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PREFERENCES AS

INCONSISTENCY-RESOLVERS:

The Inconsistency-adaptive Logic PRL

Abstract. In this paper I generalize the new approach to nonmonotonic
reasoning that was presented in [6]. This generalization results in the incon-
sistency-adaptive logic PRL (PR stands for preference-based reliability
strategy). I give proof theory, semantics, mention interesting properties,
and comment on the reconstruction and amelioration of other nonmonotonic
logics and mechanisms.

1. Introduction

Applying a paraconsistent logic to an inconsistent set of premises avoids triv-
iality but results, in general, in a too poor consequence-set. An inconsistency-
adaptive logic derives all ‘rich’ consequences where no inconsistency occurs
and isolates inconsistencies. However, an inconsistency-adaptive logic does
not resolve inconsistenties; the consequence-set will still contain inconsis-
tencies. When we meet inconsistencies, in everyday life, we are interested
in weeding out one half of each inconsistency. A straightforward way to do
this, exists in tracking the sources where the inconsistent information derives
from, and dropping the conclusion derived from the least reliable source.

The idea of annotating the premises according to their sources, is taken
from [7], but the machinery of PRL is different. The annotated premise Ak is
a weakening of the ‘normal’ premise A and is equated with ∼k¬A, in which,
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for k = 1, 2, . . . : ∼k is a paraconsistent negation and ¬ is classical negation.
I use letters as symbols for numbers, for the simple reason that this makes
it easy to interpret the annotations as preferences. “∼k¬A” can be read as:
“we give preference k to the fact that we have no reason to reject A”.

In this paper I do not question “Where do preferences on (the sources
of) the premises come from?”. In fact, PRL is an excellent logic even if the
annotations are not interpreted as preferences. When preferences are known,
the PRL-consequence-set is as strong and specific as we want it to be.

I give a quick overview of the results of the PRL-mechanism. Let Γ A

be obtained from Γ by annotating all members of Γ . Where XL is a logic,
CnXL(Γ ) is the set of XL-consequences of Γ , and Cn0

XL(ΓA) the set of
XL-consequences of ΓA in which no annotations occur.1 CL is Classical
Logic. If Γ is consistent, then Cn0

PRL(ΓA) = CnCL(Γ ). If Γ is inconsistent,
PRL reveals the conflicting premises. At this point, there are two possi-
bilities: (1) It is not possible to interpret the annotations as preferences,
i.e. it is not possible to introduce preferences on conflicting premises. In
this case PRL ‘deletes’ both halves of each inconsistency. Let Γ C ⊆ Γ be
the set of conflicting premises. Then Cn0

PRL(ΓA) = CnCL(Γ − ΓC). Ob-
viously CnCL(Γ ) is trivial. (2) It is possible to introduce preferences on
the conflicting premises. This is a non-logical step that can be made be-
forehand or at any stage of a proof. It is an advantage of PRL that we
do not need to know the preferences of all premises. PRL reveals those
premises on which the introduction of preferences will lead to the resolution
of inconsistencies. If preferences of the conflicting premises are known, PRL

deletes that half of each inconsistency that derives from the least preferred
premises. Let Γ P ⊂ ΓC be the set of conflicting premises that are not least
preferred. In this case Cn0

PRL(ΓA) = CnCL(Γ − (ΓC − ΓP )). Obviously
CnCL(Γ − ΓC) ⊆ CnCL(Γ − (ΓC − ΓP )).

In section 2, I give a brief characterisation of inconsistency-adaptives
logics in general. In section 3, I give proof theory, semantics and metatheory
of the lower limit logic pPRL. In section 4, I do the same for PRL. In
section 5, I comment on the influence of the formulation of the premises. In
the 6th and last section, I try to show that PRL is a better nonmonotic tool
than the (non-modal versions of) default logic. I also mention the possibility
to reconstruct Rescher-mechanisms by means of PRL.

1 Hence, Cn
0

XL(Γ A) does not contain formulas of the form Ak, ∼
k
¬A, or complex

formulas containing such subformulas. All members of Cn
0

XL(Γ A) are ‘normal’ classically
formalized formulas.
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2. Inconsistency-adaptive logics in general

Let IAL be any inconsistency-adaptive logic. IAL oscillates between a
paraconsistent lower limit logic (PL) and a ‘rich’ upper limit logic (e.g.
CL). Where no inconsistency occurs, IAL behaves like the upper limit
logic; where an inconsistency occurs, IAL behaves like the lower limit logic.
In [3] Diderik Batens argues that, in general, a weaker lower limit logic goes
along with a richer IAL.

