
Logic and Logical Philosophy
Volume 8 (2000), 33–46

Joke Meheus∗

ON THE ACCEPTANCE OF PROBLEM

SOLUTIONS DERIVED FROM

INCONSISTENT CONSTRAINTS

Abstract. In this paper, I discuss the main difficulties one encounters when
solving problems with inconsistent constraints. I argue that in order to meet
these difficulties we need an inconsistency-adaptive logic that enables one to
derive as many (interesting) consequences as possible, but that at the same
time allows one to determine which consequences can be accepted. I show
that the inconsistency-adaptive logic ANA satisfies these requirements.

1. Introduction

One of the central insights of contemporary philosophy of science is that
reasoning in the sciences (as in other domains) is best understood from a
problem solving perspective. Within this approach, problems are typically
seen as composed of two components: a question to be answered1 and a set
of constraints (items of information that are relevant for the question in the
sense that they provide materials to derive the answer from).2 In line with

∗ Postdoctoral Fellow of the Fund for Scientific Research – Flanders.
1 In [7], the notion of a problem is conceived in a way that is sufficiently broad to

include not only questions to be answered (“intellectual problems”) but also states to be
realized (“action problems”). In the present paper, the discussion will be restricted to
intellectual problems.

2 Some authors use “constraints” in a much broader sense, including also meaning
postulates, heuristics, methodological rules, . . . (see, for instance, [13] and [11]). However,
as these are not relevant for the present paper, I shall not discuss them.
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34 Joke Meheus

this, a reasoning process is viewed as a process in which one tries to derive
the answer to a question from a set of constraints.

As I argued elsewhere (see [7] and [10]), problem solving in the sciences
frequently involves inconsistencies. In nineteenth century thermodynam-
ics, for instance, Rudolf Clausius tried to derive the answer to the ques-
tion whether Carnot’s theorem is valid from two incompatible approaches to
thermodynamic phenomena.3 Other examples are Planck’s and Einstein’s
derivation of Planck’s law (see, for instance, [16]) and Einstein’s account of
Brownian motion (see, for instance, [13]).4 In each of these cases, reasoning
from the inconsistencies was seen as necessary to arrive at satisfactory prob-
lem solutions. The reason is that the inconsistencies were relevant for the
problem at issue, and hence, could not be disregarded. Moreover, at the time
the problems were attacked, there were no sufficient grounds to resolve the in-
consistencies in a particular way. Hence, simply abandoning some of the con-
straints in order to restore consistency would have been an arbitrary decision.

Two difficulties are faced in such cases. The first is to determine when a
solution of the problem is acceptable. The second is to replace the inconsis-
tent set of constraints by a consistent one. An important guideline for the de-
cision on the first difficulty is that it should be plausible that the solution will
remain derivable after the second difficulty has been dismissed (i.e., after the
set of inconsistent constraints has been replaced by a consistent alternative).

In [6] and [8], I argue that reasoning processes involving inconsistencies
require an inconsistency-adaptive logic. Inconsistency-adaptive logics, orig-
inally designed by Diderik Batens (see, for instance, [2] and [3]), have the
peculiar property that they ‘oscillate’ between a paraconsistent ‘lower limit
logic’ and an ‘upper limit logic’. The latter is usually Classical Logic —
henceforth CL. What this comes to is that inconsistency-adaptive logics lo-
calize inconsistencies and adapt the rules of inference in view of these: in
the neighbourhood of inconsistencies they behave like the lower limit logic;
everywhere else they behave like the upper limit logic.

The aim of the present paper is twofold. First, I shall argue that rea-
soning processes involving inconsistencies require a specific inconsistency-
adaptive logic that enables one to derive as many (interesting) consequences
as possible, but that at the same time allows one to determine which conse-
quences can be accepted.

