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Concerning the tools used there are three types of proofs for the Second
Gödelian Incompleteness Theorem (the last three words I will shorten to
“G.I.T.”): purely proof-theoretical ones, purely model-theoretical proofs and
such of mixed type.

A purely proof-theoretical proof of the Second G.I.T. normally takes
a part of a proof for the First G.I.T. and formalizes it within the theory
Φ just considered. To carry this through, some special properties of the
formula representing the provability predicate ⊢Φ of Φ have to be established.
These special properties are usually expressed as the well-known Derivability
Conditions; and a purely proof-theoretical proof only uses proof-theoretical
means to establish these conditions. The classical proof of the Second G.I.T.
is a typical example of this kind.1

A proof of the Second G.I.T. of mixed type runs similar to a purely
proof-theoretical one but also uses model-theoretical tools. By doing this the
proof becomes more intuitive — at least for someone (like me) not used to
think within formal systems. For instance, it is possible to follow the classical
proof but to establish the Derivability Conditions model-theoretically.2

Last but not least, a purely model-theoretical proof uses (almost) only
model-theoretical means — especially it works with a representation of sat-
isfaction or truth in some or all models of Φ instead of a representation of
⊢Φ. Georg Kreisel’s proof of the Second G.I.T is such a proof.

3

In this paper I extract a general principle used in the proof of the Second
G.I.T. of Kreisel stated below as Model Chain Lemma. With the help of
this general principle it is possible to get purely model-theoretical proofs
of the Second G.I.T. by a model-theoretical “translation” of that part of
a proof for the first G.I.T. which leads to the sentence undecidable in the
respective theory. In this sense Kreisel’s proof of the Second G.I.T. is such a
translation of the classical proof of the first G.I.T., and in [8] I give a proof
of the Second G.I.T. translating Boolos’ proof of the first G.I.T. resting on
Berry’s paradox.

The rest of the paper is divided into three sections. Section 1 will only
fix terminology and recall some general results. The following section 2 deals
with the Arithmetized Completeness Theorem and the Model Chain Lemma,

1 For complete proofs following classical lines see e.g., [2], p. 15–50, or [3].
2 Such a proof you can find, e.g., in [4], p. 163f., or in [6].
3 For instance, [1], p. 192–194, [6] and [7], p. 862f., give this proof.
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Purely Model-Theoretical Proofs of the Second G.I.T. 175

and the final section 3 reformulates Kreisel’s proof of the Second G.I.T. by
using the Model Chain Lemma. For the sake of simplicity I will restrict
myself to Peano Arithmetic PA, but the following results are generalizable
to more general settings in a direct manner.

Acknowledgement. Many thanks to my friends Friederike Körner and Jörg
Ackermann. Both helped me to translate my ‘private English’ into a more
commonly used form. And Friederike toiled to understand the first, rather
confused, version of this paper and helped me to improve it.

1. Preliminaries

This section only reminds of some well-known facts.
LPA is the first-order language of arithmetic, possessing the non-logical

constants 0, s (successor), +, ·, = and <, the logical operators ∧, ∨,→,↔,
∀ and ∃, the variables vi (i ∈ N, where N is the set of all natural numbers)
and the brackets (, ). For the sake of later convenience all theseLPA-symbols
should be appropriate finite sequences of length one; then the LPA-strings
can be chosen as concatenations of finitely many LPA-symbols. Since I only
deal with the language LPA here I usually suppress its mentioning. For any
(LPA-) term t, t(t0, . . . , tk−1) is the result of substituting the term ti for all
free occurrences of vi in t for all i < k. Similarly φ(t0, . . . , tk−1) is used for
formulas φ. For every n ∈ N, n is s · · · s

︸ ︷︷ ︸

n times

0.