The question “how to get grip on “where an inconsistency occurs?” is
formally answered by means of the minimal DEK-consequences (minimal
disjunctions of (where necessary existentially quantified) contradictions that
are PL-derivable from the premises). In IAL some derivations are made
on condition of the consistent behaviour of some involved (sub)formulas.
The minimal DEK-consequences of the premises indicate which conditions
are overruled. For instance, if Γ ⊢PL (A & ∼A) ∨ (B & ∼B) ∨ (C & ∼C),
Γ 0PL (A & ∼A) ∨ (B & ∼B), Γ 0PL (A & ∼A) ∨ (C & ∼C), and Γ 0PL

(B & ∼B) ∨ (C & ∼C), then (A & ∼A) ∨ (B & ∼B) ∨ (C & ∼C) is a
minimal DEK-consequence of Γ , and hence at least one of the formulas
A, B, C behaves inconsistently. Another example: suppose q is derived
from Γ ∪ {∼ p, p ∨ q}, on condition of the consistent behaviour of p. This
condition is overruled if, e.g., Γ ∪ {∼ p, p ∨ q} ⊢PL p & ∼ p. In this case
p&∼ p is a minimal DEK-consequence of Γ ∪{∼ p, p∨ q} and thus p behaves
inconsistenly. Therefore Γ ∪ {∼ p, p ∨ q} 0IAL q.

There are two well-known strategies to select unreliable formulas among
the factors of minimal DEK-consequences:2

1. Reliability. The consequence-set of Γ is the set of formulas that are
true in all models of Γ in which the only true contradictions come from
the factors of the minimal DEK-consequences of Γ . The factors of minimal
DEK-consequences are the only unreliable formulas.

Example. If p is derived from Γ on condition of the consistent behaviour of
q, and (q & ∼ q) ∨ (r & ∼ r) is a minimal DEK-consequence of Γ , then both
q and r are unreliable and hence p is not finally derivable from Γ .

2. Minimizing abnormality. The consequence-set of Γ is the set of all
formulas that are true in all minimally abnormal models of Γ , i.e. in all
models of Γ that verify a set of inconsistencies that is not a superset of a
set of inconsistencies verified by another model of Γ .

2 In [5], Kristof De Clercq develops two more strategies.
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Example. If p is derived from Γ on condition of the consistent behaviour of
q, and p is also derived from Γ on condition of the consistent behaviour of r,
and (q &∼ q)∨ (r &∼ r) is a minimal DEK-consequence of Γ , then one type
of minimally abnormal models verify q &∼ q and falsify r &∼ r whereas the
other verify r&∼ r and falsify q&∼ q. Hence all minimally abnormal models
satisfy a condition on which p is derivable. Therefore p is finally derivable
from Γ .

The reliability strategy has an easier proof-mechanism, but leads, in
specific cases, to a poorer consequence-set than the minimal abnormality
strategy. The latter difference however vanishes when preferences are taken
into account. PRL is constructed by means of the reliability strategy.

3. The underlying paraconsistent logic pPRL

3.1. Proof theory

The language of pPRL is the language of classical predicate logic with
identity, extended with an infinite set of paraconsistent negations ∼1, ∼2,
. . . . The logic is obtained by adding to CL (with ¬ as the classical negation)
the axiom schema (A∼k).

(A∼k) A ∨ ∼kA (for k = 1, 2, . . . )

Premises receive a preference k ≥ 1 or an annotation that can be interpreted
as a symbol for a preference (notation Ak). A higher number corresponds to
a lower preference. Theorems receive preference 0, the highest preference.
Formally, the preferences are handled by equating A0 with A, and Ak with
∼k ¬A. Substitution of identity is restricted as follows

(A = 2) α = β ⊃ (A ⊃ B),

where B is obtained by replacing in A an occurrence of α that occurs outside
the scope of a paraconsistent negation by β.

In view of the weak interpretation of the premises, pPRL is an extremely
poor logic. In a way of speaking it is not even possible to derive the premises.
More exactly: Ak

0pPRL A. Moreover, Cn0
pPRL(ΓA) = CnCL∅. If the

statement, defended in [3] holds — a poorer lower limit logic goes along
with a richer adaptive logic — pPRL must be an excellent lower limit logic.

In view of the axioms (A∼k) and (A = 2), pPRL does not spread incon-
sistencies: no inconsistency entails another. pPRL shares this property with
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CLuN, the lower limit logic of the inconsistency-adaptive logics ACLuN1

and ACLuN2 (see [2]).
Let !kA stand for A & ∼kA and let ♯kA stand for ¬A & ∼k¬A (hence

!k¬A ≡ ♯kA). The following theorem expresses a property of pPRL that is
important in view of the construction of the adaptive logic PRL. (The easy
proof is left to reader.)

Theorem 1 (Conditional Derivation CD).

ΓA ⊢pPRL ∼k¬A iff ΓA ⊢pPRL ♯kA ∨ A.

CD can be used as a derivation rule in pPRL-proofs. This rule allows
to derive the ‘normal’ interpretation A of the premise Ak in disjunction with
♯kA. In the adaptive logic PRL, ♯kA is considered as false, unless and until
proven otherwise. Therefore, it is right to talk about “conditional deriva-
tion”: the normal interpretation of the premises is derivable on condition of
the ∼k-consistent behaviour of the classical negation of the premises.

