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1. The origin of the problem

“The principle that two contradictory statements are not both true is the
most certain of all.” This is how Aristotle (quoted after Lukasiewicz [12],
p. 10) formulates the opinion known as the logical principle of contradiction.
Examples of convincing reasonings which nevertheless yield two contradic-
tory conclusions were the reason why others sometimes disagreed with the
Stagirite’s firm stand. That was why Aristotle’s opinion was not in the least
universally shared in antiquity. His opponents included Heraclitus of Ephe-
sus, Antisthenes the Cynic, and others (cf. Lukasiewicz [12], p. 1). In the
early 19th century Heraclitus’ idea was taken up by Hegel, who opposed to
classical logic a new logic, termed by him dialectics, in which co-existence
of two contradictory statements is possible. That opinion remains to this
day as one of the theoretical foundations of Marxist philosophy, as the fol-

* EDITORIAL NOTE. Read at the meeting of section A, Societatis Scientiarum Torunen-
sis, 19th March 1948. Published in Polish under the title “Rachunek zdan dla systemoéw
dedukcyjnych sprzecznych”, in: Studia Societatis Scientiarum Torunensis, Sectio A, Vol. I,
No. 5, Toruii 1948, pp. 57-77. In original version the Polish notation was used.

It is the second English version of this paper. The first one — translated by Olgierd
Wojtasiewicz — was published under the title “Propositional calculus for contradictory
deductive systems”, in Studia Logica, Vol. XXIV (1969), pp. 143—-157. The present version
is a small variation of the previous one. The chief difference is the change of the original
Polish notation (done by A. Pietruszczak) into modern and standard one.

For further Editorial Notes see Notes (denoted in the text by natural numbers) at the
end of the paper.
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lowing authors refer: prof. Schaff ([16], pp. 113-121, 142-143), Wudel (|22]).
Chwistek ([3], pp. 25ff) voices his doubts as to whether dialectics is neces-
sary for that Weltanschauung, and prof. Ossowski ([14]) holds that people
whose opinions differ widely from Marxism accept obvious contradictions
(cf. Lukasiewicz [12], pp. 36-38). In a paper by the present author ([7]) the
reader can find certain introductory explanations concerned with the issue
here under consideration.

In the early 20th century the increasing precision of logical research
known as logistics, mathematical logic, and symbolic logic, resulted in a
revival, in a new, and more precisely formulated form, of some problems
known to the ancients, and also in the discovery of many other reasonings
which yield contradictions in theories which up to then had been accepted
as correct. These reasonings were termed antinomies, the better known anti-
nomies being those of Burali-Forti, Russell ([15], p. 102), Richard etc. (cf.
Chwistek [3], pp. 18, 53, 54, 127). Russell’s antinomy brought about a crisis
in Cantor’s set theory and also in Frege’s deductive formalized logical sys-
tem. Counsistency in those theories could be restored only at the price of
certain restrictions, such as the theories of logical types, the earliest of which
is due to Russell ([15], Ist ed., pp. 523-528, [21], 2nd ed., pp. 37-65), and
the simplest is Chwistek’s simplified type theory (cf. [3], p. 129), which has
the form of syntactical rules for a symbolic language and suffices to eliminate
some of the logical antinomies, including that of Russell. The principle of
making distinction between two (and sometimes more) languages, to which
only one language corresponds in everyday usage, means a much greater de-
viation from the current use of language. That distinction is to be made
between the language of a theory and the language in which we can discuss
the properties of the former language. The latter language is termed the
language of methodology or, as is done by Hilbert (cf. [6], vol. 1, p. 44), the
language of a metasystem for the theory formulated in the former language.
This distinction between languages is at variance with the natural striving
synthetically to formulate all the truths we know in a single language, and
thus renders a synthesis of our knowledge more difficult.

The transfer of Aristotle’s principle of contradiction to contemporary
logic risks a misunderstanding. As is known, in mathematical logic reference
is made to sentences and terms, and not to judgements and concepts, as was
done by Aristotle. The contemporary formal approach to logic increases the
precision of research in many fields, but it would not be correct to formulate
Aristotle’s principle of contradiction as: “Two contradictory sentences are
not both true.” We have namely to add: “in the same language” or “if the
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words occurring in those sentences have the same meanings”. This reservation
is not always observed in every-day usage, and in science too we often use
terms that are more or less vague (in the sense explained by Kotarbiniski [10],
pp. 26-29), as was noticed by Chwistek (|3], p. 12). Any vagueness of the
term a can result in a contradiction of sentences, because with reference to
the same object X we may say that “X is ¢” and also “X is not a”, according
to the meaning of the term a adopted for the moment.

