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k-TRANSFORMS IN CLASSICAL

AND PARACONSISTENT LOGICS

Abstract. We study some metamathematical properties of various classical
and paraconsistent logical systems. In particular, we discuss the concept of
a k-transform of a formula and consider some of its applications.

Keywords: k-transform, paraconsistent logic, predicate calculus.

1. Introduction

This is essentially an expository paper in which we treat various known
classical and paraconsistent logical systems and study some of their meta-
mathematical properties. The investigation of these properties is limited to
the syntactical level and only finitary methods are employed.

In most cases a paraconsistent system has no well defined (and formal-
ized) semantics as its starting point. In effect, in order to build such a se-
mantics, in the strict sense of the word, we clearly need a previous theory to
function as its underlying basis. In this connection classical logic and extant
set theory are, as a matter of principle, excluded.

So, three ways are open to construct the semantics of a paraconsistent
system S: 1) We treat S syntactically, with the help of informal hints and
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more or less definite intuitions, its semantics remaining informal, at least to
begin with; 2) We take profit of a previously developed paraconsistent system
to construct a semantics for S; 3) We may employ, say, a set theory whose
underlying logic is S, to elaborate semantics for some its parts (for instance,
the elementary logic of S).

In what follows, we proceed syntactically. It is implicit that finitary syn-
tactical means (in the sense of [15]) are allowed in any study of the syntactical
counterpart of a logical system, paraconsistent or not.

2. Hierarchies of paraconsistent systems

The basic condition that a paraconsistent logic S must satisfy is that, from
any two contradictory statements, one can not deduce, according to the rules
of S, any statement whatever.

The first author introduced, several years ago (cf. [9], [10] and [11]), a
hierarchy of paraconsistent propositional calculi, and two corresponding hi-
erarchies of paraconsistent first-order predicate calculi and of paraconsistent
first-order predicate calculi with equality. These systems, described below,
were not intended as true logics, governing the actual world, but as theoret-
ical systems showing the possibility in principle of strong systems of para-
consistent logic. They served as foundations for the construction of strong
paraconsistent set theories and paraconsistent mathematics (see, for exam-
ples, [11]). The applications of such systems to actual, concrete problems
constitute a matter of fact and of experience, that can not be solved a priori.

2.1. The hierarchy of propositional calculi Cn, 1 6 n 6 ω

2.1.1. The classical propositional calculus C0

The primitive symbols of the language L are the following: 1) A denumerably
infinite family of propositional variables; 2) Connectives: ¬, ∨, → and ∧ (↔,
equivalence, is defined as usual); 3) Auxiliary symbols: parentheses. With
these symbols, we define formula and other syntactical concepts as usual.

Let ϕ, ψ and χ be formulas. We present briefly, in Hilbert-Bernays
style (see [15]), the propositional postulates (axiom schemes and primitive
deduction rules) of the C0 as follows:

→1) ϕ→ (ψ → ϕ)

→2) (ϕ→ ψ) → ((ϕ→ (ψ → χ)) → (ϕ→ χ)

→3) ϕ, (ϕ→ ψ) /ψ
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∧1) (ϕ∧ψ) → ϕ

∧2) (ϕ ∧ ψ) → ψ

∧3) ϕ→ (ψ → (ϕ ∧ ψ))

∨1) ϕ→ (ϕ ∨ ψ)

∨2) ψ → (ϕ ∨ ψ)

∨3) (ϕ→ χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))

¬1) (ϕ→ ψ) → ((ϕ→ ¬ψ) → ¬ϕ))

¬2) ¬ϕ→ (ϕ→ ψ)

¬3) ϕ ∨ ¬ϕ

The notions of proof, theorem, etc. of C0 and the paraconsistent calculi
introduced below are the standard ones. We shall use abbreviations like
→1,2,3: it denotes the set of postulates →1, →2 and →3.

2.1.2. The paraconsistent propositional calculus C1

The language of C1 is the same as that of C0, that is L.

Definition 1. ϕ◦ ≡Def ¬(ϕ ∧ ¬ϕ).

Definition 2. ¬∗ϕ ≡Def ¬ϕ ∧ ϕ◦.