An (LPA-) theory is a set of (LPA-) sentences, an (LPA-) semi-theory
is a set of (LPA-) formulas; and ⊢Φ φ means that the formula φ is provable
within the (semi-) theory Φ.
∆PA0 is the set of all formulas φ with ⊢PA φ↔ ψ for some formula ψ

containing no or only bounded quantifier prefixes ∀(x< t) or ∃(x< t). ΣPA1
exactly consists of those formulas φ with ⊢PA φ↔∃xψ for some ∆

PA
0 -formula

ψ. And ∆PA1 contains all Σ
PA
1 -formulas φ with ¬φ ∈ Σ

PA
1 , too. All these

sets possess some nice and well-known closure properties: With φ,ψ ∈ ∆PA0
(∈ ∆PA1 respectively) ¬φ, φ∧ψ, φ∨ψ, φ→ψ, φ↔ ψ, ∀(x< t)φ, ∃(x< t)φ ∈
∆PA0 (∈ ∆

PA
1 respectively); and from φ,ψ ∈ ΣPA1 follows that φ ∧ ψ, φ ∨

ψ, ∀(x< t)φ, ∃xφ ∈ ΣPA1 (and φ → ψ ∈ ΣPA1 , if even φ ∈ ∆
PA
1 holds).

Furthermore ∆PA0 ⊆ ∆
PA
1 ⊆ Σ

PA
1 is true.

Let S be an (LPA-) structure. Then |S| is the universe of S. For every
term t containing at most v0, v1, . . . , vk−1 free, t

S [s0, . . . , sk−1] is the value
of t when assigning si ∈ |S| to vi for all i < k, and, for any formula φ,
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176 Dirk Ullrich

S � φ[s0, . . . , sk−1] means that φ is always true in S when assigning si ∈ |S|
to vi for all i < k, and assigning arbitrary s ∈ |S| to all other variables
occurring free in φ. N is the standard model of PA; hence |N| = N holds. For
any theory Φ a structureM is a model of Φ iffM � φ is true for all φ ∈ Φ.
The importance of ΣPA1 - and ∆

PA
1 -formulas results from their ‘nice be-

haviour’ under embeddings of models of PA. An embedding E of a structure
S into a structure T is a 1-1 function E: |S| → |T | such that, for all s, t ∈ |S|,
E(sS(s)) = sT (E(s)), E(s ◦S t) = E(s) ◦T E(t) for ◦ ∈ {+, ·} and, finally,
s<
St iff E(s)<T E(t) hold. And an initial segment A of S is an A ⊆ |S| such

that s<
St ∈ A implies s ∈ A. Now can be stated:

Lemma 1.1. (embedding lemma) LetM and N be models of PA and E an
embedding ofM onto an initial segment of N . Then, for any ΣPA1 -formula
(∆PA1 -formula) φ such that at most v0, v1, . . . , vk−1 occur free in φ,

N � φ[E(s0), E(s1), . . . , E(sk−1)] if (iff)M � φ[s0, s1, . . . , sk−1].(E)

holds for all s0, s1, . . . , sk−1 ∈ |S|.

Proof. The proof amounts to a straightforward formula induction over φ.4

2

An important corollary of this lemma establishes the so-called Σ1-com-
pleteness of PA. I give a model-theoretical formulation because I will later
need this one:

Corollary 1.2. (Σ1-completeness of PA) Let M be a model of PA and
φ ∈ ΣPA1 (φ ∈ ∆

PA
1 ) with at most v0, v1, . . . , vk−1 occurring free in φ.

Then, for all n0, n1, . . . , nk−1 ∈ N, M � φ(n0, n1, . . . , nk−1) holds if (iff)
N � φ[n0, n1, . . . , nk−1].

Proof. Using that M is a model of PA it is not difficult to show that
CM:N → |M| with CM(n) =def n

M is an embedding of N into M and
Rng(CM) = {n

M | n ∈ N} is an initial segment of M. Thus the claim
directly follows from lemma 1.1. 2

For any structure S, a k-ary relation R ⊆ |S|k is defined by φ in S iff φ
is a formula containing exactly v0, v1, . . . , vk−1 free and for all s0, s1, . . . ,
sk−1 ∈ |S| the following holds: R(s0, s1, . . . , sk−1) iff S � φ[s0, s1, . . . sk−1].
A k-ary function F : |S|k → |S| is defined by φ in S iff its ‘graph’, i.e. the
relation {〈s0, s1, . . . , sk〉 | sk = F (s0, s1, . . . , sk−1)}, is defined by φ in S.