3.2. Semantics

Let S be the set of sentential letters, Pr the set of predicative letters of
rank r, C and V the set of letters for individual constants and variables
respectively, F the set of all formulas (open and closed), and N = {∼kA |
A ∈ F , k ≥ 1}.

A pPRL-model is a couple M = 〈D, v〉 in which D is a set and v is an
assignment-function defined by:

S1.1 v : S −→ {0, 1}
S1.2 v : C ∪ V −→ D is such that D = {v(α) | α ∈ C ∪ V}
S1.3 v : Pr −→ P(Dr) (the power set of the r-th Cartesian product of D)
S1.4 v : N −→ {0, 1}

The valuation-function vM determined by the model M is defined as follows:

S2.1 vM : F −→ {0, 1}
S2.2 where A ∈ S, vM(A) = v(A)
S2.3 vM(πrα1...αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr)
S2.4 vM(α = β) = 1 iff v(α) = v(β)
S2.5 vM(¬A) = 1 iff vM(A) = 0
S2.6 vM(∼kA) = 1 iff vM(A) = 0 or v(∼kA) = 1
S2.7 vM(A ⊃ B) = 1 iff vM(A) = 0 or vM(B) = 1
S2.8 vM(A & B) = 1 iff vM(A) = 1 and vM(B) = 1
S2.9 vM(A ∨ B) = 1 iff vM(A) = 1 or vM(B) = 1
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S2.10 vM(A ≡ B) = 1 iff vM(A) = vM(B)
S2.11 vM((∀α)A(α)) = 1 iff vM(A(β)) = 1 for all β ∈ C ∪ V
S2.12 vM((∃α)A(α)) = 1 iff vM(A(β)) = 1 for at least one β ∈ C ∪ V

Truth in a model, semantic consequence and validity are defined as usual.

3.3. Metatheory

The proofs of the soundness and completeness theorems are analogous to
those for pHL2 (see [6]), and hence left to reader.

Theorem 2. ΓA ⊢pPRL A iff ΓA
�pPRL A.

4. PRL

4.1. Intuitive approach

In order to get grip on the machinery of PRL, it is interesting to take a look
at some pPRL-proofs.
Proof 1.

1. (∀x)Pxk – Prem

2. (Pa ⊃ p)m – Prem

3. ∼k¬(∀x)Px (1) Def

4. ∼m ¬(Pa ⊃ p) (2) Def

5. ♯k(∀x)Px ∨ (∀x)Px (3) CD

6. ♯m(Pa ⊃ p) ∨ (Pa ⊃ p) (4) CD

7. ♯k(∀x)Px ∨ Pa (5) UI

8. ♯k(∀x)Px ∨ ♯m(Pa ⊃ p) ∨ p (6,7) MP3

Proof 2.

1. (∀x)(Bx ⊃ Fx)k – Prem

2. (∀x)(Px ⊃ ¬Fx)m – Prem

3. (∀x)(Px ⊃ Bx)n – Prem

3 This application of Modus Ponens is derivable: From A∨ (B ⊃ C) and D∨B we can
derive by addition A ∨ D ∨ (B ⊃ C) and A ∨ D ∨ B. From these formulas we can derive
A∨D ∨ ((B ⊃ C) & B) and from this follows A∨D ∨C. This kind of sped up derivations
is generally valid in pPRL:

♯C1 ∨ · · · ∨ ♯Cm ∨ ((A1 & .. & An) ⊃ B), ♯D1 ∨ · · · ∨ ♯Dk ∨ (A1 & .. & An))/
♯C1 ∨ · · · ∨ ♯Cm ∨ ♯D1 ∨ · · · ∨ ♯Dk ∨ B

The application of the instantiation rule UI in line (7) is an example of such a sped up
derivation.
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4. Par – Prem