Finally it is known that the evolution of the empirical disciplines is
marked by periods in which the theorists are unable to explain the results
of experiments by a homogenous and consistent theory, but use different hy-
potheses, which are not always consistent with one another, to explain the
various groups of phenomena. This applies, for instance, to physics in its
present-day stage. Some hypotheses are even termed “working” hypotheses
when they result in certain correct predictions, but have no chance to be
accepted for good, since they fail in some other cases. A hypothesis which is
known to be false is sometimes termed a fiction. In the opinion of Vaihinger
[19] fictions are characteristic of contemporary science and are indispensable
instruments of scientific research. Regardless of whether we accept that ex-
tremist and doubtful opinion or not, we have to take into account the fact
that in some cases we have to do with a system of hypotheses which, if sub-
jected to a too consistent analysis, would result in a contradiction between
themselves or with a certain accepted law, but which we use in a way that
is restricted so as not to yield a self evident falsehood.

All these considerations raise the issue which shall be formulated precisely
in terms of mathematical logic.

2. The formulation of the problem

Fukasiewicz’s [13] parenthesis-free notation is used |in the original text, but
not in the present translation; cf. Editorial Note at the beginning of the

aper|:
paper| p—q means “if p, then ¢”,

pVqg “porg,
pAq  “pand (g’
P q “p if and only if ¢”,
-p “it is not true that ¢”.

In any deductive system . under consideration, Le$niewski’s usage of
calling all formulae asserted in that system the theses of the system . is
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followed; this covers both the axioms and the theorems deduced from them
or proved in any other way, specific for the given system, for instance those
which satisfy a certain interpretation, adequate for that system. By the
assertion of a formula is meant that which might be defined as acceptance
as universally true or universally valid, although further analysis will cover
systems to which this explanation does not apply.

In the two-valued sentential calculus, usually symbolized as Lo, there
is a well-known thesis which shall here be termed the implicational law of
overfilling:

Lol p— (mp—q).

A deductive system ¥ is called inconsistent, if its theses include two
such which contradict one another, that is such that one is the negation of
the other, e.g., 7 and = 7. If any inconsistent system is based on a two-
valued logic, then by the implicational law of overfilling one can obtain in
it as a thesis any formula P which is meaningful in that system. It suffices
to substitute in Lol T for p and P for ¢ and to apply the rule of modus
ponens twice. A system in which any meaningful formula is a thesis shall
be termed overfilled. This deviates from the terminology accepted so far:
in the methodology of the deductive sciences such systems have so far been
called inconsistent, but for the purpose of the analysis presented in this
paper it is necessary to make a distinction between two different meanings
of the term “an inconsistent system”, and to use it only in one sense, as
specified above. The overfilled systems have no practical significance: no
problem may be formulated in the language of an overfilled system, since
every sentence is asserted in that system. Accordingly, the problem of the
logic of inconsistent systems is formulated here in the following manner: the
task is to find a system of the sentential calculus which: (1) when applied to
the inconsistent systems would not always entail their overfilling, (2) would
be rich enough to enable practical inference, (3) would have an intuitive
justification. Obviously, these conditions do not univocally determine the
solution, since they may be satisfied in varying degrees, the satisfaction of
condition 3 being rather difficult to appraise objectively. [1]

3. The known solutions

In addition to the two-valued sentential calculus other systems of the senten-
tial calculus are known, and some of them provide a solution of the problem
formulated above.
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A. KOLMOGOROV’S SYSTEM ([9], p- 651). It is a sentential calculus based
on the four axioms of Hilbert’s positive logic, which shall be formulated as:

K1 p— (g —p),

K2 (p—=w—q9)—@—a,
K3 (p—=(g—=7) = (¢ @),
K4 (g—=r)=((p—=q) = (p—r)),

and on the axiom introduced by Kolmogorov:

K5 p—=a)—= ((p——q = —p).

In this system Lol cannot be proved, which becomes obvious as soon as
Lukasiewicz’s matrix method is applied (cf. [13], pp. 109-114). Kolmogorov’s
axioms [?] satisfy the well-known matrix (Lukasiewicz [13], p. 114)

(1)

in which 1 is the designated value; the formula Lyl does not satisfy that
matrix in view of

1—-(=-1—0) = 0.

In matrix (1) — is interpreted as the operator known as “verum”. It is worth
while mentioning that this interpretation was described by Lukasiewicz ([12],
pp. 102ff), without recourse to a symbolic notation, as early as 1910 as an
example of such a meaning of negation in which two inconsistent sentences
may be asserted. [*] In Kolmogorov’s system, however, a special case of the
law Lol may be obtained, namely that in which the variable g is replaced by
its negation:
p—(mp—"q).