3 For a discussion of this example, see [6] and especially [8].
4 Other interesting case studies on inconsistencies in the sciences can be found in [5],

[14] and [15].
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Next, I shall show (for the propositional case) that the inconsistency-
adaptive logic ANA satisfies these requirements. As I show in [9], ANA

contains the entire ‘analyzing’ fragment of Classical Logic (Disjunctive Syl-
logism, Modus Tollens, Modus Ponens, Simplification, Negation of the Dis-
junction, . . . ), and moreover validates all classical rules in consistent ‘neigh-
bourhoods’. In view of these features, ANA not only leads to an extremely
rich consequence set, but moreover allows one to determine, in a very natural
way, when a problem solution derived from inconsistent statements should
be accepted.

I shall proceed as follows. In section 2, I discuss the main difficulties
one encounters when solving problems with inconsistent constraints; I also
discuss some central requirements a logic should meet for this type of rea-
soning process. Next, I briefly present the paraconsistent logic AN and the
adaptive logic ANA that is based on it (sections 3 and 4). In section 5,
I show that ANA can account for the requirements discussed in section 2.
I end with some open problems (section 6).

2. Reasoning from inconsistencies

As I mentioned in the introduction, problem solving processes that involve
inconsistencies confront one with two difficulties. On the one hand, one
should be able to decide when a problem solution is acceptable. On the
other hand, one wants to replace the inconsistent set of constraints by a
consistent alternative. In this section, I shall argue that a logical analysis of
the constraints may play an important role with respect to both difficulties.
I shall also argue, however, that this analysis requires a special kind of logic.

Two observations from the history of the sciences are important for the
first difficulty. The first is that, when a problem is solved against the back-
ground of inconsistent constraints, resolving the inconsistencies involved is
not seen as a necessary condition for accepting the solution. Einstein’s
derivation of Planck’s law, for instance, involved several inconsistencies.
Still, it was accepted by the scientific community before the inconsistencies
were resolved (see [16]). The second observation is that the mere derivability
of a solution (by some appropriate paraconsistent logic) is not considered as
a sufficient reason for accepting it. A problem solution derived from incon-
sistent statements is only accepted if it is likely to remain derivable after the
inconsistencies are resolved. Planck’s and Einstein’s derivation of Planck’s
law form an interesting example here. As Smith convincingly shows in [16],
both derivations are structurally similar. As a consequence, paraconsistent
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logics that are rich enough to account for the inferences involved validate
both derivations. Still, only Einstein’s derivation was accepted. The differ-
ence is that in the case of Planck’s derivation it was doubtful whether its
premises would still be accepted after the inconsistencies were resolved.

Some authors conclude from such examples that the decision whether a
problem solution derived from inconsistent statements should be accepted
cannot be made on purely formal grounds. According to Smith (see [16]),
for instance, this decision depends on the degree of confirmation of the state-
ments involved: only those problem solutions can be accepted that follow
from statements with the highest degree of confirmation. The idea behind
this is that the more confirming evidence one has for some member of an
inconsistent set of statements, the more likely it is that it will be retained
in the consistent alternative.

I shall argue, however, that a logical analysis may allow one to distin-
guish between ‘problematic clauses’ and ‘unproblematic clauses’ of a set of
constraints, and that this distinction can be important in deciding whether
a problem solution derived from inconsistent constraints should be accepted.
I first explain what I mean by problematic and unproblematic clauses.

Let Γ † be the set of all formulas of the form B1 ∨ · · · ∨ Bn (n ≥ 1; each
Bi being an atom) that are derivable from the following set of rules5:

. . . A ⊃ B . . . ≈ . . .∼A ∨ B . . .(1)

. . . A ≡ B . . . ≈ . . . (A ⊃ B) & (B ⊃ A) . . .(2)

. . . A ∨ A . . . ≈ . . . A . . .(3)

. . .∼∼A . . . ≈ . . . A . . .(4)

. . .∼(A & B) . . . ≈ . . .∼A ∨ ∼B . . .(5)