5. ∼k¬(∀x)(Bx ⊃ Fx) (1) Def

6. ∼m ¬(∀x)(Px ⊃ ¬Fx) (2) Def

7. ∼n ¬(∀x)(Px ⊃ Bx) (3) Def

8. ∼r ¬Pa (4) Def

9. ♯k(∀x)(Bx ⊃ Fx) ∨ (∀x)(Bx ⊃ Fx) (5) CD

10. ♯m(∀x)(Px ⊃ ¬Fx) ∨ (∀x)(Px ⊃ ¬Fx) (6) CD

11. ♯n(∀x)(Px ⊃ Bx) ∨ (∀x)(Px ⊃ Bx) (7) CD

12. ♯rPa ∨ Pa (8) CD

13 ♯k(∀x)(Bx ⊃ Fx) ∨ (Ba ⊃ Fa) (9) UI

14 ♯m(∀x)(Px ⊃ ¬Fx) ∨ (Pa ⊃ ¬Fa) (10) UI

15 ♯n(∀x)(Px ⊃ Bx) ∨ (Pa ⊃ Ba) (11) UI

16. ♯rPa ∨ ♯m(∀x)(Px ⊃ ¬Fx) ∨ ¬Fa (12,14) MP

17. ♯rPa ∨ ♯n(∀x)(Px ⊃ Bx) ∨ Ba (11,12) MP

18. ♯rPa ∨ ♯n(∀x)(Px ⊃ Bx) ∨ ♯k(∀x)(Bx ⊃ Fx) ∨ Fa
(13,17) MP

19. ♯rPa ∨ ♯m(∀x)(Px ⊃ ¬Fx) ∨ ♯n(∀x)(Px ⊃ Bx)∨
♯k(∀x)(Bx ⊃ Fx) ∨ (Fa & ¬Fa) (16,18) Conj

20. ¬(Fa & ¬Fa) – Theorem

21. ♯rPa ∨ ♯m(∀x)(Px ⊃ ¬Fx) ∨ ♯n(∀x)(Px ⊃ Bx) ∨ ♯k(∀x)(Bx ⊃ Fx)
(19,20) DS

Whether the annotations are interpreted as preferences or not, has no in-
fluence on pPRL-derivations. The difference shows up when we construct
the adaptive logic PRL on pPRL. I illustrate the machinery of PRL,
in comparison with CL. Unless and until an inconsistency or a disjunc-
tion of inconsistencies is derived from the premises, PRL interprets a set of
premises consistently. Hence, if no disjunction of inconsistencies is derived,
all disjuncts of the form ♯kC are false, and hence, for instance in proof 1,
p is derivable from ♯k(∀x)Px ∨ ♯m(Pa ⊃ p) ∨ p.

If we apply CL or PRL — even without introducing preferences — to
the first set of premises, we can derive p.

If we apply CL to the second set of premises, we derive triviality (both
Fa and ¬Fa are derivable). If we apply PRL to the second set of premises,
without interpreting the annotations as preferences, neither Fa nor ¬Fa are
derivable (and hence we avoid triviality). If we apply PRL to the second
set of premises, and we introduce preferences, then, (1) if k > m, r or n >
m, r, then ¬Fa is derivable, but Fa not; (2) if m > k, n, r, then Fa is
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derivable, but ¬Fa not, and (3) if r ≥ k,m, n, then neither Fa nor ¬Fa are
derivable.4

The formula in line (21) reveals the conflicting premises. If no premise
is preferred, all premises mentioned in the formula in line (18) are consid-
ered as unreliable. If preferences are known, only the least preferred premise
(it is, the premise annotated with the highest number) is unreliable. In-
deed, PRL interprets a set of premises as consistent as possible. If a set
of premises is inconsistent, a disjunction of inconsistencies is derivable. The
minimal disjunctions of inconstencies (see exact definition below) indicate
the unreliable premises. The introduction of preferences results in a smaller
set of unreliable premises and hence in a richer consequence-set.

Where ♯kA is a formula in which the variables α1, . . . , αm (m ≥ 0)
occur free, let ∃♯kA be (∃α1) . . . (∃αm)(♯kA). Let DENK{Ak1

1 , . . . , Akn

n } refer
to ∃♯k1A1 ∨ · · · ∨ ∃♯knAn, a disjunction of (where necessary) existentially
quantified contradictions of classically negated premises.5 Ak1

1 , . . . , Akn

n are
the factors of the DENK-formula DENK{Ak1

1 , . . . , Akn

n }.

Theorem 3. Γ �CL A iff there are Ck1

1 , . . . , Ckn

n ∈ F (0 ≤ n) such that
ΓA

�pPRL DENK{Ck1

1 , . . . , Ckn

n } ∨ A.

The proof is analogous to the proof of Theorems 6 and 7 in [6].

4.2. Proof theory

The idea of the proof theory of PRL is that we apply all rules derivable in
pPRL unconditionally, whereas we equal every formula of the form ∼k¬A
with A on condition that ¬A behaves ∼k-consistently.

Every line of a PRL-proof gets a fifth element in which we write the
formulas on the consistent behaviour of which we rely to derive the formula
in the second element by the rule mentioned in the fourth element from the
formulas of the lines enumerated in the third element.

Definition. A occurs unconditionally at some line of a proof iff the fifth
element of that line is empty.

4 In contrast with PRL, HL2 (see [6]), assumes that ‘descriptions of facts’ do not come
from unreliable sources. With PRL it is also possible to consider Pa as unreliable.

If B stands for “is a bird”, F for “can fly”, and P for “is a penguin”, it is natural to take
r, n < m < k, and hence penguin a cannot fly. Also: birds that are not penguins can fly.