4 Details can be found, for example, in [5], p. 24f.
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Purely Model-Theoretical Proofs of the Second G.I.T. 177

Finally, an individual s ∈ |S| is defined by φ in S iff the (0-ary) func-
tion ∅ 7→ s is defined by φ in S. Every formula φ defines at most one
relation, function or individual in S; in this case φM is the respective re-
lation, function or individual. Furthermore a formula φ defines some k-ary
relation in S iff φ contains exactly v0, v1, . . . , vk−1 free; whereas φ de-
fines a k-ary function in S iff exactly v0, v1, . . . , vk occur free in φ and
S � ∀v0∀v1 · · · ∀vk−1∃

=1
vk φ holds; and φ defines some individual in M iff

φ contains exactly v0 free and S � ∃=1v0 φ holds. Some useful possibili-
ties to get definable relations or functions from given ones should be men-
tioned. Piecewise PA-definition of functions is simple: If φ, ψ and χ are
formulas then there is a formula {φ : χ/ψ} such that, if φ,ψ and χ define
G,H: |S|k → |S| and R ⊆ |S|k, then {φ : χ/ψ} defines in S the function
F : |S|k → |S| with F (s0, . . . , sk−1) = G(s0, . . . , sk−1) iff R(s0, . . . , sk−1), and
F (s0, . . . , sk−1) = H(s0, . . . sk−1) otherwise. Furthermore {φ : χ/ψ} ∈ Σ

PA
1

({φ : χ/ψ} ∈ ∆PA1 ) can be chosen if one has φ,ψ ∈ Σ
PA
1 (φ,ψ ∈ ∆

PA
1 )

and χ ∈ ∆PA1 . The next example concerns PA-substitution: For any for-
mulas φ, ψ0, ψ1, . . . , ψl−1 a formula φ{ψ0, ψ1, . . . , ψl−1} exists such that,
if ψ0, . . . , ψl−1 define the functions G0: |S|

k → |S|, . . . , Gl−1: |S|
k → |S|,

then φ{ψ0, ψ1, . . . , ψl−1} defines the relation R ⊆ |S|
k with R(s0, . . . sk−1)

iff S(G0(s0, . . . , sk−1), . . . , Gl−1(s0, . . . , sk−1)) in S if φ defines in S the re-
lation S ⊆ |S|l; and φ{ψ0, ψ1, . . . , ψl−1} defines the function F : |S|

k →
|S| with F (s0, . . . , sk−1) = H(G0(s0, . . . , sk−1), . . . , Gl−1(s0, . . . , sk−1)) if
φ defines in S the function H: |S|l → |S|. If φ ∈ ΣPA1 (φ ∈ ∆

PA
1 ) and

ψ0, . . . , ψl−1 ∈ Σ
PA
1 hold then φ{ψ0, ψ1, . . . , ψl−1} belongs to Σ

PA
1 (to ∆

PA
1 )

too. The following example is extremely important and provides some kind of
PA-recursion: For any two formulas φ and ψ there is a formula rec{φ,ψ} such
that rec{φ,ψ} defines in S a function F : |S|k+1 → |S| satisfying the two con-

ditions F (s0, . . . , sk−1, 0
S
) = G(s0, . . . , sk−1) and F (s0, . . . , sk−1, s

S(s)) =
H(s0, . . . , sk−1, s, F (s0, . . . , sk−1, s)) if φ defines G: |S|

k → |S| and ψ defines
H: |S|k+2 → |S| in S respectively; and rec{φ,ψ} ∈ ΣPA1 (rec{φ,ψ} ∈ ∆

PA
1 )

follows from φ,ψ ∈ ΣPA1 (φ,ψ ∈ ∆
PA
1 ). Finally, PA-minimization should be

mentioned: For any formula φ a formula µ{φ} exists such that µ{φ} ∈ ΣPA1
follows from φ ∈ ∆PA1 , and µ{φ} defines in S the function F : |S|

k → |S|

with F (s0, . . . , sk−1) = min
<S{s | R(s0, . . . , sk−1, s)} if φ defines in S the

relation R ⊆ |S|k+1 and for every s0, . . . , sk−1 ∈ |S| there is a s ∈ |S| with
R(s0, . . . , sk−1, s). A further property of Σ

