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1. Introduction

A logic (= deductive system) is any pair 〈S,C〉, where S is a sentential
language (i. e., a countable absolutely free algebra freely generated by a
counably infinite set of free generators V (sentential variables) and endowed
with a countable set of finitary operations (logical connectives)) and C is a
structural consequence operation on S.
Two connectives are of special interest in metalogical investigations —

the connective of implication which is important due to its connections to the
notion of inference, and the connective of equivalence. The latter connective
expresses, in the material sense, the fact that two sentences have the same
logical value while in the strict sense it expresses the fact that two sentences
are interderivable on the basis of a given logic. The process of identification
of equivalent sentences relative to theories of a logic C defines a class of
abstract algebras. The members of the class are called Lindenbaum-Tarski
algebras of the logic C. One may abstract from the origin of these algebras
and examine them by means of purely algebraic methods.
This approach to the methodology of the deductive systems, based on

Lindenbaum-Tarski algebras, is particularly important because it bridges the
gap between logic and algebra and makes it possible to apply the powerful
methods of contemporary algebra in metalogic. This approach has initiated
the discussion on the scope of algebraic methods in metalogical investigations
and has led to interesting generalizations of the Lindenbaum-Tarski method.
One of the results of this discussion is a clarification of the concept of an
algebraizable logic (Blok and Pigozzi [1989]). Roughly speaking, a logic is
algebraizable if, in a natural way, a certain class of algebras can be associated
with this logic and, moreover, the properties of this logic are fully reducible
to the purely algebraic properties of the associated class of algebras.
The Lindenbaum-Tarski method enables one to algebraize a number of

logics as e.g. classical or intuitionistic system, and many-valued logics. For
example, if C is the classical consequence (logic), then it is well-known that
the relation:

(∗) α ≡T β ⇐⇒ α↔ β ∈ C(T )

defines, for any theory T ⊆ S, a congruence of the algebra of sentences S.
The resulting class of Lindenbaum-Tarski algebras, obtained by factoring
the algebras of sentences by the congruence (∗), coincides with the class of
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Logics and Operators 89

Boolean algebras. In turn, the class of Lindenbaum-Tarski algebras corre-
sponding to intuitionistic logic coincides with the class of Heyting algebras.
The question about the scope of the above method arises. There are

numerous examples of logics to which the Tarski’s method cannot be di-
rectly applied since there may not exist a connective ↔ in the language S
of the logic which defines, according to formula (∗), a congruence on the
language. Prucnal and Wroński [1974] have proposed a generalization of the
Lindenbaum-Tarski technique by replacing the equivalence connective by a
possibly infinite set of sentential formulas which collectively possesses many
properties of the equivalence connective. Any logic which has such a set is
called equivalential. In a more formal rendering, a logic C is equivalential
(finitely equivalential) if there exists a set (a finite set) E(p, q) of sentential
formulas in two variables p and q such that, for each theory T , the relation
≡T , where

α ≡T β ⇐⇒ E(p, q) ⊆ C(T ),

is a congruence on the language S compatible with T . The notion of an
equivalential logic turns out to be very useful in the analysis of intensional
logics such as modal, temporal, or dynamic logics.
A wider perspective is offered by the approach based on the concept of

the Leibniz operator Ω, the term introduced by Blok and Pigozzi [1986].
(The notion is in fact much older; it is implicit e.g. in the work of Wójcicki
[1973], see also Łoś [1949].) The definition of the Leibniz operator is indepen-
dent from one or any other logic admitted in the language S. The Leibniz
operator Ω is a function which assigns to each theory T ⊆ S a congruence
on S, denoted by ΩT . The congruence ΩT is the synonymy relation on S
relative to T . Thus

α ≡ β (ΩT ) ⇐⇒
∧

ϕ∈S

∧

p∈Var(ϕ)

(

ϕ(p/α) ∈ T ⇔ ϕ(p/β) ∈ T
)