5 In view of the fact that the contradictions are contradictions of classically negated
formulas, I speak of DENK instead of DEK (confer [2]). In section 5 it will become clear why
it is necessary to assume that some disjunctions of contradictions have to be existentially
quantified.
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Definition. A behaves ∼k-consistently at a stage of a proof iff ♯kA does
not occur unconditionally in the proof at that stage.

Definition. The ∼k1-consistent behaviour of A1 is connected to the ∼k2-
consistent behaviour of A2, . . . , and the ∼kn-consistent behaviour of An at a
stage of a proof iff DENK{Ak1

1 , . . . , Akn

n } occurs unconditionally in the proof
at that stage whereas DENK{Ak2

2 , . . . , Akn

n } does not occur unconditionally
in it.

Definition. Where Ak is a premise, the number k is the preference of A.

Definition. If A occurs as the second element of a line in a proof, the
line preference of A is the lowest preference (i.e. the highest number) of the
formulas in the fifth element of that line. If the fifth element is empty, the
line preference of A is 0.

Definition. The derivation preference of A at a stage of a proof, is the
highest line preference of A at that stage of the proof. If A does not occur
as the second element of a line at that stage, the derivation preference is
maximally low.

Definition. A is reliable with respect to its preference at a stage of a proof,
iff the preference of A is higher than the derivation preference of ♯kA at that
stage of the proof.6

Definition. A is reliable at a stage of a proof iff A behaves ∼k-consistently
(for all k) at that stage and its consistent behaviour is not connected to the
consistent behaviour of other formulas, or A is reliable with respect to its
preference at that stage of the proof.

Given these definitions, proofs in PRL are governed by an unconditional
rule, a conditional rule and a marking rule. The application of a rule pro-
duces the next stage.

RU All derivation rules of pPRL are unconditionally valid in any PRL-
proof. The fifth element of a new line is the union of the fifth elements
of the lines mentioned in its third element.

RC From a line (i) with DENK{Ck1

1 , . . . , Ckm

m } ∨A as second line, derive a
new line with A as second element, (i) as third element, RC as fourth
element and the union of {Ck1

1 , . . . , Ckm

m } and of the fifth element of
line (i) as fifth element.

6 If the derivation preference of ♯kA is maximally low, A is reliable with respect to its
preference.

© 2001 by Nicolaus Copernicus University



56 Guido Vanackere

RM If C is not (anymore) reliable, then mark all lines the fifth element of
which contains C.7

At any stage of the proof, it is obligatory to apply RM and permitted
to apply RU and RC. A marked line does not belong to the proof. If the
fifth element of a line is empty, the formula in its second element is pPRL-
derivable from the premises and cannot be marked later. If the fifth element
is not empty, its formula is provisionally derived. Unless it can also be
derived at a line the fifth element of which is empty, it is not a pPRL-
consequence. The unconditional occurrence of DENK-formulas in the proof
determines which formulas are not anymore reliable.

As usual proofs may be sped up by derived rules. In general, I will use
“conditional” rules as short cut rules for a combination of typical pPRL-
rules, RC, and a classical derivation rule. “CUI”, for instance, is the short
cut rule for (1) Ak/∼k¬A, (2) CD, (3) RC, and (4) UI.

A wff may be derived at some stage of a proof, while the line in which
it occurs may be marked at a later stage of the proof. Therefore we need to
distinguish between provisional and final consequences.

Definition. An extension of a PRL-proof is intelligent iff it has the fol-
lowing property: if both DENK(Σ) and DENK(Σ∪Π) occur unconditionally
in the extension, then the former precedes the latter.

Definition. A is finally derived at some line in an PRL-proof iff it is the
second element of that line and the line will not be marked in any intelligent
extension of the proof.

Definition. Γ A ⊢PRL A, A is finally PRL-derivable from Γ A, iff there is
a PRL-proof from Γ A in which A is finally derived.

It is possible to prove that CnPRL(ΓA) may be characterized without
refering to the dynamics of the proofs. The characterization refers to pPRL

only. The central point is that it depends only on pPRL-derivability (which
is monotonic) whether a wff is reliable in an intelligent extension of the proof.

Lemma 1. If in an PRL-proof from Γ A, A occurs as the second element
and {Ck1

1 , . . . , Ckm

m } (0 ≤ m) occurs as the fifth element of a line, then
ΓA ⊢pPRL A ∨ DENK{Ck1

1 , . . . , Ckm

m }.8

7 As new lines in a proof take over the fifth elements of the lines they are derived from
by means of RC or an application of RU, it is obvious that lines derived from marked lines
have to be marked too.

8 The proof of Lemma 1 is completely analogous to the proof of Lemma 2 in [2] and
Lemma 2 in [6].
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This means that whenever A is derived in a PRL-proof on condition of
the consistent behaviour of {Ck1

1 , . . . , Ckm

m }, then A∨DENK{Ck1

1 , . . . , Ckm

m }
is PRL-derivable unconditionally.