PA
1 -formulas is important: If a for-

mula φ ∈ ΣPA1 defines a function in every model of PA then even φ ∈ ∆
PA
1

holds.
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178 Dirk Ullrich

The definability of relations, functions and individuals in structures is
used to formalize a certain portion of logic within PA which is of crucial
importance for the Second G.I.T. This very formalization I will call “rep-
resentation in PA”; I explain it for a k-ary relation R ⊆ Nk (functions
and individuals have to be treated analogously): To represent R in PA
it doesn’t suffice to find a formula φ that defines R within the standard
model N; moreover φ has to define in every modelM of PA an RM ⊆ Nk

such that R(n0, n1, . . . nk−1) iff RM(n0
M, n1

M, . . . , nk−1
M) holds for all

n0, n1, . . . , nk−1 ∈ N and RM (= φM) possesses ‘similar properties’ as R
(= φN) ‘in the real world’. (The first of this two requirements is easy achieved
by ΣPA1 -completeness if φ ∈ ∆

PA
1 can be chosen.)

Let us start with finite sequences of natural numbers. Since only rela-
tions, functions and individuals of N can be represented in PA, we have to
code the finite sequences of natural numbers by natural numbers. There-
fore fix a 1-1 function fs: {s | s finite sequence in N} → N. Now choose
∆PA1 -formulas fseq, len, 2, memb and app such that fseq represents in
PA the 1-ary relation expressed by the phrase “n0 is the code of a finite
sequence” (i.e. there is an i ∈ N with n0 = fs(i)), len the 1-ary function
expressed by “n1 is the length of the finite sequence with the code n0” (i.e.
n1 = Len(fs

−1(n0)), where Len(α) is the length of the finite sequence α),
2 the individual coding the empty sequence, memb the 2-ary function ex-
pressed by “n2 is the n0th member of the finite sequence with code n1” and
app the 2-ary function expressed by “n2 is the code of the finite sequence
which results from the finite sequence with code n0 by appending n1 as last
element”.5 These formulas can be chosen such that, for any modelM of PA
and s, e ∈ |M|, s, e <M appM(s, e) holds if s ∈ fseqM.6 Using these ba-
sic formulas all other interesting relations and functions for finite sequences
can be defined by PA-substitution, piecewise PA-definition, PA-recursion
and PA-minimization. Below formulas⌢ and last are needed representing
in PA the 1-ary function expressed by “n1 is the code of the finite sequence
resulting from concatenation of all finite sequences being members of the
finite sequence with code n0” and the 1-ary function expressed by “n1 is the

5 I use the following canonical notation to express the connection between a formula φ
and the relation or function represented by φ: ni is always the (i+ 1)th argument of the
relation or function just considered, and, for a function F , the ni with the highest index
is the value of F .
6 Here the notation for definable relations, functions and individuals introduced above

is used: appM is the function defined by app inM; thus appM has two arguments and
not three!
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Purely Model-Theoretical Proofs of the Second G.I.T. 179

last member of the finite sequence with code n0”. Note that⌢, last ∈ ∆PA1
are possible. Moreover, by using 2 and app define recursively for every
k ∈ N a formula [· · ·]k ∈ ∆

PA
1 containing exactly v0, v1, . . . , vk free such

that, for every model M of PA and m0,m1, . . . ,mk+1 ∈ |M|, []
M
0 = 2

M

and [m0,m1, . . . ,mk+1]
M
k+1 = app

M([m0,m1, . . . ,mk]
M
k ,mk+1) hold.

