q is verified by all CLuN-models of Γ .

(v) Good old Tweety

Consider the following ACLuN3/4-proof:

1. (∀x)(Px ⊃ ∼Fx) prem ∅
2. (∀x)(Px ⊃ Bx) prem ∅
3. Pt prem ∅
4. Ba prem ∅
5. (∀x)(Bx ⊃ Fx) prem ∅
6. Pt ⊃ ∼Ft 1 ∅
7. Pt ⊃ Bt 2 ∅
8. Bt ⊃ Ft 5 ∅
9. ∼Ft 3, 6 ∅
10. Bt 3, 7 ∅
11. ¬Ft 9 {Ft} out

12. ¬Bt 8, 11 {Ft} out

13. Ft 8, 10 ∅
14. Ft & ∼Ft 9, 13 ∅
13. Ba ⊃ Fa 5 ∅
14. Fa 4, 13 ∅
15. Pa ⊃ ∼Fa 1 ∅
16. ¬∼Fa 14 {Fa}
17. ¬Pa 15, 16 {Fa}
18. Pb ⊃ ∼Fb 1 ∅
19. Pb ⊃ Bb 2 ∅
20. Bb ⊃ Fb 5 ∅
21. Pb ⊃ Fb 19, 20 ∅
22. Pb ⊃ (Fb & ∼Fb) 18, 21 ∅
23. ∼Pb ∨ (Fb & ∼Fb) 22 ∅
24. (∀x)(∼Px ∨ (Fx & ∼Fx)) 23 ∅
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So, the ACLuN3/4-consequence set contains Pt, Bt, Ft, ∼Ft, Ba,
Fa and ¬Pa but does not contain (∀x)(x 6= t ⊃ ∼Px). The reason is
that neither Fα nor ∼Fα (for all constants α other than t and a) is deriv-
able at some stage of the proof. Hence only (the much ‘weaker’ formula)
(∀x)(∼Px ∨ (Fx & ∼Fx)), which is a CLuN-consequence of the premises,
is ACLuN3/4-derivable. If an accurate reconstruction of (fragments of)
Default Logic is indeed possible by the procedure described in section 2,
then — with respect to this specific application — ACLuN3/4 is a better
candidate for the deductive component than ACLuN1/2.8

6. In conclusion

Albeit the inconsistency-adaptive logics ACLuN3 and ACLuN4 were de-
veloped for a specific goal, viz. a reconstruction of (mixed) nonmonotonic
logics of the default type, they certainly deserve to be studied in their own
right. I list some open problems:

(i) The elimination procedure of the sufficient information strategy ob-
viously needs furter study. The proof that the sufficient information
strategy always leads to a unique set of remaining CLuN-models, will
be given in a subsequent paper.

(ii) Is the semantics adequate for the dynamic proof theory? Is another
(static) formulation of the semantics of ACLuN3/4 possible? Of
course much other meta-theoretic properties should be investigated.

(iii) Which fragments of Default Logic can be reconstructed by means of
ACLuN3/4. Could it within certain contexts be preferable to start
from a richer lower limit logic, such as CLuNs?

(iv) Some more strategies for inconsistency-adaptive logics should be
worked out (once one has found some variants, it is not very difficult
to find more). Some suggestions in this direction are made in [6].

8 In [10], Guido Vanackere presents the inconsistency-adaptive logic PRL. When pref-
erences are given, PRL ‘resolves’ inconsistencies derived from the premises by deleting the
least preferred half of each inconsistency. PRL is a viable tool for reconstructing mixed
nonmonotonic logics, along a different road than the one followed by Batens and myself.
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