Definition. A DENK-consequence of Γ A is a DENK-formula which is
pPRL-derivable from Γ A.

Definition. DENK(∆) is a minimal DEK-consequence of Γ A iff it is a
DENK-consequence of Γ A, and for no Φ ⊂ ∆, DENK(Φ) is a DENK-conse-
quence of ΓA.

Theorem 4. ΓA ⊢PRL A, iff there are Ck1

1 , . . . , Ckm

m ∈ F (0 ≤ m) such
that ΓA ⊢pPRL A ∨ DENK{Ck1

1 , . . . , Ckm

m }, and none of Ck1

1 , . . . , Ckm

m is a
factor of a minimal DEK-consequence of Γ unless it is reliable with respect
to its preference.9

It follows from Theorem 4 that whenever A occurs as the second element
of a line of a PRL-proof with {Ck1

1 , . . . , Ckm

m } as fifth element, a new line
can be added with A ∨ DENK{Ck1

1 , . . . , Ckm

m } as second element and an
empty fifth element, and vice versa. If a classical contradiction is derived
in a line with {Ck1

1 , . . . , Ckm

m } as fifth element, a new line can be added
with DENK{Ck1

1 , . . . , Ckm

m } as second element and an empty fifth element.
In PRL-proofs the latter derivation rule is called Idenk (introduction of a
DENK-formula).

The following Theorem expresses an important feature of PRL:

Theorem 5. If Γ A ⊢PRL A, then it is possible to extend any proof from
ΓA into a proof in which A is finally derived from Γ A.10

I now list some derivable marking rules in PRL.

mr1. If DENK{Ck1

1 , . . . , Ckm

m } occurs unconditionally as the second element
of a line of a PRL-proof, then mark all lines the fifth element of which
contains an unreliable factor of that DENK-formula.

mr2. If the derivation preference of A (resp. ¬A) at line (i) is lower than
the derivation preference of ¬A (resp. A) at any line of the proof, then
mark line (i).

Theorem 6. The marking rules mr1 and mr2 are derivable in PRL.11

9 The proof of Theorem 4 is completely analogous to the proof of Theorem 15 in [6].
10 The proof of Theorem 9 is completely analogous to the proof of Theorem 9 in [6].
11 The proofs for mr1 and mr2 are respectively analogous to the proofs of Theorems 10

and 15 in [6]
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4.3. Semantics

The PRL-semantics is obtained from the pPRL-semantics by defining, for
each ΓA, a subset of the PRL-models of Γ A. Any Γ A defines a set of
semantically unreliable formulas. The PRL-models of Γ A are those pPRL-
models of Γ A in which only unreliable formulas behave inconsistently. The
set of unreliable formulas with respect to ΓA is a subset of the factors of the
minimal DENK-consequences of Γ .

Definition. If Γ A
�PRL∼

n B (whereas ΓA
2PRL∼

m B (1 ≤ m < n), then
CPΓ A(B) = n. If Σ = {Bk1

1 , . . . , Bkn

n } (n ≥ 1), then CPΓ A(DENK(Σ)) is the
maximum of k1, . . . , kn.

Definition. If Bk is a factor of the minimal DENK-consequence
DENK(Σ) of Γ A, and CPΓ A(B) = CPΓ A(Σ), then Bk is PRL-unreliable with
respect to ΓA. U(ΓA) is the set of all formulas that are PRL-unreliable with
respect to ΓA.

Definition. Where M is a pPRL-model, ab(M) = {A | vM(∃♯kA) = 1}.

Definition. M is a PRL-model of Γ A iff it is a pPRL-model of Γ A and
ab(M) ⊆ U(ΓA).

Definition. ΓA
�PRL A iff A is true in all PRL-models of Γ A.

4.4. Metatheory

The proofs of the soundness and completeness theorems for PRL are anal-
ogous to those for HL2 (see [6]).

Theorem 7. Γ A
�PRL A iff ΓA ⊢PRL A

4.5. Example

Proof 3.12

1. pj – Prem –
2. qk – Prem –
3. rl – Prem –
4. (p ⊃ ¬q)m – Prem –

12
CSub (conditional substitution) is the short cut rule for the combination of Ak

⊢

∼
k
¬A, CD and RC.
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5. (r ⊃ ¬q)n – Prem –
6. p (1) CSub pj

7. q (2) CSub qk

8. r (3) CSub rl

9. p ⊃ ¬q (4) CSub (p ⊃ ¬q)m

10. r ⊃ ¬q (5) CSub (r ⊃ ¬q)n

11. ¬q (6,9) MP pj, (p ⊃ ¬q)m

12. ¬q (8,10) MP rl, (r ⊃ ¬q)n

13. ¬p (7,9) MT qk, (p ⊃ ¬q)m

14. ¬r (7,10) MT qk, (r ⊃ ¬q)n

15. ♯jp ∨ ♯kq ∨ ♯m(p ⊃ ¬q) (7,11) Idenk –
16. ♯kq ∨ ♯lr ∨ ♯n(r ⊃ ¬q) (7,12) Idenk –