. . .∼(A ∨ B) . . . ≈ . . .∼A & ∼B . . .(6)

&(Γ ∪
∨

(∆ ∪ {B & C})) ≈ &(Γ ∪
∨

((∆ ∪ {B}) ∪
∨

(∆ ∪ {C})))(7)

∨
(&{A,B} ∪ Γ ) �

∨
({A} ∪ Γ )(8)

where &{A1, . . . , An} denotes any wff obtained by Permutation and Asso-
ciation from (. . . ((A1 & Ai) & . . .) & An),

∨
{A1, . . . , An} any wff obtained

5 The rules allow one to reduce formulas to conjunctive normal form, and to derive the
conjuncts of these. They are formulated in a way that is too complex for CL, but that
will make the proofs in section 5 easier.
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by Permutation and Association from (. . . ((A1 ∨Ai)∨ . . .)∨An), and where
A ≈ B abbreviates A � B and B � A. I say that A is a clause of Γ iff
A ∈ Γ †.

Intuitively, I say that A is an unproblematic clause of Γ iff A ∈ Γ †

and ∼A can only be obtained from Γ by relying on two ‘halves’ of an in-
consistency, or, which comes to the same, can only be obtained from Γ by
a combination of weakening constructive rules (such as Addition and Ir-
relevance) and analyzing rules (such as Disjunctive Syllogism and Modus
Tollens). Consider, for instance, Γ = {p,∼ p, r ∨ s,∼ r}. Here, ∼ s can only
be obtained from Γ by relying on p and ∼ p, and by applying a weaken-
ing constructive rule as well as an analyzing rule. To define the notion of
an unproblematic clause more precisely, I have to explain what I mean by
analyzing rules.

Analyzing rules typically allow one to break down complex formulas.
Some analyzing rules, such as Simplification, Modus Ponens and Disjunc-
tive Syllogism, lead to subformulas of given formulas. Other rules that we
consider intuitively as analyzing, such as A ⊃ B, ∼B � ∼A, do not have
this property. In that case, however, the formulas involved can be reduced
to equivalent formulas with ‘roughly’ the same degree of complexity in such
a way that the resulting conclusion is a subformula of the resulting premises.
For instance, A ⊃ B can be reduced to ∼A ∨ B, and as ∼B is available,
Disjunctive Syllogism can be applied to ∼A ∨ B to derive the subformula
∼A. In [9], I argue that, at the propositional level, all rules of CL that
we consider intuitively as analyzing can be obtained from a set of transfor-
mation rules (that equate a complex formula with another formula that has
roughly the same degree of complexity) together with two rules that lead to
subformulas of given formulas. The rules are (1)–(8) together with

(9)
∨

({A} ∪ Γ ),
∨

({∼A} ∪ ∆) �
∨

(Γ ∪ ∆)

where Γ ∪ ∆ 6= ∅.
In view of this result, I say that A is an unproblematic clause of Γ iff

A ∈ Γ † and ∼A does not follow from Γ by (1)–(9). Let me illustrate this
with an example. Consider the following set

(10) {p & q,∼ r, (p ∨ s) ⊃ r, q ⊃ t}

The set of clauses is {p, q,∼ r,∼ p ∨ r,∼ s ∨ r,∼ q ∨ t}. The unproblematic
clauses are q, ∼ s ∨ r, and ∼ q ∨ t; p, ∼ r, and ∼ p ∨ r are the problematic
clauses.
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It is typical for unproblematic clauses that they are not related to the
inconsistencies involved: eliminating an unproblematic clause from an incon-
sistent Γ † has no effect on the inconsistencies that follow from Γ †. Because
of this, an important adequacy criterion for consistent alternatives of an in-
consistent set of constraints Γ is that all unproblematic clauses of Γ should
be derivable from them. This is rational in view of the fact that, when replac-
ing an inconsistent set of constraints by a consistent alternative, one wants
to retain as much information as possible, and hence, one does not want to
eliminate more ‘parts’ of the original set than is necessary for resolving the
inconsistencies. In view of this, the fact that one is able to establish that
some clause is unproblematic makes it plausible that it will remain derivable
from the consistent replacement. So, in some cases problem solutions derived
from inconsistent constraints can be accepted on purely formal grounds: it
suffices to establish that they follow from unproblematic clauses.