The postulates of the paraconsistent calculus C1 are those from →1 to ∨3

above, plus the following:

¬′

1) ψ◦ → ((ϕ→ ψ) → ((ϕ → ¬ψ) → ¬ϕ)))

¬′

2) (ϕ◦ ∧ ψ◦) → ((ϕ → ψ)◦ ∧ (ϕ ∧ ψ)◦ ∧ (ϕ ∨ ψ)◦)

¬′

3) ¬¬ϕ→ ϕ

¬′

4) ϕ ∨ ¬ϕ

Remark. The negation ¬∗ has all properties of classical negation. Though
C1 is obviously weaker than C0, in certain sense the later is contained in the
former. The abbreviation ϕ◦ means that, intuitively, ϕ is a “good” formula;
the “good” formulas satisfy all postulates of C1.
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2.1.3. The paraconsistent propositional calculi Cn, 1 < n < ω

The language of Cn, 1 < n < ω, is that of C0. Let us define:

Definition 3. ϕn ≡Def ϕ◦◦···◦ (with ◦ n times) n > 1.

Definition 4. ϕ(n) ≡Def ϕ(n−1) ∧ ϕn for n > 1 and ϕ(1) ≡Def ϕ1.

Definition 5. ¬(n)ϕ ≡Def ¬ϕ ∧ ϕ(n), n > 1.

We note that in Cn, 1 6 n < ω, the negation ¬(n) has all properties of
the classical negation.

The calculi Cn, 1 < n < ω, are characterized by the postulates →1,2,3,
∧1,2,3, ∨1,2,3 and the following axiom schemes:

¬n
1 ) ψ(n) → ((ϕ→ ψ) → ((ϕ → ¬ψ) → ¬ϕ)))

¬n
2 ) (ϕ(n) ∧ ψ(n)) → ((ϕ→ ψ)(n) ∧ (ϕ ∧ ψ)(n) ∧ (ϕ ∨ ψ)(n))

¬n
3 ) ¬¬ϕ→ ϕ

¬n
4 ) ϕ ∨ ¬ϕ

2.1.4. The paraconsistent propositional calculus Cω

Cω has the language L and its postulates are →1,2,3, ∧1,2,3, ∨1,2,3, plus the
following:

¬ω
1 ) ¬¬ϕ→ ϕ

¬ω
2 ) ϕ ∨ ¬ϕ

Cn, 0 6 n 6 ω, are consistent (see [9] and [10]). In Cn, 1 6 n 6 ω, the
principle of contradiction, i.e. ¬(ϕ ∧ ¬ϕ), is not a valid schema, and from
two contradictory formulas, ϕ and ¬ϕ, it is not in general possible to deduce
an arbitrary formula.

2.2. The predicate calculi without equality C∗

n
, 0 6 n 6 ω

The language of C∗

n, 0 6 n 6 ω, is defined as in [6] and [9], where the
propositional language is modified to be transformed into the language of
first-order logic without equality.
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2.2.1. The predicate calculus C*
n
, 0 < n < ω

The postulates of C∗

n are those of Cn, 0 < n < ω, to which we add the
following (x is a variable, ϕ(x) is a formula, ψ is a formula which does not
contain x free, and d is a term is free for x in ϕ(x)):

∀1) ∀xϕ(x) → ϕ(d)

∀2) ψ → ϕ(x) /ψ → ∀xϕ(x)

∀3) ∀x(ϕ(x))(n) → (∀xϕ(x))(n)

∃1) ϕ(d) → ∃xϕ(x)

∃2) ϕ(x) → ψ /∃xϕ(x) → ψ

∃3) ∀x(ϕ(x))(n) → (∃xϕ(x))(n)

K) ϕ ↔ ψ, where ϕ and ψ are congruent formulas, or one is obtained
from the other by the suppression of vacuous quantifiers (see [15],
p. 153).

2.2.2. The predicate calculus C*
0

The postulates of C∗

0 are those of C0 plus ∀1,2 and ∃1,2.

2.2.3. The predicate calculus C∗

ω

C∗

ω has the following postulates: those of Cω plus ∀1,2 and ∃1,2 and K above.

2.3. The predicate calculi C=

n
, 0 6 n 6 ω

The hierarchy of predicate calculi with equality C=
n , 0 6 n 6 ω, is obtained

from C*
n, 0 6 n 6 ω, by the addition of the symbol ‘=’ of equality and the

corresponding usual axiom schemes:

=1) ∀x(x = x)

=2) x = y → (ϕ(x) ↔ ϕ(y)),
where ϕ(z) is a formula, and x and y are distinct variables free for
z in ϕ(z).

In the next three definitions, S is a formal system whose underlying logic
contains one of the propositional calculi Cn, 0 6 n 6 ω.