If preferences are not known p, q, r, p ⊃ ¬q and r ⊃ ¬q are unreliable, and
none of them is PRL-derivable. If, for instance, k > j, l,m, n, then q is the
only unreliable formula, and p, r, p ⊃ ¬q, r ⊃ ¬q, ¬q ∈ Cn0

PRL{p
j , qk,

rl, (p ⊃ ¬q)m, (r ⊃ ¬q)n}. If j > l > k,m, n, then p and r are the only
unreliable formulas, and q, ¬p, ¬r, p ⊃ ¬q, r ⊃ ¬q ∈ Cn0

PRL{p
j, qk, rl,

(p ⊃ ¬q)m, (r ⊃ ¬q)n}.

5. About the premises

PRL-consequences are to a certain degree dependent of the formulation of
the premises. However, if a premise is replaced by an equivalent premise,
the consequence-set remains the same.
Example: ΓA ∪ {(p ⊃ q)k} and Γ A ∪ {(¬p ∨ q)k} have the same PRL-
consequence-set.

When premises that have the same annotation (because they originate
from the same source), are put together in one conjunction, the PRL-
consequence-set changes drastically.

Example.

Premises Consequences

k < l k > l k = l

Ak, Bk, ¬Al A, B ¬A, B B

(A & B)k, ¬Al A, B ¬A –

Hence, if one is interested in tracking (and deleting) unreliable sources, one
has to put all premises from one source in one conjunction. This results
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in a poorer consequence-set. If one is interested in tracking (and deleting)
individual unreliable premises, one has to analyse the conjunctions.

If universally quantified formulas are premises, we can treat them in two
ways. The first way is the way they are treated in the previous part of
this paper. The second way is to consider them as (possibly infinite) lists
of instances. Consider (∀x)A(x)k as the short for A(a)k, A(b)k, A(c)k, . . . .
This results in the following instantiation rule:

(∀x)A(x)k ⊢(p)PRL ∼k¬A(a).

In this case PRL includes HL2. Thus, it is not only possible to track unre-
liable universally quantified formulas, but also to track unreliable instances.
This way, PRL avoids that a universally quantified formula becomes unre-
liable as soon as one exception occurs.

The following proof illustrates the richness of this version of PRL.
Proof 4.

1. (∀x)(Ix ⊃ Wx)k – Prem –
2. (∀x)(Fx ⊃ Wx)l – Prem –
3. (Ia ∨ Fa)m – Prem –
4. (Fb & ¬Wb)n – Prem –
5. Ia ⊃ Wa (1) CUI (Ia ⊃ Wa)k

6. Fa ⊃ Wa (2) CUI (Fa ⊃ Wa)l

7. Fb ⊃ Wb (2) CUI (Fb ⊃ Wb)l

8. Ia ∨ Fa (3) CSub (Ia ∨ Fa)m

9. Fb (4) CSim (Fb & ¬Wb)n

10. ¬Wb (4) CSim (Fb & ¬Wb)n

11. Wa (5,6,8) Dil (Ia ⊃ Wa)k, (Fa ⊃ Wa)l,
(Ia ∨ Fa)m

12. Wb (9,7) MP (Fb & ¬Wb)n, (Fb ⊃ Wb)l

If I stands for “is Italian”, F stands for “is French”, W for “likes wine”, and
if premise (4) does not get a lower preference than premise (3), we might
expect that n ≤ m < k = l. Hence, in view of mr2, line (12) has to be
marked, and hence, ¬Wb and Wa are finally derivable, whereas Wb is not.

With this interpretation of universally quantified formulas, some dis-
juncts of DENK-formulas can be existentially quantified. Whenever a for-
mula A(a) is derived from (∀x)A(x)k by means of CUI, whereas a does
not occur in the premises, the fifth element of the line in which A(a) is
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derived will be the open formula A(x)k. Hence it is possible that A(x)k

is a factor of a DENK-formula DENK({A(x)k} ∪ Σ), which is the short for
(∃x)♯kA(x) ∨ DENK(Σ).

6. PRL and other nonmonotonic mechanisms

6.1. Default logic

The definitions in this section, as well as the premises of Proofs 2 and 4
(above) are taken from [4].

A default theory is a pair (D,W ). W is a set of first order formulas
representing the facts which are known to be true with certainty. D is a set
of defaults of the form

A : B1, . . . , Bn

C

where A, Bi and C are classical formulas. The default has the intuitive
reading: if A is provable and for all i (1 ≤ i ≤ n), ¬Bi is not provable, then
derive C. Defaults with free variables are schemata representing all of their
closed instances ([4] p. 41.).