The proof is given below; the use of inference rules is marked in the way
introduced by Lukasiewicz ([13], p. 67) [in the original text; for the present
translation see the editorial note 4 on p. 55|, i.e., by reference to proof lines.

K3[p/(q — r),a/(p — a),7/(p — )] = K4 — K6 [*]
K6 (p—q) = ((g=r)—=(p—1)

K6[q/(¢ — p)] = K1 —» K7
K7 ((g—=p —r)—=m—=r)
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K7[r/((q = —p) = —~a] = K5[p/q,q/p] — K8
K8 p— ((g——p) = —q)

K6[g/((g = =p) = ~q),r/(=p = ~q)] = K8 = (K7[p/ ~p,r/ = ¢] = K9)
K9 p—(—p——9q) q.e.d.

Suppose that Kolmogorov’s system is applied to an inconsistent system
in which 7 and — 7 are theses and P is any meaningful formula. The substi-
tutions p/7T and ¢/P in K9 and the application of the rule of modus ponens
yields the theorem —P. Hence in any inconsistent system . any meaningful
formula beginning with the symbol of negation can be obtained as a thesis,
so that negation must be interpreted as verum in accordance with matrix (1).
This is a state which comes close to the overfilling of the system .7.

B. LEWIS’S SYSTEM OF STRICT IMPLICATION. In [11] Lewis and Lang-
ford analyse, in addition to the ordinary material implication, which satisfies
the theorems of two-valued logic, another kind of implication, which Lewis
termed strict implication and which can be defined by means of the modal
operator “it is possible that p”. In that system “p strictly implies ¢” means the
same as “it is not possible that both p and not-¢” ([11], p. 124). If the symbol
— is interpreted as the symbol of strict implication, then the implicational
law of the overfilling Lol is not a theorem (cf. [11], p. 142). But the set of
the theses which include strict implication only, and do not include material
implication, is very limited, and Lewis and Langford often used both symbols
of implication in one and the same theorem. For material implication the
law Lo1 remains valid (cf. [11], p. 142). |’]

C. MANY-VALUED LOGICS. As far as those systems of the sentential cal-
culus which can be defined by a many-valued finite matrix are concerned,
no publications directly related to the problem in question are known to the
present author, but prof. Lukasiewicz, in his personal communication to the
present author in 1940 or so, stated that he knew an interpretation of im-
plication and negation in three-valued logic such for which the law La1 does
not hold. Reservation being necessary about the possible inexactitude of that
reminiscence, it seems that the matrix involved was that given by prof. J. Stu-
pecki ([17], p. 112) and symbolized L3, the function there symbolized as R
being interpreted as negation. This makes the system defined by the matrix:

-1 2 3|-

111 2 3|2
) 211 2 3|3
31 1 1)1



A PROPOSITIONAL CALCULUS FOR INCONSISTENT . .. 41

in which two values, 1 and 2, are designated, L1 is not a thesis in L?,), but
the thesis known to prof. Lukasiewicz [9]

L31 p— (tp— (m-p—19)

holds and results in the overfilling of a system that includes the inconsistent
triple of theses: T, =7, == 7T. All purely implicational theses of the two-
valued calculus remain valid. The system includes certain theses which are
not in Lo:

L§2 p——mop,
L§3 S oop —p,
L24 “p—-(p—p).

4. The calculus of modal sentences: M,

Further analysis shall be concerned with a system including modal operators
namely the system symbolized S5 by Lewis and Langford ([11], Appendix II)
and studied by Becker [1], Wajsberg [20] and Carnap [2]. It can be defined by
an interpretation in Boolean algebra, due to Henle (cf. Lewis and Langford
[11], p. 501). That system shall here be symbolized Mz and termed two-
valued calculus of modal sentences, and that because of the definition given
below, which uses exclusively concepts belonging to two-valued logic. The
definition given in this paper is equivalent to Henle’s [7], but the proof of
that equivalence is omitted as irrelevant to further analysis.

Suppose that the truth of the sentence P depends on certain factors which
cannot be determined strictly: for instance, a person is to toss a coin, and
the sentence P means “during the game heads will turn up more times than
tails will”.

For a certain sequence of random events the sentence P will prove true,
whereas for some other sequence it will prove false. Thus the sentence P may
be assumed to be a function that takes on the values: truth and falsehood,
according to the values of the variables that stand for random events. Since
the functional relationship is not revealed by the notation, a sentence of this
kind may be represented by the dependent sentential variable introduced by
Heyting and discussed by the present author [8], in a way similar to that in
which in mathematics the functions of the variable x are often represented
by the letter y. The formula “it is necessary that p”, symbolized by

Up,
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will be supposed to mean the same as “p occurs for all the possible events”.
In order to obtain the logical laws that govern the operator O interpreted in
this way it suffices to formulate the foregoing explanations in a more precise
manner. Let @ be any formula that includes the operators of the sentential
calculus —, V, A, <>, =, and the symbol O, and also the sentential variables
P, q, .... Let those variables be replaced respectively by the predicates
p(z), ¢(x), ..., and O by the universal quantifiers “for every z”. These
replacements yield the formula R; if the latter proves to be a thesis in the
functional calculus, then Q shall be termed a thesis in the system Ma. [?]
The meaningfulness of the formulae of the functional calculus ought to be
defined so that the equiform variables x might be bound by every quantifier.