Let us now turn to the second difficulty, namely replacing the inconsis-
tent constraints by a consistent alternative. An important observation here
is that problematic clauses are heuristically valuable in this replacement.
The reason is that a consistent alternative can never retain all problem-
atic clauses. Hence, the decision that a specific problematic clause should
or should not follow from the consistent replacement at once allows one to
eliminate some alternatives. Consider (10) again. One of the problematic
clauses is ∼ p ∨ r. If one decides that ∼ p ∨ r should be rejected, one can
eliminate all alternatives from which ∼ p ∨ r follows. If one decides that
∼ p ∨ r should be accepted, one can eliminate all alternatives from which
both p and ∼ r follow. In either case, one gains some information on how
the consistent replacement should look like. Note that something similar
does not hold for unproblematic clauses of Γ , for instance ∼ s ∨ r. Neither
the decision to accept this specific consequence of Γ nor the decision to re-
ject it provides information on how the conflict between p, ∼ r and ∼ p ∨ r
should be resolved.

So, a logical analysis of the constraints is also here important. It is this
analysis that allows one to distinguish between problematic and unproblem-
atic parts, and thus to localize sentences that provide information on how
the inconsistencies should be resolved.

The question is now which logic is adequate for this analysis. In view of
the previous paragraphs, we can formulate at least three requirements such
a logic should meet. The first is that it should enable one to distinguish
between problematic and unproblematic clauses. The second is that for
unproblematic clauses, it should enable one to solve all those problems that
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On the acceptance of problem solutions . . . 39

eventually (after the inconsistencies are resolved) will be solvable on the basis
of CL. (Remember that when replacing an inconsistent set of constraints
by a consistent alternative, one wants to retain all unproblematic clauses.)
The third requirement is that, for problematic clauses, the logic should be
as rich as possible, without leading to triviality. The reason for this is that,
in many cases, the decision how an inconsistency should be resolved has to
be based on a comparison of the different consistent alternatives. In order
for such a comparison to be possible, the logic should be as rich as possible,
also for problematic clauses.6

In section 5, I shall argue that the inconsistency-adaptive logic ANA

meets these requirements. But, first, I have to present ANA. As ANA is
an adaptive logic, I shall proceed in two steps. In the next section, I present
the lower limit logic AN on which ANA is based; in section 4, I show how
ANA can be obtained from AN.

3. The logic AN

Let L be the usual language of CL in which S, C, V, Pr and W are, respec-
tively, the set of sentential letters, the set of letters for individual constants,
the set of letters for individual variables, the set of letters for predicates
of rank r, and the set of wffs. Let L 0 be the fragment of L obtained by
restricting the logical symbols to “∼”, “∨”, “&”, “∀”, “∃” and “=”, and let
W0 be the set of wffs of L 0.

AN is a two-step system. I first define the three-valued system AN◦.
The designated values are 1 and X; the non-designated value is 0. Their
intuitive interpretation is as follows:

vM (A) = 0 : A is false

vM (A) = X : A is contradictory

vM (A) = 1 : A is consistently true

An AN◦-model is a couple M = 〈D, v〉 in which D is a set and v is an as-
signment function. To members of Pr, v assigns a triple 〈Π1,ΠX,Π0〉 where

(i) Π1 ∪ ΠX ∪ Π0 = Dr;
(ii) Π1 ∩ ΠX = ∅; ΠX ∩ Π0 = ∅; Π1 ∩ Π0 = ∅.