In PRL ‘defaults’ can simply be formulated as formulas of the form
(A ⊃ C)k and (∀x)(A(x) ⊃ C(x))k. Universally quantified formulas are
considered as (possibly infinite) lists of instances. The (possibly infinite) list
of formulas Bk1

1 , Bk2

2 , . . . does not need to be known in advance! Whenever
A (respectively A(a) ) is derived with a derivation preference l, and hence
C (resp. C(a) ) can be derived with a derivation preference n which is the
maximum of k and l, and ¬C (respectively ¬C(a) ) is derived with a line
preference m, the PRL-machinery guarantees that (1) C (resp. C(a) ) is
derivable iff n < m, (2) ¬C (resp. ¬C(a) ) is derivable iff m < n, and (3)
neither C (resp. C(a) ) nor ¬C (resp. ¬C(a) ) are derivable iff n = m.
In any of these cases, PRL reveals the involved formulas Bi. If we are
interested in reconstructing a default theory within PRL, the preference
of the formulas Bi should not be higher than or equal to the preference of
A ⊃ C. The members of W , the facts, can all get a preference 1 (this means
that they can only be ‘deleted’ by theorems). The possibility to introduce
an infinite number of preferences, allows to express a refined ordering on the
PRL-equivalents of defaults.

Such a reconstruction is nothing but a special case of PRL. PRL allows
even for the contradiction of facts. Actually, not all facts are true with
certainty in all contexts. With the PRL-reinterpretation of the premises, it
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is not required to assume that W is consistent. Generally, the machinery of
PRL comes to the following ‘default’:

C is derived with derivation preference k: ¬C is not derived with
line preference l ≤ k / C ∈ Cn0

PRL(ΓA).

The original version of default logic does not satisfy several “intended”
properties. It is for instance not possible to derive Likes wine from (1)
Italian: Likes Wine/Likes Wine, (2) French:Likes Wine/Likes Wine and
(3) Italian ∨ French . As illustrated in Proof 4 (above) PRL derives this
intended consequence.

At the other hand, default logic derives Usable(Left arm) & Usable(Right
arm) from (1) true: Usable(x) &¬Broken(x)/Usable(x) and (2) Broken(Left
arm) ∨ Broken(Right arm). In the following proof it is shown that PRL

deals perfectly with these premises.
Proof 4.

1. (∀x)(Ux)3 – Prem –
2. (∀x)(Bx ⊃ ¬Ux)2 – Prem –
3. (Bl ∨ Br)1 – Prem –
4. Ul (1) CUI Ul3

5. Ur (1) CUI Ur3

6. Bl ⊃ ¬Ul (2) CUI (Bl ⊃ ¬Ul)2

7. Br ⊃ ¬Ur (2) CUI (Br ⊃ ¬Ur)2

8. Bl ∨ Br (3) CSub (Bl ∨ Br)1

9. ¬Ul ∨ ¬Ur (6,7,8) Dil (Bl ⊃ ¬Ul)2, (Br ⊃ ¬Ur)2,
(Bl ∨ Br)1

10. ¬Ur (4,9) DS (Bl ⊃ ¬Ul)2, (Br ⊃ ¬Ur)2,
(Bl ∨ Br)1, Ul3

11. ¬Ul (5,9) DS (Bl ⊃ ¬Ul)2, (Br ⊃ ¬Ur)2,
(Bl ∨ Br)1, Ur3

12. ♯2(Bl ⊃ ¬Ul) ∨ ♯2(Br ⊃ ¬Ur)2 ∨ ♯1(Bl ∨ Br) ∨ ♯3Ul
(5,10) Idenk –

13. ♯2(Bl ⊃ ¬Ul) ∨ ♯2(Br ⊃ ¬Ur)2 ∨ ♯1(Bl ∨ Br) ∨ ♯3Ur
(4,11) Idenk –

In view of mr1 and the minimal DENK-consequences derived in lines (12)
and (13) both Ul3 and Ur3 are unreliable, and hence lines (4), (5), (10) and
(11) have to be marked. This means that none of Ul, Ur, ¬Ul, ¬Ur are
finally derivable. However ¬Ul∨¬Ur is a PRL-consequence of the premises.
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6.2. Rescher’s strong and weak consequences

Diderik Batens showed me, that if we apply the minimal abnormality strat-
egy instead of the reliability strategy, (thus obtaining the logic PRL2),
Cn0

PRL2(ΓA) is the set of Rescher’s strong consequences of Γ . Indeed, A is
a PRL2-consequence of Γ A iff A is true in all minimally abnormal models
of Γ A, whereas these minimally abnormal models verify the maximally con-
sistent subsets of Γ A. If A is true in some minimally abnormal models of
Γ A, then A is a weak consequence of Γ A. I refer to Diderik Batens article in
the Proceedings of the JS-Symposium (Toruń, Poland, 1998) for the details.
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