Genuinely logical notions mostly concern relations, functions or individu-
als of strings; therefore a formalization of them in PA needs a suitable Gödel
numbering, i.e. a 1-1 function gn: {α | αLPA-string} → N. Above the (LPA-)
strings were chosen to be certain finite sequences; hence we should take a
gn such that we have, for all modelsM of PA and strings α, αM ∈ fseqM,

lenM(αM) = Len(α)
M
and αM =⌢[α(0), α(1), . . . , α(Len(α)− 1)]MLen(α),

where α =def gn(α). (Choose, e.g., gn(α) ∈ fseq
N with lenN(α) = 1 for

all LPA-symbols α and set gn(α) =⌢
N([gn(α(0)), gn(α(1)), . . . , gn(Len(α

− 1))]
N

Len(α)) for all strings α with Len(α) > 1. Because of fseq, len[· · ·]k ∈

∆PA1 we get what we want.) Now it is not difficult to proceed: Fix suitable
∆PA1 -formulas form and sent to represent in PA the 1-ary relation expressed
by “n0 is the Gödel number of a formula” and the 1-ary relation expressed
by “n0 is the Gödel number of a sentence”; choose both formulas such that
M � form→ fseq for every modelM of PA holds.7

The next step concerns formalization of theories and provability. Let
M be a model of PA. A semi-theory formula with k parameters in M
is a formula φ such that exactly v0, v1, . . . , vk occur free in φ and M �

φ→ form holds. Similarly, φ is a theory formula with k parameters in M
iff exactly v0, v1, . . ., vk occur free in φ and M � φ → sent holds. If φ
is a (semi-) theory formula with k parameters in every model M of PA
then for every n0, n1, . . . , nk−1 ∈ N the set Φ(n0, n1, . . . , nk−1) =def {χ
LPA-formula| N � φ(χ, n0, n1, . . . , nk−1)} is a (semi-) theory. A well-known
result tells us that in this case there is a formula provφ having the same
free variables as φ and a formula conφ with the same free variables as φ
except v0 such that provφ,¬conφ ∈ Σ

PA
1 follows from φ ∈ ΣPA1 and, for

every n0, n1, . . . , nk−1 ∈ N, provφ(v0, n0, n1, . . . , nk−1) represents the 1-ary
relation expressed by “n0 is the Gödel number of a formula provable in
Φ(n0, n1, . . . , nk−1)” and conφ(n0, n1, . . . , nk−1) represents the 0-ary rela-
tion expressed by “Φ(n0, n1, . . . , nk−1) is consistent in PA”. There is an
important connection between theories ‘in the real world’ and theory for-

7 For details of representing gödelized versions of syntactical notions, consult, for in-
stance, [3], [4], ch. 0 and ch. 1, or [5], ch. 9.
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mulas: If Φ is a recursively enumerable (LPA-) theory (i.e. the class {gn(φ) |
φ ∈ Φ} is recursively enumerable) then there is a ΣPA1 -formula χ defining
{gn(φ) | φ ∈ Φ} in N. Take the shortest such χ and set thΦ =def χ ∧ sent;
then thΦ defines {gn(φ) | φ ∈ Φ} in N too, is a ΣPA1 -formula and a theory
formula without parameters for every modelM of PA.
It is time to turn to the Model Chain Lemma.

2. The Arithmetized Completeness Theorem
and the Model Chain Lemma

To state the Model Chain Lemma properly I need a special version of the
Arithmetized Completeness Theorem, i.e. of a formalization of the ordinary
Completeness Theorem within PA, and some more terminology. Frm:N →
{φ | φ formula} is the function recursively defined by Frm(0) =def min

≺gn{φ |
φ formula} and Frm(n + 1) =def min

≺gn{φ | φ formula and Frm(n) ≺gn φ}
where φ ≺gn ψ iff gn(φ) < gn(ψ); Frm is 1-1 with Rng(Frm) = {φ | φ
formula}. A formula path is a finite sequence Γ with Γ(i) = Frm(i) or Γ(i) =
¬Frm(i) for all i < Len(Γ); if Γ and ∆ are formula paths then ∆ ≺¬ Γ iff
Len(∆) ≤ Len(Γ) and there is a i < Len(∆) such that ∆(i) = ¬Γ(i) and
∆(j) = Γ(j) for all j < i. Using PA-recursion and PA-minimization one
can obtain a formula frm ∈ ∆PA1 representing the 1-ary function expressed
by “n1 is the Gödel number of Frm(n0)”: chose, for instance, frm =def
rec{µ{form}(v0), µ{form(v2) ∧ v1 < v2}}. With the help of frm formulas
fpath,≺¬∈ ∆