6 In [4], Batens argues that finding a consistent alternative for an inconsistent set of
statements can proceed in a more efficient way if, in my terms, only a limited number of
problematic consequences is derivable. However, as I argue in [10], the argument is only
valid for cases in which the inconsistencies can be resolved in a non-comparative way.
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To keep things simple, we stipulate that v1(P r) = Π1, vX(P r) = ΠX,
and v0(P r) = Π0. The assignment function v is defined as follows:

C1.1 v : S → {0, X, 1}
C1.2 v : C ∪ V → D
C1.3 vi : Pr → P(Dr)
C1.4 vi : = → P(D2)

where {〈α,α〉 | α ∈ C} = v1(=) ∪ vX(=)

In C1.3–4, the requirement on v0, vX and v1 is as explained; P(Dr) refers
to the power set of the r-th Cartesian product of D.

The valuation function vM determined by the model M is defined by:7

C2.1 vM : W0 → {0,X, 1}
C2.2 where A ∈ S, vM (A) = v(A)
C2.3 vM (πrα1 . . . αr) = i iff 〈v(α1), . . . , v(αr)〉 ∈ vi(πr)
C2.4 vM (α = β) = i iff 〈α, β〉 ∈ vi(=)
C2.5–7 clauses for the negation, disjunction and conjunction as defined by

the following matrices:

∼
∗1 0
∗X X
0 1

∨ 1 X 0

1 1 1 1
X 1 X 0
0 1 0 0

& 1 X 0

1 1 1 0
X 1 X 0
0 0 0 0

C2.8 vM ((∀α)A(α)) = 1 iff, for all β ∈ C, vM (A(β)) = 1;
vM ((∀α)A(α)) = 0 iff, for some β ∈ C, vM (A(β)) = 0;
otherwise, vM ((∀α)A(α)) = X

C2.9 vM ((∃α)A(α)) = 1 iff, for some β ∈ C, vM (A(β)) = 1;
vM ((∃α)A(α)) = 0 iff, for all β ∈ C, vM (A(β)) = 0;
otherwise, vM ((∃α)A(α)) = X

Truth in a model and semantic consequence are defined as usual.

To obtain AN from AN◦, we first upgrade the latter by the following
definitions:

A ⊃ B =df ∼A ∨ B(D1)

A ≡ B =df (A ⊃ B) & (B ⊃ A)(D2)

7 I only consider ω-complete models.
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Next, we specify a procedure for associating each formula with a set of
formulas in prenex conjunctive normal form — henceforth PCNF. Where Fa

is the set of atoms (primitive formulas and their negations), A is said to be
in PCNF iff it has the form

(†) Q&{
∨

Σ1, . . . ,
∨

Σn}

in which Q is a sequence of quantifiers and Σ1 ∪ · · · ∪ Σn ⊂ Fa. I shall use
expressions like (†) to refer to the set of all those wffs as well as (in other
contexts) to an arbitrary member of this set. With each A we associate the
set h(A) of all formulas that can be obtained from A by applications of D1,
D2, and T1–T16:

T1 relettering variables (as usual)

T2 A ∨ A ≈ A

T3 ∼∼A ≈ A

T4 ∼(A & B) ≈ ∼A ∨ ∼B

T5 ∼(A ∨ B) ≈ ∼A & ∼B

T6 ∼(∀α)A ≈ (∃α)∼A

T7 ∼(∃α)A ≈ (∀α)∼A

T8 (∀α)A ∨ B ≈ (∀α)(A ∨ B)

T9 A ∨ (∀α)B ≈ (∀α)(A ∨ B)

T10 (∀α)A & B ≈ (∀α)(A & B)

T11 A & (∀α)B ≈ (∀α)(A & B)

T12 (∃α)A ∨ B ≈ (∃α)(A ∨ B)

T13 A ∨ (∃α)B ≈ (∃α)(A ∨ B)

T14 (∃α)A & B ≈ (∃α)(A & B)

T15 A & (∃α)B ≈ (∃α)(A & B)

T16 &(Γ ∪
∨

(∆ ∪ {B & C})) ≈ &(Γ ∪
∨

(∆ ∪ {B}) ∪
∨

(∆ ∪ {C}))

with the usual restrictions on variables in T8–T15, and with the restriction
that T16 may only be applied to entire formulas; T2-15 may be applied to
subformulas. Let g(A) be the members of h(A) that are in PCNF.

