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JAŚKOWSKI’S CRITERION

AND THREE-VALUED

PARACONSISTENT LOGICS∗

Abstract. A survey is given of three-valued paraconsistent propositional
logics connected with Jaśkowski’s criterion for constructing paraconsistent
logics. Several problems are raised and four new matrix three-valued para-
consistent logics are suggested.

From the paper of Jaśkowski [14, p. 145] we can extract the following criterion
for a constructing paraconsistent logic PL:

a) PL does not verify the implicational law of overfilling

p → (¬ p → q);

b) PL is would be rich enough to enable practical inference;

c) PL has would have an intuitive justification.

The second condition means for us that PL verifies modus ponens and at
least BCI-logic:

p → p ,(I)

(q → r) → ((p → q) → (p → r)) ,(B)

(p → (q → r)) → (q → (p → r)) .(C)

∗ This work is supported by INTAS grant 95-0365.

© 2001 by Nicolaus Copernicus University



82 Alexander S. Karpenko

The third condition means that in three-valued PL restrictions of the unary
operation ¬ and the binary operations ⊃, ∨, ∧ to the subset {0, 1} coincide
with the classical logical operations: negation, implication, disjunction and
conjunction. Now let us consider some implications and negations:

→J 0 1/2 1

0 1 1 1

∗1/2 0 1/2 1

∗1 0 1/2 1

→S 0 1/2 1

0 1 1 1

∗1/2 0 1/2 1

∗1 0 0 1

→Se 0 1/2 1

0 1 1 1

∗1/2 0 1 1

∗1 0 1 1

→H 0 1/2 1

0 1 1 1

1/2 0 1 1

∗1 0 1/2 1

→L 0 1/2 1

0 1 1 1

1/2
1/2 1 1

∗1 0 1/2 1

→K 0 1/2 1

0 1 1 1

1/2
1/2

1/2 1

∗1 0 1/2 1

p ¬J p ∼ p ⌈ p ⌉ p 3p

0 1 1 1 1 0

1/2 0 1/2 1 0 1

1 1/2 0 0 0 1

In the above mentioned paper, Jaśkowski (with a reference to J. Słupecki)
gives the first example of a matrix three-valued paraconsistent logic with the
following operations: →J and ¬J. But the thesis

(Łuk) p → (¬ p → (¬¬ p → q)) ,

which was already known to J. Łukasiewicz, holds in this logic. This was the
reason for Jaśkowski to reject this logic.

It is really surprising that Jaśkowski did not take as negation the in-
volution ∼ from Łukasiewicz’s three-valued logic Ł3 with initial operations
{→L,∼} [17]. The most famous three-valued paraconsistent logic which was
constructed independently in many works is the one with →J, ∼, and ∨ as
max, ∧ as min (see [24], [4], [7, p. 214], [21]1). Let us denote this logic by AI.

1 We have also a first-order paraconsistent logic introduced by N.C.A. da Costa in
1964. Cf. also Rozonoer’s [21].
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Now let us consider other three-valued paraconsistent logics. B. Sobociń-
ski [23] axiomatized three-valued matrix logic with operations →S and ∼. It
turns out that this logic (S1) is the implication-negation fragment of RM

[19]. In [9] we have a full axiomatization of the three-valued case of RM,
namely, RM3.

The situation in as follows: to relevant logic R [1] the two following
axioms are added

(¬A ∧ B) → (A → B),

A ∨ (A → B).

A. Avron [5] proved that A1 and RM3 are identical (see also [6]):

p →S q = (p →J q) ∧ ∼ q →J ∼ p),

p →J q = q ∨ (p →S q).

D. Batens [7, p. 201] considered another three-valued paraconsistent logic:
Heyting’s three-valued implication →H with involution ∼. But Batens rejects
this logic (let us denote it by B1) because adding disjunction to it yields
several unpleasant consequences.

Note that the implication of S1 is relevant, the implication of B1 intu-
itionistic, whereas the implication of A1 classical.

Now I want to attract readers attention to a different famous three-valued
paraconsistent logic, namely P1 [17] with operations →Se and ⌈. Here oper-
ations ∨ and ∧ are defined by means of →Se and ⌈, where p ∨ q is not max,
p∧q is not min. For the first time truth-tables for these operations appeared
in [10], where they were used for the refutation of some tautologues of C2

which are invalid in the paraconsistent logic C1 of N.C.A. da Costa. See
also [11], where P1 was called as F. The logic P1 was also independently
found by C. Mortensen in 1979, who called it C0,1 (see [18, p. 299]). See
also A. Arruda’s system V1 in [2] and in [25].

Only in 1997 E.K. Vojshvillo and J-Y. Béziau [8] discovered indepen-
dently that in P1 from ⌈A and ⌈ ⌈A follows B. So, P1 contains the formula
(Łuk). About unusual properties of P1 see [15].

Let us note that, if in the full P1 the operation ⌈ is replaced by the
operation ∼ then we have Mortensen’s paraconsistent logic C0,2 [18] which
is a generalization of da Costa’s logic C1.

Now we consider the following two three-valued paraconsistent logics:
Priest’s logic LP [20], and D’Ottaviano’s logic J3 [12]. The first is Kleene’s
three-valued logic {→K,∼,∨,∧} [16] with two designated truth-values.
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F. Asenjo [3] was the first to propose this logic. It is well known that such
logic verifies all tautologies of classical propositional logic C2. So we have
there the law of noncontradiction and the law p → (¬ p → q). But G. Priest
defines a relation of logical consequence such that B does not follow from
{A,¬A}, and as a consequence modus ponens is invalid. The second is the
logic A1 with the extra connective 3. The functional properties J3 are the
same as those of Łukasiewicz’s three-valued logic {→L,∼} [17], but with the
two designated truth-values. D’Ottaviano suggests two axiomatizations of
J3 and one of them is rather unusual: it is an extension of from C2 with the
operations →J, ⌉, ∧, ∼ (see especially in [13, ch. IX]). So we once more have
the law of noncontradiction and the law p → (¬ p → q). Then the question
arises, why do we criticize these laws?

At last, we can suggest four new three-valued paraconsistent logics:
{→J, ⌈}, {→S, ⌈}, {→H, ⌈}, and {→L, ⌈}. But all these logics as well as
P1 verify the formula (Łuk).

In connection with the formula (Łuk) the problem arises of making more
precise the notion of paraconsistent logic. In a usual way, a logic is paracon-
sistent iff from A and ¬A does not follow an arbitrary B. Now D. Batens
suggests to restrict this notion: A logic with the formula (Łuk) is not strictly
paraconsistent, i.e., for some A: B is derivable from A and ¬A.

Incidentally, E.K. Vojshvillo suggests the following generalization of the
notion of paraconsistency: A logic is paraconsistent, if it does not contain a
finite set of formulas from which an arbitrary formula B is derivable.

We still have another problem. Although Johanson’s minimal logic is
paraconsistent in the usual sense, it verifies the formula p → (¬ p → ¬ q).
(Jaśkowski pointed out that Kolmogorov’s logic has the same properties [14,
p. 146]). For details, see [8], where new definitions of paraconsistent logic
are given.
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