Definition 6. S is said to be trivial (or overcomplete) if for any sentence ϕ
of its language ⊢ ϕ in S; otherwise, S is said to be non trivial.
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Definition 7. S is called inconsistent if there exists a formula ϕ such that
⊢ ϕ and ⊢ ¬ϕ in S; otherwise, S is called consistent.

Definition 8. S is called finitely trivializable if and only if there exists a
formula ϕ such that adjoining ϕ to the system as a new axiom, the resulting
formal system is trivial.

Cn, C∗

n and C=
n , 0 6 n < ω, are finitely trivializable, but Cω, C∗

ω and C=
ω

are not. For details on the paraconsistent logics defined see, for example,[9]
and [11] and the works cited there.

3. Some type theories

We now present a hierarchy of type theories (or higher-order logics) related
to the calculi described above.

To begin with, we define the notion of a type symbol.

Definition 9. Type is a syntactical notion, characterized as follows:

t1. τ is a type;

t2. if t1, t2, . . . , tm, 0 < m < ω, are types, then the 〈t1, t2, . . . , tm〉 is a
type;

t3. the only types are those given by t1 and t2.

Definition 10. The height of a type t, denoted by h(t), is defined as follows:

h1. if t = τ , then h(t) = 0;

h2. if t = 〈t1, t2, . . . , tm〉, 0 < m < ω, then
h(t) = max{h(t1), h(t2), . . . , h(tm)} + 1.

3.1. The type system T0

T0 is a classical simple theory of types. It has the following primitive symbols:
1) The connectives, quantifiers and auxiliary symbols of C=

0 , to which we add
the comma; 2) Given any type t, a denumerably infinite family of variables of
type t; 3) If t is a type, a family of constant symbols of this type. Variables
and constants of type different of the type τ are called predicate symbols.
We easily introduce the concepts of atomic formula, formula, closed formula
(or sentence), etc.

The postulates of T0 are those of C=
0 , with obvious adaptations.
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Two remarks are in order: 1) The type stratification is here conceived
especially as a device to hinder some circular definitions (in the case of clas-
sical logic they contribute to the elimination of some known paradoxes); 2)
Extensionality is not assumed in general because we interpret T0 as an inten-
tional type theory. However, extensional predicates are not ruled out: they
are particular predicates and their theory can be encompassed by T0.

3.2. The system Tn, 1 6 n 6 ω

The system Tn, 1 6 n 6 ω, is derived from T0, as C=
n is obtained from C=

0 ,
with clear modifications.

4. k-transforms

In this section, we study the concepts of k-transform and of P -k-transform
(see [3], [7] and [10]), and apply them to solve some metamathematical prob-
lems connected with the logical systems of the preceding sections.

4.1. k-transforms in classical logic

Our symbolism and terminology are borrowed from Kleene’s book (see [15]),
with obvious changes (cf. [3, 10]). In particular, C∗

0 with k individuals, de-
noted by Ck

0 and called predicate calculus with k-individuals, is C∗

0 plus the
new individual constants 1, 2, 3, . . . , k, k > 1. We introduce the notion
of a variable which occurs in a formula associated with a proper predicate
symbol, as follows:

Definition 11. Let P be a proper predicate symbol of arity m (m > 0),
that occurs in the formula ϕ; the variable x occurs in ϕ associated with P
if there exist in ϕ occurrences of P of the form P (x1, x2, ..., xm), where, for
some i, xi is x, with 0 < i 6 m.

The notion of k-transform of a formula of Ck
0 is defined in [14] and [15].

The classical predicate calculus with k individuals and q proper predicate
letters, denoted by Ck,q

0 , is C*
0 with k individuals and only q proper predicate

symbols (or letters), i.e., predicate symbols whose arity is greater than zero.

The calculus Ck,0
0 , i.e., with zero proper predicate symbols, is C0 with a

suitable definition of atomic formula.
The P -k-transforms of a formula of Ck

0 is introduced by the following
definition (one starts with a formula ϕ and proceeds step by step to the
P -k-transforms of the subformulas of ϕ):
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Definition 12. Let P be a predicate symbol of arity m of Ck
0 . The P -k-

transforms of the formula ϕ of Ck
0 are formulas obtained as follows:

pk1. In ϕ there are no free occurrences of variables associated with P :

pk1.1) If ϕ is of the form ¬α, then the P -k-transform of ϕ is ¬(αz),
where αz is the P -k-transform of α;

pk1.2) If ϕ is α → β, then the P -k-transform of ϕ is (αz) → (βz),
where αz and βz are the P -k-transforms of α and β respec-
tively. Analogously, we define the P -k-transforms of α ∨ β and
α ∧ β;

pk1.3) Let ϕ be ∀xα(x), then:

(a) If there are no occurrences of x in α(x) both free and asso-
ciated with P, the P -k-transform of ϕ is ∀x(αz(x)), αz(x)
being the P -k-transform of α(x);

(b) Otherwise, the P -k-transform of ϕ is the conjunction
αz(1)∧αz(2)∧ · · · ∧αz(k), where αz(ℓ) is the P -k-trans-
form of α(ℓ), 0 < ℓ 6 k.

pk1.4) If ϕ is ∃xα(x), using disjunction instead of conjunction, we de-
fine the P -k-transform of ∃xα(x);

pk1.5) If ϕ is a predicate symbol different of P , with any terms attached
to it, or if ϕ is P , but there are no variables in ϕ associated with
P , then the P -k-transform of ϕ is ϕ;

pk2. In ϕ there are free occurrences of variables associated with P : let ϕ
be α(x1, x2, ..., xm) where x1, x2, . . . , xm are free variables associated
with P . The P -k-transforms of ϕ are the P -k-transforms of all for-
mulas α(p1, p2, ..., pm), where p1, p2, . . . , pm is any arrangement with
repetition of rang m, of the k expressions 1, 2, . . . , k.

In order to simplify the exposition, we suppose that all vacuous quantifiers
of ϕ are suppressed, that no variable occurs free and bound in ϕ, and that
any variable in ϕ is linked to only one occurrence of a quantifier.

Let P1, P2, . . . , Ph be h predicate symbols. One may generalize the
concept of P -k-transform (k > 0) and define the concept of a P1-P2-...-Ph-k-
transform of a given formula ϕ. When h = 0, the P1-P2-...-Ph-k-transform
of ϕ is ϕ. If all predicate symbols of ϕ belong to {P1, P2, . . . , Ph}, then the
P1-P2-...-Ph-k-transforms of ϕ are the standard k-transforms of Hilbert and
Bernays (see [3] and [15]). When k is zero, the P1-P2-...-Ph-k-transform of ϕ
is also ϕ.
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Lemma 1. If ⊢ ϕ in C∗

0 (or in Ck
0 ), then the P -k-transforms of ϕ are provable

in Ck
0 .

Proof. The postulates of C∗

0 (or of Ck
0 , k > 1) are →1,2,3, ∧1,2,3, ∨1,2,3, ¬1,2,3

and ∀1,2 and ∃1,2 above. Let α1, α2, . . . , αm be a (formal) proof of ϕ in C∗

0

(or in Ck
0 ). We shall prove, by induction, that the P -k-transforms of any

formula αi, 1 6 i 6 m, in the proof of ϕ, are provable in Ck
0 .

If i = 1, αi is a propositional axiom or a quantificational axiom. In the
first case, it is clear that the P -k-transforms of αi are theorems of Ck

0 . In the
second, αi is of one of the forms ∀1 or ∃1.

In the case of ∀1, αi is of the form ∀xα(x; d) → α(d; d). Therefore, we
have:

1. There are no free occurrences of x associated with P in α(x; d). If
α(d; d) does not have free occurrences of d associated with P , the P -k-
transforms of αi are of the form ∀x(α(x; d)z) → α(d; d)z, where α(x; d)z

and α(d; d)z are the P -k-transforms of α(x; d) and α(d; d) respectively.
If there are free occurrrences of d associated with P in α(d; d), then the
P -k-transforms of αi are of the form ∀x(α(x; ℓ)z) → α(ℓ; ℓ)z, in which ℓ
is a numeral and α(x; ℓ)z and α(ℓ; ℓ)z are the P -k-transforms of α(x; ℓ)
and α(ℓ; ℓ).

2. α(x; d) contains free occurrences of x associated with P . Therefore, the P -
k-transforms of αi are expressions like α(1; ℓ)z∧α(2; ℓ)z∧· · ·∧α(k; ℓ)z →
α(ℓ; ℓ)z, whose meanings are clear.

In both hypotheses, the P -k-transforms of αi are provable in Ck
0 .

We treat postulate ∃1 similarly.
Now, let us suppose that i > 1 and that all P -k-transforms of the formulas

α1, α2, . . . , αi−1 are provable in Ck
0 . We have to show that the same is true

of αi.
When αi is an axiom, its P -k-transforms are provable. Hence, it suffices

to consider the cases in which αi is an immediate consequence of a preceding
formula by one of the rules ∀2 or ∃2, or is an immediate consequence of two
previous formulas by rule →3.