I now define the logic AN. AN has the same models as AN◦, but AN-
truth in a model and AN-semantic consequence are defined differently. The
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procedure is somewhat unusual, but, as I show in [9], the resulting logic is
well-defined.

Let f(A) be a specific member of g(A), e.g., the one with the lowest Gödel
number. Extend the function f to sets as follows: f(Γ ) = {f(A) | A ∈ Γ}.

Definition. A is AN-true in a model M iff vM (f(A)) ∈ {1, X}.

Definition. A1, . . . , An �AN B iff B is AN-true in all models in which A1,
. . . , An are AN-true.

What this comes to is the following. Wffs in PCNF are AN-true in
a model iff they are AN◦-true in the model. All other formulas A are
associated with their PCNF f(A) and are AN-true in a model iff f(A) is
AN◦-true in the model. Obviously, Γ �AN A iff f(Γ ) �AN

◦ f(A).
In [9], I show that AN validates (1)–(9), and thus all analyzing rules of

CL. I also show that AN validates all constructive rules that are adjunctive
(for instance, A,B � A & B). All that is given up are some constructive
rules that are weakening, for instance, Addition and Irrelevance, or that are
‘paradoxical’, for instance, A � A ∨ (B & ∼B) and A � A & (B ∨ ∼B).

4. The adaptive logic ANA

The design of the adaptive logic ANA is rather straightforward. Its seman-
tics is obtained by selecting a specific set of AN-models. Let K(M) stand
for the set of primitive formulas A such that A & ∼A is AN-true (hence
AN◦-true) in M .

Definition. M is an ANA-model of Γ iff (i) M is an AN-model of Γ and
(ii) there is no AN-model M ′ of Γ such that K(M ′) ⊂ K(M).

Definition. Γ �ANA A iff A is true in all ANA-models of Γ .

All classical rules that are validated in AN are unconditionally valid in
ANA. Those that are invalid in AN are conditionally valid in ANA. This
means that they apply, provided a specific requirement is satisfied. Where
Σ ⊂ Fa, let us say that “

∨
Σ behaves consistently with respect to Γ” iff

Γ 2AN &{
∨

Σ,∼
∨

Σ}. It can be shown, for example, that:

if Γ �AN A, then Γ �ANA A ∨ B

iff each conjunct of f(A) behaves consistently with respect to Γ ; and that

if Γ �AN B, then Γ �ANA A ⊃ B

iff each conjunct of f(B) behaves consistently with respect to Γ .
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5. Reasoning from inconsistencies with ANA

I shall now show that ANA satisfies the conditions discussed in section 2.
I shall restrict the proofs to the propositional fragment of ANA.

The first is that the logic should allow one to distinguish between prob-
lematic and unproblematic clauses. Let Γ †

u be the set of unproblematic
clauses and Γ †

p the set of problematic clauses. The richness of ANA allows
us to define these sets in a very natural way:

Definition. Γ †
u = {A | A ∈ Γ †; Γ 2ANA ∼A}

Definition. Γ †
p = {A | A ∈ Γ †; Γ �ANA ∼A}

As (1)–(9) are valid in ANA, it is obvious that these definitions capture
the intuitive notions introduced in section 2.

The second condition is that, for unproblematic clauses, the logic should
be as rich as CL. As ANA is an inconsistency-adaptive logic with CL as
the upper limit logic, CnANA(Γ ) = CnCL(Γ ) for every consistent Γ . Hence,
in order to show that the second requirement holds, I only have to prove
that Γ †

u is consistent.