,

where Var(ϕ) is the set of variables occurring in ϕ, and ϕ(p/α) is the result
of simultaneously replacing the variable p in ϕ by the sentence α.
ΩT is the largest congruence on S compatible with T , i.e., ΩT is the

largest of all congruences Φ on S with the property that α ≡ β(Φ) implies
that α ∈ T iff β ∈ T , for every pair α, β. The definition of ΩT is related
to the well-known method of defining the equality relation in second-order
logic that goes back to Leibniz. For this reason ΩT is called the Leibniz
congruence associated with T , and the operator Ω, assigning the congruence
ΩT to each theory T in S, is called the Leibniz operator (Blok and Pigozzi
[1986]). The operator Ω is then extended in a natural way to the power set
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90 Janusz Czelakowski

℘(A) of an arbitrary algebra A similar to the language S, where it is denoted
by ΩA. More specifically, for every D ⊆ A:

a ≡ b (ΩAD) ⇐⇒
∧

ϕ(x,u1,...,un)∈S

∧

〈e1,...,en〉∈An

(

ϕ(a, e1, . . . , en) ∈ D ⇔ ϕ(b, e1, . . . , en) ∈ D
)

.

In the context of metalogic the format of the operator Ω is restricted
by admitting that the domain of Ω is the family of all theories of a given
logic C. The so restricted Leibniz operator thus assigns the congruence ΩT
to each closed theory T ∈ Th(C). At the same time the domain of ΩA is
narrowed, for each algebra A, to the closure system FiC(A) of all C-filters
(alias deductive filters) on A.

2. A hierarchy of logics based on the Leibniz operator

In the general case, there are no regularities in the run of Ω on Th(C). The
definition of Ω suggests however the idea of distinguishing some plausible
properties of the operator. These properties, though not universally valid,
may be eventually satisfied for particular logics. This remark, in turn, opens
the possibility of building a certain natural hierarchy of logics based on def-
inite properties of the operator Ω. This is the core of the operator approach
to the problem of typology of logical systems. Blok and Pigozzi [1986] must
be credited with acknowledging the importance of the Leibniz operator and
its properties in metalogical research. The monotonicity property of Ω (on
Th(C)) serves as a basis for distinguishing the class of protoalgebraic log-
ics (see the remarks below). The continuity property of Ω is equivalent to
finite equivalentiality of C. These observations have initiated the operator
approach as the basis for a typology of deductive systems. A fully fledged
typology of protoalgebraic deductive systems was presented in Czelakowski’s
work [1992].

Generally, an operator on a language S is any function O which assigns
a congruence on S to each theory on S. In the context of metalogic, the run
of any operator is being always restricted to the closed theories of a given
logic C.

The hierarchy of deductive systems outlined below directly refers to the
following list of (possible) properties of an arbitrary operator O. Here C is
assumed to be a fixed sentential logic and T , T1, T2, Ti (i ∈ I) range over
arbitrary theories of C.
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Logics and Operators 91

monotonicity T1 ⊆ T2 implies OT1 ⊆ OT2;

injectivity OT1 = OT2 implies T1 = T2;

continuity O
⋃

{Ti : i ∈ I} =
⋃

{OTi : i ∈ I} for all
directed system Ti (i ∈ I) such that the union
⋃

{Ti : i ∈ I} is a theory of C;

meet-continuity O
⋂

{Ti : i ∈ I} =
⋂

{OTi : i ∈ I};

commutativity with

inverse substitutions Oe−1T = e−1OT for every substitution e.

3. Protoalgebraic logics

Definition 1.A logic 〈S,C〉 is protoalgebraic iff the operatorΩ is monotonic
on Th(C). 2

We shall give a list of properties equivalent to protoalgebraicity. Suppose
that among the connectives of the language S there is a binary connective→
(an arrow). Most of the familiar logics possess the following two properties:

p→ p ∈ C(∅)

and

q ∈ C({p, p→ q})

i.e., the law of identity p→ p and the rule detachment p, p→ q / q are valid
in C. The two properties are generalized as follows. Let P (p, q) be a set of
sentences of S in two variables p and q. The conditions

(R) P (p, p) ⊆ C(∅)

(MP) q ∈ C({p} ∪ P (p, q))

are called the reflexivity and Modus Ponens properties for the logic C rela-
tive to P .

Let E = E(p, q, r) be a possibly infinite set of sentences of S built up
from the variables p, q and possibly other variables r = 〈r1, r2, . . .〉 called
parameters. Let k = |r| be the length of the string r. Thus k ¬ ω.