PA
1 can be defined representing in PA the relations expressed

by “n0 is the code of a formula path” and “n0 is the code of the formula
path ∆, n1 is the code of the formula path Γ and ∆ ≺¬ Γ holds”. If φ is
any formula, set φ∪ =def φ ∨ (form(v0) ∧ ∃v2memb(v2, v1, v0)). For every
modelM of PA φ∪ is a semi-theory formula with one parameter inM (and
φ∪ ∈ ΣPA1 ) if φ is a semi-theory formula without parameters in M (and
φ ∈ ΣPA1 ). For any modelM of PA and every semi-theory formula φ inM
without parameters p is a φ-leftmost formula path in M iff p ∈ fpathM

and conMφ∪ (p) holds such that there is no q ∈fpathM with q ≺¬
M p and

conMφ∪ (q). Finally, a model N of an (LPA-) theory Φ is strongly defined

in M by ρ, [ψi]i<5, φ iff |N | is defined in M by ρ, 0
N
, sN ,+N , ·N ,<N are

defined by ψ0, . . . , ψ5 inM, φ contains exactly v0 free and

N � χ iffM � φ(χ) for every sentence χ(D)

holds.
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Now the Arithmetized Completeness Theorem can be stated:

Lemma 2.1. (Arithmetized Completeness Theorem) Let Φ be a recursively
enumerable theory. Then there are formulas henkΦ ∈ Σ

PA
1 , univΦ, intΦi

(i < 5) and trueΦ such that for every modelM of PA the following holds:
henkΦ and trueΦ are semi-theory formulas without parameters inM with
M � thΦ→ henkΦ,

trueMΦ (a) iff a ∈ form
M and there exists a henkΦ-leftmost

formula path p inM with lastM(p) = a;
(L)

and if M � conthΦ holds then univΦ, [intΦi ]i<5, trueΦ strongly define a
model N of Φ inM.

Proof. The proof amounts to a more or less straightforward formalization
of a proof of the ordinary Completeness Theorem by reasoning insideM in-
stead of “the real world”: Starting with thΦ construct a suitable semi-theory
formula henkΦ without parameters for every model of Φ such that henkΦ
represents a Henkin semi-theory for Φ ifM � conthΦ holds. Then a formal-
ization of the Lindenbaum completion leads to trueΦ, and the remaining
formulas result from formalizing the definition of the canonical term model
of Φ withinM.8 2

The next proposition establishes an important connection between a
model of PA and another model being strongly defined in it:

Proposition 2.2. (embedding in strongly definable models) LetM and N
be models of PA. If N is strongly defined inM (by some ρ, [ψi]i<5, φ) then
there exists an embedding ofM onto an initial segment of N .

Proof. Since N is strongly defined in M by ρ, [ψi]i<5, φ, in particular

the individual 0
N
and the 1-nary function sM are defined in M by ψ0

and ψ1, respectively. Thus, by PA-recursion, there is a formula η defining a
function E: |M| → |N | with E(0

M
) = 0

N
and E(sM(m)) = sN (E(m)) for

allm ∈ |M|. Because+N and ·N are defined inM by ψ2 and ψ3 respectively,
E(m ◦M m′) = E(m) ◦N E(m′) for ◦ ∈ {+, ·} and any m,m′ ∈ |M| is
obtained by PA-induction. Finally by PA-induction can be shown that, for
all m,m′ ∈ |M|, m <

M m′ iff E(m) <
N E(m′) holds and Rng(E) is an

8 The detailed proof in [1], pp. 186-191, can be adopted to the terminology used here
without difficulties.
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initial segment of N . To do this the fact that <M and |N | are defined by φ4
and ρ inM is used. Thus E is an embedding ofM onto an initial segment
of N . 2

This proposition readily leads to the following corollary:

Corollary 2.3. (strongly definable models and ΣPA1 -sentences) LetM and
N be models of PA. If N is strongly defined in M (by some ρ, [ψi]i<5, φ)
then N � χ follows fromM � χ for every ΣPA1 -sentence χ.