1. Rule ∀2: αi is, then, of the form χ→ ∀xβ(x), in which χ does not contain
x free, and there exists αj, j < i, such that αj is χ→ β(x). When x does
not have free occurrences associated with P in β(x), the P -k-transforms of
αj and αi are of the forms χz → β(x)z and χz → ∀x(β(x)z). Otherwise,
αj and αi have P -k-transforms of forms χz → β(ℓ)z, ℓ = 1, 2, . . . , k,
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and χz → β(1)z ∧ β(2)z ∧ · · · ∧ β(k)z. In both alternatives, from the
P -k-transforms of αj one can deduce any P -k-transforms of αi.

2. Rule ∃2 is handled analogously.

3. Rule →3: αi is an immediate consequence of two formulas β and β → αi,
appearing in the formal deduction before αi. Any P -k-transforms of β,
denoted by βz, is provable in Ck

0 , as well as any P -k-transforms of β → αi,
denoted by βz → αz

i . Hence, αz
i , i.e., any P -k-transforms of αi is also

provable.

So, the proof of Lemma 1 is complete.

Lemma 2. If Γ ⊢ ϕ in C∗

0 (or in Ck
0 ), ∆ is a set of the P -k-transforms of the

formulas of Γ and β is any P -k-transform of ϕ, then ∆ ⊢ β in Ck
0 .

Proof. By an extension of the proof of Lemma 1.

Lemma 3. Any (formal) theorem ϕ of C∗

0 (or of Ck
0 ) is such that any P1-P2-

...-Ph-k-transform of ϕ is provable in Ck
0 .

Proof. Consequence of Lemma 1.

Lemma 4. If Γ ⊢ ϕ in C∗

0 (or in Ck
0 ), ∆ is the set of P1-P2-...-Ph-k-transforms

of the formulas of Γ , and β is any P1-P2-...-Ph-k-transform of ϕ, then ∆ ⊢ β
in Ck

0 .

Proof. Application of Lemma 3.

On the above lemmas, see [3], [7] and [8].

Theorem 1. Let Γ ∪{ϕ} be a set of formulas of C∗

0 with q proper (i.e., arity
equal to or greater than 1) predicate symbols, with or without k individuals,
such that Γ ⊢ ϕ in this calculus. Then, any P1-P2-...-Ph-k-transform of ϕ
can be deduced from the P1-P2-...-Ph-k-transforms of the formulas of Γ in
C∗

0 with q − h proper predicate symbols, h 6 q, and k individuals.

Proof. By Lemma 4, in the (formal) deduction of any P1-P2-...-Ph-k-trans-
form of ϕ from the P1-P2-...-Ph-k-transforms of the formulas of Γ , the pred-
icate symbols to which are attached only numerals, can be treated as atomic
formulas of arity zero, that is, as propositional letters.

Theorem 2 (Hilbert and Bernays). If Γ ⊢ ϕ in C∗

0 , then any k-transform of
ϕ can be deduced from the k-transforms of the formulas of Γ in C0.
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Proof. Let us suppose that P1, P2, . . . , Ph are all proper predicate symbols
which occur in the formulas Γ ∪ {ϕ}. By the preceding proposition, the P1-
P2-...-Ph-k-transforms of ϕ, i.e., its k-transforms, can be deduced from the
P1-P2-...-Ph-k-transforms of the formulas of Γ in the predicate calculus with
zero proper predicate symbols, that is, C0.

In the next two theorems, we employ the terminology of Church’s book
(see [5]).

Theorem 3. Every valid formula of the predicate calculus C∗

0 has a thesis
of C0 as associated formula of the propositional calculus (cf. [5], p. 180).

Proof. Immediate consequence of the preceding theorem.

Theorem 4. The classical predicate calculus of first order is consistent with
reference to the transformation of α into ¬α, is absolutely consistent, and is
consistent in the sense of Post (see [5], p. 108). But it is not complete with
reference the transformation of α into ¬α, is not absolutely complete, and is
not complete in the sense of Post (cf. [5], p. 110).

Proof. Apply the above theorems with appropriate adaptations.

Theorem 5. For any valid formula of the classical predicate calculus in
which there are no quantifiers, there exists a proof composed only of formulas
without quantifiers.

Proof. Corollary to the preceding results.

Theorem 6. Every valid formula of the predicate calculus C∗

0 without quan-
tifiers is an instance of a propositional tautology.