E(p, q, r) is called a parameterized system of equivalence sentences for a
logic 〈S,C〉 (a parameterized equivalence for C, for short) if the following
three conditions are satisfied:
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p–(R) E(p, p, r) ⊆ C(∅);

p–(MP) q ∈ C({p} ∪
⋃

{E(p, q, γ) : γ ∈ Sk});

p–(RMsim ) for each n-ary connective f of S (n  0):
⋃

{E(f(p1, . . . , pn), f(q1, . . . , qn), γ) : γ ∈ S
k} ⊆

C(
⋃

{E(pi, qi, γ) : i = 1, . . . , n & γ ∈ S
k}).

It can be shown that the conditions p–(R), p–(MP) and p–(RPsim), the
last one referred to as simple replacement, jointly imply the conditions:

p–(S)
⋃

{E(p, q, γ) : γ ∈ Sk} ⊆ C(
⋃

{E(q, p, γ) : γ ∈ Sk})

p–(T)
⋃

{E(p, r, γ) : γ ∈ Sk} ⊆
C(
⋃

{E(p, q, γ) : γ ∈ Sk}) ∪ C(
⋃

{E(q, r, γ) : γ ∈ Sk})

of parameterized symmetry and parameterized transitivity.

If M = 〈A,D〉 is a matrix for S, and C is a logic in S, then FiC(M)
stands for the set of all C-filters in M , i.e.,

FiC(M) := {F ∈ FiC(A) : D ⊆ F}

Suppose h : M → N is a strict homomorphism between models of C.
Then obviously F ⊆ h−1h(F ) for every C-filter F ∈ FiC(M).

Definition 2. A logic 〈S,C〉 has the correspondence property iff for every
strict homomorphism h : M → N between models of C and every filter
F ∈ FiC(M), F = h

−1h(F ). 2

Theorem 1. (Blok and Pigozzi [1986], [1992]) For any logic 〈S,C〉 the
following conditions are equivalent:

(i) C is protoalgebraic;

(ii) For all T , α, β: α ≡ β (ΩC(T )) implies C(T, α) = C(T, β);

(iii) The Leibniz operator Ω is meet-continuous on Th(C);

(iv) C satisfies (R) and (MP) for some P (p, q);

(v) C has the correspondence property;

(vi) C possesses a parameterized system E(p, q, r) of equivalence
sentences;

(vii) The operator ΩA is monotonic on the lattice FiC(A), for every
algebra A, i.e., E ⊆ F implies ΩAE ⊆ ΩAF for any filters
E,F ∈ FiC(A);
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(viii) The operator ΩA is meet-continuous on the lattice FiC(A) for
every algebra A, i.e., ΩA

⋂

{Fi : i ∈ I} =
⋂

{ΩAFi : i ∈ I}
for every family (Fi)i∈I of C-filters on A. 2

Property (vi) is particularly useful because it implies that for every model
M = 〈A,D〉 for a protoalgebraic logic C:

a ≡ b (ΩAD) ⇐⇒
∧

e∈Ak

E(a, b, e) ⊆ D,

where E(a, b, e) is any k-parameterized equivalence for C.
There are other characterizations of protoalgebraic logics that give some

insight into the behaviour of the monotonic Leibniz operator.
The Deduction Theorem (DT) was independently discovered for classical

logic by Herbrand and Tarski. In its paradigmatic formulation it says that:

β ∈ K(X,α) ⇐⇒ α→ β ∈ K(X)

for every set X of sentences and every pair α, β of sentences. (Here K is the
consequence operation of classical logic and → is the material implication.)
Since then an array of deduction theorems for various deductive systems has
been established. With small exceptions they fall under the general scheme
which is discussed below.
Let 〈S,C〉 be a logic and p, q be fixed distinct variables. Given a set of

sentences P ⊆ S, we let MPP denote the detachment rule determined by P :

MPP {p} ∪ P / q

The set P is said to have the detachment property for C if MPP is a rule
of C, i.e., q ∈ C({p} ∪ P ). If P has the detachment property for C, then
p and q are called main variables while the variables in Var(P ) \ {p, q} are
called parameters of P . If P has the detachment property, then so has every
superset of P .
Let Φ be a family of sets of sentences P (p, q, r) involving k parametric

variables r = 〈r0, r1, . . .〉, where k ¬ ω.