Since the calculus of predicates of one argument is decidable by the
Behmann method (cf. Hilbert and Ackermann [5], 1st ed., pp. 77-78), i.e.,
it can be decided about any meaningful expression in that calculus whether
it is a theorem or not, it is accordingly possible to decide about every for-
mula whether it is a thesis in the two-valued calculus of modal sentences Mo
or not. Now that the theory of necessity is completed, the second modal
formula

Op  — it is possible that p,

can easily be introduced: <p can be defined as “it is not necessary that
not-p”, in symbols:
<>p = - 0-p.

It would also not be difficult to define Op by a method similar to that
which was used for Op, namely by a comparison with the functional calculus.

The symbol < then corresponds to the existential quantifier “for some x”.
The fact that variable of the only one form, namely z, is used does not reduce
the general validity of the interpretation: should all the variables p, q, ..., be
given more arguments than one z, y, ... and should necessity be interpreted
as “for all x, ...”, and possibility as “for some x, y, ...”, the result of the
interpretation would be the same.

5. Definitions of discussive implication
and discussive equivalence

As is known, even sets of those inscriptions which have no intuitive meaning
at all can be turned into a formalized deductive system. In spite of this theo-
retical possibility, logical researches so far have been taking into consideration
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such deductive systems which are symbolic interpretations of consistent the-
ories, so that theses in each such system are theorems in a theory formulated
in a single symbolic language free from terms whose meanings are vague.
But suppose that theses which do not satisfy those conditions are included
into a deductive system. It suffices, for instance, to deduce consequences
from several hypotheses that are inconsistent with one another in order to
change the nature of the theses, which thus shall no longer reflect a uniform
opinion. The same happens if the theses advanced by several participants
in a discourse are combined into a single system, or if one person’s opin-
ions are so pooled into one system although that person is not sure whether
the terms occurring in his various theses are not slightly differentiated in
their meanings. Let such a system which cannot be said to include theses
that express opinions in agreement with one another, be termed a discussive
system. To bring out the nature of the theses of such a system it would
be proper to precede each thesis by the reservation: “in accordance with
the opinion of one of the participants in the discussion” or “for a certain
admissible meaning of the terms used”. Hence the joining of a thesis to a
discussive system has a different intuitive meaning than has assertion in an
ordinary system. Discussive assertion includes an implicit reservation of the
kind specified above, which — out of the logical operators so far introduced
in this paper — has its equivalent in possibility <. Accordingly, if a thesis T
is recorded in a discussive system, its intuitive sense ought to be interpreted
so as if it were preceded by the symbol <, that is, the sense: “it is possible
that 77. This is how an impartial arbiter might understand the theses of the
various participants in the discussion. [%]

Can a discussive system be based on ordinary two-valued logic? It can
easily be seen that it is not so. Even such an elementary form of reasoning
as the rule of modus ponens fails. If implication is interpreted so as it is done
in two-valued logic, then out of the two theses one of which is

P — Q,
and thus states: “it is possible that if P, then ©”, and the other is
P,

and thus states: “it is possible that P”, it does not follow that “it is possible
that @, so that the thesis

Q,

does not follow intuitively, as the rule of modus ponens requires.
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The same can be proved in a strict form by demonstrating that the for-
mula

(non My) 1 Op = q) = (Op — Oq)

is not a thesis in the system Maj.

This is why in the search for a “logic of discussion” the prime task is to
choose such a function which, when applied to discursive theses, would play
the role analogous to that which in ordinary systems is played by implication.
The problem, if formulated in this way, has a number of solutions, one of them
being Lewis’s strict implication, referred to above. Each solution would yield
a different system of discussive logic. One such system is presented in this
paper. It is chosen because of the variety of the theses that can be obtained
in it, with a simultaneous rejection of the implicational law of overfilling and
several of its special cases. The following definition is introduced into the
system Ma:

M def. 1 p—r,q = Op—q.

The formula p —, ¢, as defined above, shall be termed discussive impli-
cation; it may be read: “if it is possible that p, then ¢”, or, if applied of a
discourse, “if anyone states that p, then ¢”, or “if, for a certain admissible
meaning of the terms, p, then ¢”.