Theorem 7. If the formula ϕ does not contain the symbol of equality and
⊢ ϕ in C=

0 , then ⊢ ϕ in Ck
0 .

Proof. When ⊢ ϕ in C=
0 , then ϕ is a consequence, in C∗

0 , of ∀x(x = x) and of
a finite number of formulas of the form x = y → (α(x) ↔ α(y)). Therefore,
the =-1-transform of ϕ, that is ϕ, is a consequence of the =-1-transforms
of formulas of these forms. In other words, ϕ would be deductible from the
formula 1 = 1, as it is easy to verify. Since in the resulting deduction the
formula 1 = 1 behaves like a predicate symbol of arity zero, we have that
⊢ ϕ in Ck

0 , taking into account that we may replace 1 = 1 by a closed formula
which is propositionally valid.
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Theorem 8. Let Γ ∪ {ϕ} be a set of formulas of C∗

0 . Then, Γ ⊢ ϕ in Ck
0 if

and only if Γ ⊢ ϕ in C=
0 .

Proof. Corollary to Theorem 7.

It is easy to see that our exposition remains valid when function symbols
are added to the predicate calculi here studied.

Open formula and quasi -tautology are defined as in Shoenfield’s book (cf.
[17], p. 49).

Using the previous theorems, it is not difficult to prove the following:

Theorem 9 (Hilbert and Ackermann). Let Γ be a set of open formulas of the
classical predicate calculus, with or without, equality; then Γ is inconsistent
if and only if there is a quasi-tautology which is a disjunction of negations of
instances of formulas of Γ .

As in Shoenfield’s book, using Theorem 9 we can prove, by finitary means,
the consistency of Robinson’s arithmetic system, as well as Herbrand’s the-
orem. Connections of the present exposition with the two ε-theorems of
Hilbert and Bernays ([14] and [16]) will be left to future papers.

Some of our results are derivable through a different notion of transform.
Let P be a predicate symbol of arity m > 0 and i be a number less

than m. If, in the formula ϕ, we supress, in each occurrence of P , the
argument of place i, then P is transformed into a predicate symbol of arity
m − 1. The formula so obtained from ϕ is called the (P ; i)-transform of ϕ
(we suppose that in ϕ all vacuous quantifiers are eliminated). In general, we
define the (P ; i1, i2, ..., in)-transform of ϕ, n 6 m, and P1, P2, . . . , Pu being
u predicate symbols of arities m1, m2, . . . , mu respectively, we also define
the (P1; i

1
1, i

1
2; ..., i

1
n1

), (P2; i
2
1, i

2
2; ..., i

2
n2

), . . . , (Pu; iu1 , i
u
2 ; ..., iunh

)-transform of
a formula ϕ.

We have, for example:

Theorem 10. Γ ⊢ ϕ in C=
0 implies that the (P ; i1, i2, ..., in)-transform of ϕ,

n 6 m, is provable in C∗

0 from the (P ; i1, i2, ..., in)-transforms of the formulas
of Γ . If n = m, this deduction can be made in C0.

T0 is the classical type theory, already defined, which possesses predicate
symbols of all types and heights. And T0,u, 0 < u < ω, is the portion of
T0 that contains only predicate symbols of height equal to or less than u,
and quantifications associated with variables of height strictly smaller than
u. T0,0 is C0 and T0,1 is C=

0 .
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There are various methods of defining different concepts of transforms of
a given formula in T0 (or in T0,u). For example, supposing that to each type
t there corresponds a set δ(t) of constants of this type, {d1, d2, . . . , dδ(t)}, in

order to get the δ(t)-transforms of ϕ, we proceed as follows:

1. Firstly, if the free variables of ϕ are x1, x2, . . . , xn of types t1, t2, . . . , tn,
we replace x1, x2, . . . , xn by c1, c2, . . . , cn, where ci ∈ δ(ti). Every such
replacement gives rise to one transform;

2. Afterwards, we replace any part of ϕ of the form ∀xα(x), x being of type t,
by α(d1)

z∧α(d2)
z∧· · ·∧α(dδ(t))

z, where α(di)
z represents the transform

of α(di), 1 6 i 6 δ(ti);

3. Finally, parts of the form ∃xα(x) are replaced by analogous disjunctions.

One has the following theorems:

Theorem 11. In T0 without equality: Γ ⊢ ϕ implies that any δ(t)-transform
of ϕ is derivable from the δ(t)-transforms of the formulas of Γ in T0,0 (i.e.,
in C0).