Proof. Combine proposition 2.2 and the embedding lemma. 2

Now the Model Chain Lemma can be formulated and proved:

Lemma 2.4. (Model Chain Lemma) There are not both a sequence [Mk]k∈N

of models of PA and an n∗ ∈ N such that the following conditions are both
fulfilled:

(M 1) Mk+1 is strongly defined by univPA, [intPA]i<5, truePA in Mk for
every k ∈ N, and

(M 2) for every k ∈ N there is an nk ≤ n
∗ such that Frm(nk) is a sentence

withMk � Frm(nk) butMk 2 truePA(Frm(nk)).

Proof. Lets start with some simple but useful observations. First, for all
formula paths Γ and ∆ with Len(Γ) = Len(∆)

Γ ≺¬ ∆ or Γ = ∆ or ∆ ≺¬ Γ(1)

directly follows from the definition of ≺¬. Second, there is a close connection
between formula paths ‘in the real world’ and formula path in a modelM of
PA for all n ∈ N: If Γ is a formula path with Len(Γ) = n then ♯ΓM ∈ fpathM

and lenM(♯ΓM) = nM are true where ♯Γ =def [Γ(0),Γ(1), . . . ,Γ(n− 1)]n.

On the other hand, for any p ∈ fpathM with lenM(p) = nM we can take
♮Mp =def the formula path Γ with Len(Γ) = n andM �memb(i, v0,Γ(i))[p]
for every i < n. We get for any formula paths Γ, ∆

♮M♯Γ
M = Γ and Γ ≺¬ ∆ iff ♯Γ

M
≺¬
M ♯∆M(2)

because all formulas involved in the definitions of ♯ and ♮M are ∆
PA
1 . A

further observation using (2) and the definition of “henkPA-leftmost path
inM” leads to
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(3)
If ♯ΓM is a henkPA-leftmost path inM
than ♯[Γ(i)]Mi<m is a henkPA-leftmost path inM too.

for all formula paths Γ and m ≤ Len(Γ).
To get a contradiction let us now assume that there is a sequence [Mk]k∈N

of models of PA and an n∗ ∈ N such that (M1) and (M2) hold. First of all,

(4)
For all k,m ∈ N exactly one formula path Γ exists such that
Len(Γ) = m and ♯ΓMk is a henkPA-leftmost formula path inMk.

To see that there is at most such a formula path take formula paths Γ,∆
such that Len(Γ(k)) = m = Len(∆) and ♯ΓMk , ♯∆Mk are henkPA-leftmost
formula paths inMk. Then, by (2) and the definition of “henkPA-leftmost
path in M” Γ ≺¬ ∆ and ∆ ≺¬ Γ are impossible, hence Γ = ∆ holds by
(1). To get a formula path with the desired properties take an m′ ∈ N with
m ≤ m′ such that Frm(m′) is a sentence true in Mk+1. Then, by (M1)
and (D), Mk � truePA(Frm(m

′)) holds, hence there is a henkPA-leftmost

path p in Mk with len
Mk(p) = m′

Mk . Now consider [♮Mkp(i)]i<m and
use (3).
According to (4) we can set for every k ∈ N: Γ(k) =def the formula Γ

path of length n∗ with ♯ΓMk is henkPA-leftmost path inMk.
For every k ∈ N we have:

Γ(k) 6= Γ(k+1)(5)

This can be seen in the following way. We have nk+1 ≤ n and can consider
the nk+1-th member of Γ

(k) and Γ(k+1): On one hand, (3) and (4) imply
together that p is a henkPA-leftmost path in Mk+1 with last

Mk+1(p) =

Frm(nk+1)
Mk+1 iff p = ♯[Γ(k+1)(i)]