Lemma 1. For each A ∈ S, Γ †
u 2ANA A or Γ †

u 2ANA ∼A.

Proof. Suppose that Γ †
u �ANA p and Γ †

u �ANA ∼ p. If Γ †
u �ANA p, then

(i) p ∈ Γ †
u or (ii) there is a B such that p ∨ B ∈ Γ †

u and Γ †
u �ANA ∼B. In

view of Γ †
u �ANA ∼ p and the definition of Γ †

u , (i) is impossible. If (ii) would

hold true, Γ †
u �ANA ∼ p &∼B and, as (6) is unconditionally valid in ANA,

Γ †
u �ANA ∼(p ∨ B). But then, p ∨ B /∈ Γ †

u .

Theorem 1. For each A, Γ †
u 2ANA A or Γ †

u 2ANA ∼A.

Proof. In view of Lemma 1, it is sufficient to prove that, if Γ †
u �ANA A

and Γ †
u �ANA ∼A, then, for every subformula B of A, Γ †

u �ANA B and
Γ †

u �ANA ∼B. This is obvious in view of the fact that (1)–(9) are valid in
ANA.

The third condition is that, for problematic clauses, the logic should be
as rich as possible without leading to triviality. Evidently, the requirement
that the logic enables one to derive every sentence that follows by CL from
some consistent subset of Γ † is too strong. However, a minimal requirement
is that, for every maximally consistent subset ∆ of Γ †, the logic should
enable one to derive every atom that follows from ∆ by CL. I shall now
show that also this requirement is satisfied by ANA.
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Lemma 2. For all atoms A and all consistent Γ

if Γ †
�CL A, then Γ †

�AN
◦ A.

Proof. Suppose that A is an atom, that Γ is consistent, and that Γ †
2AN

◦

A. Let Γ † = {
∨

Σ1, . . . ,
∨

Σn}. As Γ †
2AN

◦ A, there is an AN◦-model
M = 〈v〉, such that vM (

∨
Σi) = {1, X}, for all

∨
Σi ∈ Γ †, and vM (A) = 0.

Define a CL-model such that, for each atom B, v′(B) = 1 if v(B) ∈ {1, X},
and v′(B) = 0 if v(B) = 0. Obviously, v′

M
(A) = 0. Moreover, v′

M
(
∨

Σi) = 1
for all

∨
Σi ∈ Γ † (by an inspection of the matrix for “∨”).

Theorem 2. If ∆ is a maximally consistent subset of Γ †, then {A | ∆ �CL

A; A is an atom} ⊆ CnANA(Γ ).

Proof. Suppose that A is an atom, that ∆ is a maximally consistent subset
of Γ †, and that ∆ �CL A. In that case, there is a finite Θ ⊆ ∆ such that
Θ �CL A. By Lemma 2, Θ �AN

◦ A. But then, Θ �AN A (by the definition
of AN), and thus Γ †

�AN A. Hence, Γ �AN A, (in view of the definition
of Γ † and the fact that (1)–(9) are valid in AN), and Γ �AN A (in view of
the fact that, if Γ �AN A, then Γ �ANA A).

6. Open problems

In this paper, I showed that (at the propositional level) the inconsistency-
adaptive logic ANA enables one to introduce, in a very natural way, a
distinction between problematic and unproblematic clauses. This distinc-
tion is of central importance for deciding whether problem solutions derived
from inconsistent constraints should be accepted. I also showed that for un-
problematic clauses, ANA is precisely as rich as CL, and for problematic
clauses as rich as possible without leading to triviality.

In a subsequent paper, I shall upgrade the proofs to the predicative level.
I shall also formulate definitions for problematic and unproblematic clauses
that do not refer to the final analysis of a set of sentences (as is the case for
the definitions presented here), but to the stage in a derivation of analysis.
The formulation of the definitions in the latter case is made possible by the
block-approach of [1].
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