Theorem 12. The function δ(t) is restricted to T0,n (without equality).
Then Γ ⊢ ϕ implies that any δ(t)-transform of ϕ can be deduced from the
δ(t)-transforms of the formulas of Γ in T0,0.

With the help of an extension of the notion of P -k-transform, one can
prove the proposition below:

Theorem 13. If Γ ∪ {ϕ} is a set of formulas of T0 (or T0,n, n > 0) without
equality, then Γ ⊢ ϕ in T0 (or T0,n) with equality if only if Γ ⊢ ϕ in T0 (or
T0,n) without equality.

4.2. k-transforms in paraconsistent logic

Evidently, most of the results of the preceding section are valid for non
classical logics. Thus, for example, we have the next propositions about the
intuitionistic and minimal predicate calculi.

The intuitionistic predicate calculus can be characterized by the postu-
lates →1,2,3, ∧1,2,3, ∨1,2,3, ¬1,2, ∀1,2 and ∃1,2; a postulate list for the minimal
predicate calculus is composed by the postulates →1,2,3, ∧1,2,3, ∨1,2,3, ¬1,
∀1,2 and ∃1,2.
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Theorem 14. Let Γ ∪ {ϕ} be a set of formulas of the predicate calculus.
Then, Γ ⊢ ϕ in the intuitionistic predicate calculus (in the minimal predicate
calculus) if and only if Γ ⊢ ϕ in the intuitionistic predicate calculus with
equality (in the minimal predicate calculus with equality).

Theorem 15. If formula ϕ does not contain the symbol of equality, then
⊢ ϕ in the intuitionistc (minimal) predicate calculus if and only if ⊢ ϕ in the
intuitionistic (minimal) predicate calculus with equality.

Theorem 16. ⊢ ϕ in the intuitionistic (minimal) predicate calculus implies
that any k-transform of ϕ is provable in the intuitionistic (minimal) predicate
calculus with k individuals.

Theorem 17. Let ϕ be a formula in which there are no occurrences of the
symbols of negation and of equality. Then ⊢ ϕ in the intuitionistic (minimal)
predicate calculus if and only if ⊢ ϕ in the positive intuitionistic (minimal)
predicate calculus.

In Cn, 1 6 n 6 ω, since this calculus is paraconsistent, we have that, for
example, the schemes (ϕ∧¬ϕ) → β and ϕ→ (¬ϕ→ β) are not provable (cf.
[9] and [10]). The problem, therefore, is to show that the calculi C*

n, C=
n and

Tn, 1 6 n 6 ω, have the same property. With the results of the preceding
section we are able to prove that this is so, as well as many other results con-
cerning paraconsistent logic. The remaining theorems of the present section
are only stated, since their proofs are simple variations of the proofs of the
corresponding classical results.

Theorem 18. Theorem 1 is valid for C∗

n, 1 6 n 6 ω.

Corollary 18.1. The following schemes are not valid in C∗

n, 1 6 n 6 ω:
(1) (ϕ∧¬ϕ) → β; (2) ϕ→ (¬ϕ→ β); (3) ¬ϕ→ (ϕ→ β); (4) (ϕ↔ ¬ϕ) → β;
(5) ¬(ϕ ∧ ¬ϕ); (6) (ϕ↔ β) → (¬ϕ↔ ¬β).

Corollary 18.2. The following schemes are not provable in C∗

n, 1 6 n < ω:
(1) ∀xϕ(x) ↔ ¬∃x¬ϕ(x); (2) ∃xϕ(x) ↔ ¬∀x¬ϕ(x).

Theorem 19. Let Γ ∪ {ϕ} be a colection of formulas of C∗

n, 1 6 n 6 ω.
Then Γ ⊢ ϕ in C∗

n if and only if Γ ⊢ ϕ in C=
n , 1 6 n < ω.

Corollary 19.1. The schemes of the first corollary to Theorem 18 are not
valid in C=

n , 1 6 n 6 ω.

© 2001 by Nicolaus Copernicus University



k-transforms in classical and paraconsistent logics 77

Theorem 20. If Γ ⊢ ϕ in C∗

1 , then all of the P -k-transforms of ϕ are de-
ducible from the P -k-transforms of the formulas of Γ in C1.

Corollary 20.1. If ⊢ ϕ in C∗

1 , then the P -k-transforms of ϕ are theorems
of C1.

Corollary 20.2. If Γ ⊢ ϕ in C∗

n, 0 6 n < ω, then all of the P -k-transforms
of ϕ are deducible in C∗

n from the P -k-transforms of the formulas of Γ .