In every discussive system two theses, one of the form: P —, Q, and the
other of the form: P, entail the thesis Q, and that on the strength of the
theorem

Ms1 O(Op = q) = (Op — Oq).

Thus the rule of modus ponens may be applied to discussive theses if
discussive implication is used instead of ordinary implication. Discussive
equivalence <+, is defined in a similar way:

My def. 2 Py q = (Op—=q) A (Cqg— Op),

i.e., “p is discussively equivalent to ¢” means the same as: “both: if it is
possible that p, then ¢; and: if it is possible that ¢, then it is possible that p”.
The rule of modus ponens may be applied both ways to discussive equivalence
defined in this manner. If P <, Q is a thesis in a discussive system and if
either P or Q is a thesis, then the other side of that equivalence is a thesis,
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too. This follows from the theorems of the system Msa, which, by making
use of My def. 2, may be given the abbreviated forms:

My2 O <y @) — (Op — Cg),
M>3 Op ¢4 @) — (Cg — Op).

6. The two-valued discussive system
of the sentential calculus: D,

By My def.1-2, the symbols —, and <>, may be considered functors in
the system M. This fact is taken into account in defining the discussive
system of the sentential calculus. The system Ds of the two-valued discussive
sentential calculus is the set of formule T, termed the theses of the system
D5 and marked by the following properties:

1) 7 includes sentential variables and at the most the following functors:
_>d7 Hd? \/7 /\7 _‘7

2) preceding 7 with the symbol < yields a theorem in the two-valued sen-
tential calculus of modal sentences Ms.

The system defined in this way is discussive, i.e., its theses are provided
with discussive assertion which implicitly includes the functor <. This is an
essential fact, since even such a simple law as p — p, on the replacement of
— by —,, becomes

Dol D=, P,

which is not a theorem in My, and becomes such only when preceded by the
symbol <:

M4 O(p =, p). [Y)

Since the system M is decidable, the discussive sentential calculus Da,
defined by an interpretation in Mg, is decidable, too.

METHODOLOGICAL THEOREM 1. Every thesis T in the two-valued sentential
calculus Lo which does not include constant symbols other than —, <>, V,
becomes a thesis T, in the discursive sentential calculus Do when in T the
implication symbols — are replaced by —,, and the equivalence symbols <>
are replaced by <. [M]
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Proor. Consider a formula 7, constructed so as the theorem to be proved
describes. It is to be demonstrated that <7, is a thesis in Ma. It is claimed
that &7 is equivalent to some other formulae; the equivalences will be proved
gradually. The following theorems will be referred to:

M5 O(p =4 q) < (Op — Oq),
M6 O(p <24 @) < (Op & Oq),
My7 O(pVag) < (OpV<Oq).

They may be described as the laws of distribution of the symbol < with
respect to implication, equivalence, and disjunction, with the replacement
of =, and <, by — and <, respectively. The replacement in &7, of the
formulee of the form &(P —, Q) by the equivalent OGP — & Q, or of O(P <+,
Q) by OP <> ©Q, eliminates one of the symbols —_, <+, and at the same
time the symbol < is replaced by two such symbols placed to the right of
the position of the original &. Iterated application of this procedure and
the replacement of G(P V Q) by OP V <Q yields the formula W, which is
equivalent to ¢7, and includes only the symbols —, <+, V, variables, and
the symbols < in certain special positions, such that each variable is directly
preceded by the symbol &, and each symbol < directly precedes a variable.
On considering the manner of forming 7, from the thesis 7 belonging to Lo
it can be seen that W can be obtained from 7 by preceding each variable
by the symbol <, that is, by substituting p/<p, ¢/<g, .... This yields the
following theorems in Ma:
a) W — as a result of the substitution in T,
b) &7, — as equivalent to W.

Hence 7, is a thesis of Da. g.e.d.

The theorem proved above yields immediately that
D22 (p 4 Q) 4 (q g p)7
D3 (0 =4 @) =4 (@0 p) 24 (P24 ),
are theses in Ds.

METHODOLOGICAL THEOREM 2. If T is a thesis in the two-valued sentential
calculus Lo and includes variables and at the most the functors V, A, =, then

1) T,
2) T =, q,

are theses of Da.
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PRrROOF. The proof is based on the fact that the symbols V, A, = retain their
respective meanings in My and D, and that

3) OT

is a thesis in My. Hence (1) by

M>8 Op — <p,
and (2) by
M9 Op — O(O—p — q). q.e.d.

The application of Methodological Theorem 2 to the thesis
Ly3 ~(pA—p),

which is termed the law of contradiction, yields — in view of the law of double
negation — the following theorems of discussive logic:

D24 —(p A —p) (law of contradiction),
D5 (pA—p) —q (conjunctional law of overfilling). [*?]