Mk+1
i≤nk+1

; henceMk+1 � truePA(Frm(nk+1))

iff Γ(k+1)(nk+1) = Frm(nk+1) follows by (L). On the other hand we get
Γ(k)(nk+1) = Frm(nk+1) iff Mk � truePA(Frm(nk+1)) (by an analogous
consideration for k instead of k + 1) iff Mk+1 � Frm(nk+1) (by (D) and
(M1)). Thus (M2) — applied to k+1 — leads to Γ(k)(nk+1) = Frm(nk+1) 6=
Γ(k+1)(nk+1).
Moreover, for every k ∈ N we have

Γ(k+1) ⊀¬ Γ
(k).(6)

Γ(k+1) ≺¬ Γ
(k) would lead, by (2), to ♯Γ(k+1)

Mk
≺¬
Mk ♯Γ(k)

Mk ; hence,

because ♯Γ(k)
Mk is a henkPA-leftmost path inMk, con

Mk
henk

∪

PA
(♯Γ(k+1)

Mk)
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must be false inMk. Thus ¬conhenk∪

PA
(♯Γ(k+1)) would be true inMk, but

this is a ΣPA1 -sentence (because PA is recursive enumerable); hence corol-
lary 2.3 would lead to Mk+1 � ¬conhenk∪

PA
(♯Γ(k+1)), what cannot happen

because ♯Γ(k+1)
Mk+1 is a leftmost henkPA-path inMk+1.

Now we have got the desired contradiction: {Γ(k) | k ∈ N} has to be a
infinite set of formula paths because of (1), (5) and (6) we have Γ(k) 6= Γ(l)

for all k, l ∈ N with k 6= l. But this is impossible because Len(Γ(k)) = n∗+1
for all k ∈ N, and only 2n

∗+1 formula paths of length n∗ + 1 exist. 2

3. A proof of the Second G.I.T. following Kreisel

By using the Model Chain Lemma in connection with the Arithmetized
Completeness theorem indirect proofs of the Second G.I.T. are easy to get.
Only one additional ingredient is necessary — a method to fulfil condition
(M2) of the Model Chain Lemma. To this end one can start, for example,
with a undecidable sentence from a proof of the First G.I.T. and reconstruct
this sentence with truePA instead of provPA. The mostly direct way to do
this starts with the undecidable sentence of the classical proof for the First
G.I.T. and, therefore, uses the well-known Diagonalization Lemma. This
strategy amounts to the proof of the Second G.I.T. given by Kreisel.

Lemma 3.1. (Diagonalization Lemma) For every formula φ containing ex-
actly v0 free there is a sentence γ such thatM � γ↔ φ(θ) for every model
M of PA.

Proof. Because the literature is full of proofs of the Diagonalization lemma
I will omit the proof here.9 2

Now a reformulation of Kreisel’s proof of the Second G.I.T. can be given:

Theorem 3.2. (Second G.I.T.) If PA is consistent then 0PA conthPA .

Proof. Assume ⊢PA conthPA . Because PA is supposed to be consistent there
exists a modelM∗ of PA (by the ‘ordinary’ Completeness Theorem). We can
recursively define a sequence [Mk]k∈N of models of PA by settingM0 =def
M∗ and Mk+1 =def the LPA-structure M strongly defined by univPA,

9 For instance, [1], p. 176., [4], p. 158, and [5], p. 37f. contain proofs of the Diagonal-
ization Lemma.
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[intPAi ]i<5, truePA inMk by using the Arithmetized Completeness Theorem
becauseM � conthPA holds for every modelM of PA by assumption.
Now use the Diagonalization Lemma to find a sentence γ such thatMk �

γ↔¬truePA(γ) holds for every k ∈ N, and set n∗ = gn(γ).
Thus we have found a sequence [Mk]k∈N of models of PA and an n

∗ ∈ N

fulfilling both conditions of the Model Chain Lemma: (M1) directly follows
from the definition of [Mk]k∈N, (M2) is clear by the choice of n

∗ and by
setting nk =def n

∗ for all k ∈ N. But this is, according to this very Lemma,
impossible. 2
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