We now consider the systems Tn, 1 6 n 6 ω.

Theorem 21. The schemes of the first corollary to Theorem 18 are not
provable in Tn (or in Tn,u), 1 6 n 6 ω and u 6 n.

Theorem 22. Tn is a conservative extension of C*
n, 1 6 n 6 ω, and C=

n , 0 6

n 6 ω.

Theorem 23. Tn,u, 1 6 n 6 ω and u 6 n, is a conservative extension of
Tn,j, where j < u, and n = 1, 2, . . . , ω.

Theorem 24. If the set Γ ∪ {ϕ} contains only formulas without equality,
then Γ ⊢ ϕ in Tn with equality if and only if Γ ⊢ ϕ in Tn without equality,
1 6 n 6 ω.

It is possible to adapt the above notions and results in order to be applied
to sequent versions of and algebraic approaches to most logical systems.

It is worthwhile to note that all systems investigated in this paper have
appropriate semantics of valuations relative to which they are sound and
complete. In general, our results can also be proved by semantical devices,
though these devices are not finitary (on the theory of valuation see, for
example, [13]).

4.3. k-transforms in other logics

Using the preceding methods we are able to prove numerous results connected
with some non classical logics, other than paraconsistent logics. For instance,
we have:

Theorem 25. Classical and intuitionistic implicative logics are not finitely
trivializable.

Proof. Classical implicative propositional logic, based on postulates →1,2,3

plus Peirce’s law ((ϕ→ β) → ϕ) → ϕ, is characterized by the standard truth
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table of implication. No pure implicative formula can assume only the value
false; therefore, if ϕ is a formula that trivializes implicative logic, ϕ → β,
where β is a propositional variable that does not occur in ϕ, is not a tautology.

Since intuitionistic implicative propositional logic (postulates →1,2,3) is
part of classical implicative logic, it is not finitely trivializable.

By the means of k-transforms, we extend the result to the quantificational
level (adding the postulates for quantification) .

Theorem 26. Classical and intuitionistic positive logics are not finitely triv-
ializable.

Proof. Adjoining to classical and intuitionistic implicative logics the pos-
tulates of conjunction and of disjunction, we obtain the classical and the
intuitionistic positive logics respectively. Clearly the proof of the preceding
theorem can be adapted to the case of positive logics.

Theorem 27. If we add Peirce’s law to Cω, then the resulting calculus is not
finitely trivializable.

Corollary 27.1. C∗

ω and C=
ω are not finitely trivializable.

Theorem 28. The scheme β ↔ (β → α), where β is a propositional variable
and α is any formula whatever, joined to positive intuitionistic logic, makes
this logic trivial.

Proof. In effect, we have from β ↔ (β → α):

1) β → (β → α);

2) And (β → α) → β;

3) From 1, it follows that β → α;

4) On the other hand, 2 and 3 imply that β;

5) Finally, from 3 and 4, we get α.

So, trivialization, since α is any formula.

Theorem 29. The scheme of separation of usual set theory, without any
restriction, trivializes, in an obvious sense, positive intuitionistic logic (with
quantification).

Proof. The language of set theory contains the logical symbols of positive
intuitionistic logic (with quantification). The scheme of separation is the
following:

∃y∀x(x ∈ y ↔ ϕ(x)).
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Therefore, replacing ϕ(x) by x ∈ x → α, where α is any formula, we have
that

∃y∀x(x ∈ y ↔ (x ∈ x→ α))

and, in consequence,

∀x(x ∈ y ↔ (x ∈ x→ α));
and

y ∈ y ↔ (y ∈ y → α)).

However, this scheme, by the previous theorem, makes the system trivial.

Remark. The preceding theorem is related to Curry’s paradox (see [4] and
[12]).

Theorem 30. Positive intuitionistic and positive classical logics with a finite
number of predicate symbols are finitely trivializable. The same is true of the
corresponding propositional calculi with only a finite number of propositional
variables.

Proof. In the propositional case, if β1, β2, . . . , βn are the propositional
variables, then β1 ∧ β2 ∧ · · · ∧ βn trivializables positive logic (In addition, it
is easy to define in these logics a negation, which, in classical positive logic,
has all the properties of classical negation).

So, if we are interested in a paraconsistent system of logic, compatible
with the scheme of separation without the usual restrictions, one way is to
weaken positive (quantificational) logic, as we shall show in a forthcoming
paper.
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