In spite of its name which is adopted here D24 has no closer relation to
the problem of the logic of contradictory systems. On the other hand, D25
results in the overfilling of every discussive system which includes at least
one thesis of the type

PA-P,

and which thus is internally inconsistent. By referring to the examples used
so far it may be said that discussion becomes “overfilled” when one of the
opinions held is contradictory with itself.

Computations show that the system Dg includes the following theses:

D6 (pAq) =, p,

Do7  p—, (pAD),

Do8  (pAq) <, (@A D),

D29 (pA(gAT)) <, ((pAg)AT),

D210 (p—=, (g—,7) =, (PAg) =, 7 (law of importation),
Dy11 ((p—)dq)/\(p—>d7‘)) “y (p—)d (q/\r)),

D212 ((p =, 1) A (g =, 7)) < (V) =, 1),
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D213 p<<, 7,

Dol4 (=p—,p) =4 P

D215 (p =4 =p) =4 7P
D216 (p d—|p)—>dp,

D217 (p ¢, —p) =, P,
D518 (p—> q) —|q) >, P

Certain laws of inference by reductio ad absurdum remain valid:

D,19 ((p=a @ N(p—=4—9) =4 D,
D520 (Cp=y AP —=,79) =4 p,
D,21 (p— q/\ﬁq)) —q TP,
Dy22 ( q/\—|q)) —.D-

Other theses include:

D523 —(p <24 D),

Dy24 “(p—49) =, D

D525 (P =4 q) 2474,

D,26 p—, (mag—=, 2=, 9)

The system of discussive logic could be completed by the introduction of
the symbols — and <+ in addition to the symbols —, and <+ by analogy to
Lewis’s system, in which both the symbols of strict implication and those of
material implication are used. Material implication could be defined in the
well-known way:

p—q = "pVgq,

which would yield all those theses in which only the symbols of implication
and negation occur, including the implicational law of overfilling Lo1. This
will not, however, result in the overfilling of every inconsistent system, be-
cause the system does not include the rule of modus ponens for ordinary
(material) implication, as has been demonstrated in Section 5 above, where
reference was made to the rejection in Mg of the formula (non My) 1. The
formulation that the discussive sentential calculus is used in a system .7
means the application of the rule of modus ponens to discussive implication
—, and to discussive equivalence <, but neither to material implication —
nor to material equivalence <.
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7. Examples of formulaz that are not theses in D,

METHODOLOGICAL THEOREM 3. Ifin a thesis that belongs to the discursive
sentential calculus Do —, is replaced by —, and <+, by <+, a thesis belonging
to the sentential calculus Lo is obtained.

The proof follows immediately, if it is noted that every theorem in Mgy
becomes a theorem in Lo as soon as all the symbols ¢ and O are omitted.
Methodological Theorem 3 shows that if — is identified with —, and <,
with <>, then D2 becomes a subsystem of La. Hereafter those meaningful
formulae which are not theses in Do, that is, the formulae rejected in Da,
shall be marked by the symbol (non Ds), followed by the consecutive number.
Several characteristic examples of such formulae are given below.

(non Dy) 1 P =4 (@ =4 (0N Q).

The rejection of this formula can easily be justified on intuitive grounds:
from the fact that a thesis P and a thesis O have been advanced in a discourse
it does not follow that the thesis P A Q has been advanced, because it may
happen that P and Q have been advanced by different persons. And from
the formal point of view, from the fact that p is possible and ¢ is possible it
does not follow that p and ¢ are possible simultaneously. Thus the rejection
in My of the formula

(non My) 2 Op = (Oqg— O(pAq))

results in the rejection of (non D) 1. In this connection

(non D2)2  ((pAq) =.1) =, (p—, (¢ =, 7)) (law of exportation)
is rejected, too.

ko ok X

The rejection of the implicational law of overfilling
(non D9) 3 p—, (7p—,9)

is of essential importance. It is a consequence of the rejection in My of the
formula

(non Ms) 3 O(Op = (O-p—q)).
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To prove the falsehood of (non My) 3 it suffices to take for p a sentence
which is possible, but not true, and for ¢ a sentence which is not possible.
Then the antecedents Op and & —p are true, but the formula as a whole
is false. The rejection of (non D3)3 makes the coexistence of inconsistent
discussive theses without the overfilling of the discussive system in question
possible. Moreover, it can be demonstrated that not only is the formula (non
Ds) 3 rejected, but so are its various special cases, obtained by substitution.

(non Dy) 3a p—y (0P =, 79

(analogon of K9 in Kolmogorov’s system),

(non Dy) 3b (P =4 @) =4 (C0 =4 0) =, 1),
(non Dy) 3¢ (P q) =4 (C0 oy 9) =, 7).

The definitions of —, and <+, have been formulated with the intention
that they enable the rejection of possibly many substitutions for (non Dy) 3.
The formula (non D2)3b would be a thesis if instead of My def. 1 another
definition had been used, namely that which imposes itself in a natural man-
ner and which defines p —, ¢ as Op — <g. Then the overfilling of the
deductive system in question would be due to the coexistence of two theses
one of which would be a discussive implication, and the other would be its
negation. Likewise, should p <+, ¢ have been defined not in accordance with
My def. 2, but as Op <> g, the formula (non D) 3¢ would be a thesis.

(non D9) 3d D —y (—'p —, (7P =y CI))

(counterpart of Theorem L31 in the system discussed in Section 3 §C above).
Further multiplication of antecedents including the variable p with the
various numbers of negation symbols will not yield a thesis.

ko ok X

(non D) 4 (P q) =4 (0—=4 Q)N (g—4 D))

The rejection of (non Dy) 4 becomes comprehensible when the definitions
of the symbols —, and <>, are compared; the rejection of that formula
accounts for the fact that the discussive equivalence p <+, ¢ entails either of
the implications p —, ¢ and ¢ —, p, but does not entail their conjunction.

(non D9) 5 (p <, D) =, q,

(non Dy) 5a (p <4 p) =4 (PA D),

(non D9) 6 (p =4 D) =4 ((—'p —a D)~ q)=

(non Dy) 6a (p =4 =p) =4 (G0 =4 p) =4 (PA D)),
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Although p <+, = p entails both p and —p (theses Dy 16-17), yet a thesis
in a discussive system . which is a discussive equivalence between two con-
tradictory sentences, e.g., the thesis P <, =P, does not necessarily entail
the overfilling of the system .. It suffices for P to be a possible, but not a
necessary, sentence to yield in a discussive system the thesis

Py 0P,
which by M, def. 2 is equivalent to the formula
O((OP = ~P)A(O=P — OP))
which follows from

OPAOC—P.

The rejection of the formulae (non Dg) 5, 5a, 6, 6a can be useful in the
study of antinomies. Antinomies result in the overfilling of a given system
on the strength of the thesis

Ly 3 (p < —p) —q,

which is termed here the equivalential law of overfilling, or on the strength
of the thesis

Lo 4 (p—=-p) = ((Cp—p) —q).

Consider the antinomy of the liar, known already to Eubulides, which
will here be formulated in a way which is also known, but different from the
original wording. A person utters the sentence, which hereafter will briefly
symbolized by Z: “The sentence which I am uttering now is false.” If it is
assumed that the sentence Z is true, then in accordance with the classical
definition of truth and falsehood it must be stated that Z is false. If, on the
contrary, it is assumed that Z is false, then it must be concluded that it is
true.

Thus two theses can be stated about the sentence Z:

1) If Z is true, then Z is not true.
2) If Z is not true, then Z is true.

These two theses can be replaced by one:

3) Z is true if and only if Z is not true.
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If the implications and the equivalence included in the theses 1), 2), 3) are
interpreted as discussive, then by Dy 14-17 the following theses are obtained:

4) Z is true.
5) Z is not true.

But in view of the rejection of the formulae (non Ds) 3, 5, 5a, 6, 6a it is
not evident that the theses 1)-5) should result in the overfilling of the system
in question, and it can be stated with certainty that the ordinary procedure
resulting in overfilling fails. These remarks do not prove that there exists a
system which is not overfilled and such that the sentence Z can be formulated
in it. If such a proof were to be made, such a formalized system would have
to be defined, and that is a separate task. Similar issues can be raised with
reference to other antinomies, e.g., that of Russell.

x % %
(non D9) 7 —(p—=,p) =44

This means that the negation of the law of identity D21 for a sentence P in
a discussive system .¥ does not necessarily result in the overfilling of .. This
fact seems to comply with the intuitions of the dialecticians who question
the law of identity, though in a different form (cf. Chwistek [3, p. 28], Schaff
[16, pp. 120-121|, Lukasiewicz [12, pp. 43-49]). The rejection of the formula
(non Dg) 7 results from the definition of the symbol —, as adopted here,
since in My the formula

(non My) 4 O(O=(Op = p) — q)

is rejected. Indeed, the antecedent <& —(<Op — p) is equivalent to the formula
Op AO—p.

If a possible but not necessary sentence is substituted for p, and a not
possible one is substituted for ¢, the incorrectness of the formula (non My) 4
is demonstrated. Moreover, if in a discourse the sentence P is meaningful
and possible, but not necessary, so that inconsistent theses:

n P
2) - P,

are advanced, then by D2 26 the thesis
3) (P —=4P)

is obtained in that discourse.
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The law of transposition (also known as the law of contraposition) is rejected
in all its forms, for instance:

(non D2)8 (p —q Q) 4 (_'q_>d _'p)’
(non Dy) 9 (P =4 7a) =4 (=, p)-

Their rejection is not difficult to justify; e.g., when it comes to (non
D») 8, its incorrectness is demonstrated by the example in which a necessarily
true sentence is substituted for p, and a possible but not necessary one is
substituted for g. Then the antecedents p —, ¢ and — ¢ are possible, and the
consequent —p is not possible. Also rejected are certain forms of inference
by reductio ad absurdum:

(non Dy) 10 (P =4 @) =4 (=4 —0) =, D)
(cf. Kolmogorov’s axiom K5),
(non Dy) 11 (P =4 0) = (P =, 7a) =4 p).

The rejection of (non Ds) 10 is justified by the substitution for p of a
necessarily true sentence, and for ¢, of a sentence that is possible but not
necessary.
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(translated by Olgierd Wojtasiewicz
with corrections and notes by Jerzy Perzanowski)

Editorial Notes

0. The present translation is based on Olgierd Wojtasiewicz’s one (cf. Edi-
torial Note on p. 35). The chief difference is:

— the change of the notation from Polish one into more common, and
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— the difference in the translation of few key terms: Polish ‘sprzecznos$é’ is
translated as ‘inconsistency’, ‘sprzeczny’ as ‘inconsistent’, and Jaskowski’s
original term ‘przepetnienie’ is translated verbatim as ‘overfilling’, not in
a misleading way — as ‘over-complete’. Also ‘dyskusyjny’ is translated as
‘discussive’, not ‘discursive’.

Few words on Jaskowski’s names for calculi. The classical logic is named
‘La’ (‘2" — for being two-valued, ‘L’ — for obvious reasons). Lewis’ logic
S5 is named ‘M2’ (“two-valued modal logic”). It is in fact equivalent to
monadic part of the two-valued classical quantifier logic (cf. M. Wajsberg
[20], R. Carnap |2]); whereas its discussive counterpart D2 is named in such
a way for reasons obvious for everybody.

1. The conditions (1)—(3) from the last paragraph of Section 2 form well-
known Jagkowski’s problem and criterion of paraconsistency.

2. Kolmogorov’s calculus is the implicational-negation fragment of the cal-
culus of J. Johanson.

3. In these remarks we find the written support for the well-known oral
Polish tradition saying that:

(i) the interest in paraconsistency started in Poland with the famous book
of J. Lukasiewicz O zasadzie sprzecznosci u Arystotelesa [12], in partic-
ular in his well-known criticism of both the ontological and the logical
law of non-contradiction. Cf. also examples like this emphasized by
Jagkowski in the comments concerning the matrix (1).

(ii) In textbook [13|, concerning notes for Lukasiewicz’s lectures in 1920-
ties, we find in the implicit form the paraconsistent propositional logic
defined by means of suitable matrix.

(iii) Last but not least, Jaskowski himself, working under influence of Luka-
siewicz |12] and [13], was trying in early 1940-ties to find an acceptable
solution for problem of Section 2.

4. Lukasiewicz’s notation for detachment-substitutional proofs has to be
understood as follows:

K3[p/(g —r),q/(p = q),r/(p — r)] = K4 — K6 means that
suitable substitution of K3 equals to the implication K4 — K6,
which by detachment gives K6.
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5. Observe that the present criticism in comparison with the previous one,
is rather weak. Some calculi of the strict implication can thereby be treated
as paraconsistent ones.

6. Cf. A.S. Karpenko “Jaskowski’s criterion and three-valued paraconsistent
logics” in this volume, pp. 81-86.

7. Henle defined a family of subdivetly irreducible S5-algebras built up of
an infinite sequences of two-values 0 and 1.

8. Cf. the previous remark in the note 0.
9. Quite basic assumption about the discussive meaning of possibility!

10. The formula Dy1 occurs to be a theorem of Dy by the condition 2) of
definition of Ds.

11. Quite essential strengthening of the metatheorem 1 is given in the note
following the paper which introduced discussive conjunction (cf. this volume,
pp. 57-59).

12. It can also be eliminated in the strengthening of the system D mentioned
above in note 11.

13. Reference to A. Schaff’s work occurrent in the original Jaskowski’s paper,
but not in its 1969 translation. Adam Schaff during the period 1946-1968
was the official leader of Polish Communist Party’ philosophers. He lost his
position in 1968. Thus the reader can see that Communist Censorship had
influence even on logical journals. In the present translation the reference to
Schaff’s paper is back, like in the original paper.

J.P.