Definition 3. A logic 〈S,C〉 is said to admit the parameterized local de-
duction theorem (PLDT, for short) with respect to Φ iff for all T ⊆ S, and
all α, β ∈ S:

PLDT β ∈ C(T, α) iff there exists a set P (p, q, r) in Φ and a
sequence γ ∈ Sk of sentences such that P (α, β, γ) ⊆ C(T ).

If PLDT holds for all T , α and β we say that Φ determines PLDT
for C. 2
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94 Janusz Czelakowski

If C admits PLDT with respect to Φ, then each set P in Φ has the
detachment property for C. Furthermore, if C is finitary, then Φ can be
required to consist of finite set since for every P ∈ Φ a finite set Pf ⊆ P can
be chosen so that the Φ := {Pf : P ∈ Φ} also determines PLDT for C.
Protoalgebraicity and PLDT are equivalent properties:

Theorem 2. (Czelakowski and Dziobiak [1991]) For any logic C the follow-
ing conditions are equivalent:

(i) C is protoalgebraic;

(ii) C admits PLDT with respect to some family Φ. 2

PLDT is a very weak form of Deduction Theorem. Specialized instance
of PLDT are discussed in Czelakowski’s [a].
Protoalgebraic logics can also be characterized in terms of the Suszko

operator.
Let 〈S,C〉 be a logic. For every theory T ⊆ S we define the binary

relation $T on S by means of the stipulation:

(∗∗) 〈α, β〉 ∈ $T ⇐⇒
∧

ϕ∈S

∧

p∈Var(ϕ)

C(T,ϕ(p/α)) = C(T,ϕ(p/β)).

The definition of $T is strictly relativised to the logic C and, unlike the
definition of the Leibniz congruence, it does not have the absolute character
— $T may vary on passing from C to a weaker logic. $T can be shown to be a
congruence on S compatible with T . Therefore $T ⊆ ΩT , for all T ∈ Th(C)
and this inclusion may be proper unless C is protoalgebraic (see Thm. 3
below). The congruence $T is called the Suszko congruence corresponding
to the theory T . $T is the largest congruence Φ on S with the property that
α ≡ β (Φ) implies that C(T, α) = C(T, β), for all α, β. The operator $ which
to each theory T ∈ Th(C) assigns the congruence $T is called the Suszko
operator. The condition on the right-side of (∗∗) was used by Suszko to
define the identity connective in his sentential logic with identity. It follows
from the definition of $ that, for any logic C, not necessarily protoalgebraic,
the operator $ is monotonic on Th(C), i.e., $T1 ⊆ $T2 whenever T1 ⊆ T2.
The domain of the operator $ is extended onto the power set of an

arbitrary algebra A similar to S. For every set D ⊂ A, the relation $AD is
defined as follows:

a ≡ b ($AD) ⇐⇒
∧

ϕ(p,r1,...,rk)∈S

∧

〈e1,...,ek〉∈Ak

CA(D,ϕ(a, e1, ..., ek)) = CA(D,ϕ(b, e1, ..., ek)).

Here CA(X) is the C-filter on A generated by the set X ⊆ A.
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$AD is a congruence on A compatible with the C-filter CA(D), for all
D ⊆ A. Furthermore, if E ⊆ F , then $E ⊆ $F , for all E,F ⊆ A, and a ≡ b
($AD) implies CA(D,a) = CA(D, b), for all a, b ∈ A.

Theorem 3. (Czelakowski [1992]) Let 〈S,C〉 be an arbitrary logic and let A
be an algebra similar to S. Suppose that an operator O, defined on FiC(A),
has the following property:

(⋆) a ≡ b (OD) implies that CA(D,a) = CA(D, b),

for all D ∈ FiC(A) and a, b ∈ A. Then OD ⊆ $D, for every D ∈ FiC(A). 2

The above theorem thus states that the Suszko operator is the largest of
all operators O defined on FiC(A) for which (⋆) holds.
The Suszko and Leibniz operators coincide for C protoalgebraic. This

property, in fact, characterizes protoalgebraic logics:

Theorem 4. (Czelakowski [1992]) For a logic 〈S,C〉 the following conditions
are equivalent:

(i) C is protoalgebraic;

(ii) $T = ΩT , for every theory T ∈ Th(C);

(iii) $AD = ΩAD, for every algebra A similar to S and D ∈ FiC(A). 2

4. Equivalential logics

According to Theorem 1, each protoalgebraic logic C is characterized by the
existence of a possibly infinite system of parameterized equivalence sentences
E(p, q, r). Equivalential logics are defined (Prucnal and Wroński [1974]) in
terms of the existence of a parameter-free system of equivalence sentences.
This class encompasses almost all non-trivial deductive systems which have
been studied in the literature.

Definition 4. (Prucnal and Wroński [1974]) A logic 〈S,C〉 is equivalential
(finitely equivalential, respectively) iff C has a parameter-free system E(p, q)
(a finite parameter-free system E(p, q)) of equivalence sentences, i.e., the
following conditions are met for some set (finite set) E(p, q):

(R) E(p, p) ⊆ C(∅);

(MP) q ∈ C(E(p, q) ∪ {p});
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(RPsim) for each n-ary connectives f of S (n  0) and two n-tuples
of disjoint variables p1, . . . , pn, q1, . . . , qn
E(f(p1, ... , pn), f(q1, ... , qn)) ⊆ C(E(p1, q1) ∪ . . . ∪ E(pn, qn)).

The set E(p, q) is then called an equivalence system for S (cf. Theorem
1. (vi)). 2

The above three conditions are called reflexivity, Modus Ponens, and
simple replacement. They are known to imply the conditions of symmetry
and transitivity (see Wójcicki [1988], p. 223).
Definition 4 and Theorem 1. (vi) imply that every equivalential logic

is protoalgebraic. Equivalential logics can be characterized in terms of the
Leibniz operator. (In fact, each of the conditions given below might be used
as a definition of the class of equivalential logics.)

Theorem 5. (Czelakowski [1992], Herrmann [1993], Jansana) For every
logic 〈S,C〉 the following conditions are equivalent:

(i) C is equivalential;

(ii) The operator Ω is monotonic and commutes with inverse
substitutions on Th(C), i.e., e−1ΩT ⊆ Ωe−1T for any
substitution e in S and any T ∈ Th(C);

(iii) Ω is monotonic and eΩT ⊆ ΩC(eT ) for all substitutions e
and all T ∈ Th(C);

(iv) Ω is σ-continuous1on FiC(A), for every algebra A similar to S. 2

The finitely equivalential logics are characterized in terms of the Leibniz
operator:

Theorem 6. (Blok and Pigozzi [l992], Czelakowski [l992], Herrmann [1993])
For any logic 〈S,C〉 the following conditions are equivalent:

(i) C is finitely equivalential;

(ii) Ω is continuous on Th(C);

(iii) Ω is continuous on FiC(A), for every algebra A similar to S. 2

1 An operator O is σ-continuous on FiC(A) iff

O
⋃

{Di : i ∈ I} =
⋃

{ODi : i ∈ I}

for every σ-directed family (Di)i∈I of C-filters of A.
The fact that (Di)i∈I is σ-directed family means that for every countable subset K ⊆ I ,
there exists a k ∈ I such that

⋃

{Ti : i ∈ K} ⊆ Tk.
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We have briefly discussed two classes of logics forming the lowest lev-
els in the hierarchy of deductive systems: protoalgebraic logics and equiv-
alential logics. The next three levels are occupied by the classes of alge-
braizable logics, introduced by Blok and Pigozzi [1989], regularly algebraiz-
able (alias 1-algebraizable) logics, introduced by Czelakowski [1981], and
the class of protoalgebraic Fregean logics, studied by Pigozzi, Czelakowski,
Font, Jansana and Herrmann. They form a descending chain of classes of
deductive systems. We thus have the following inclusions:

Protoalgebraic logics ⊃ Equivalential logics ⊃ Algebraizable
logics ⊃ Regularly algebraizable logics ⊃ Protoalgebraic
Fregean logics.

We cannot give here the definition of an algebraizable logic. We only
mention here that a class K of algebras similar to S is called an algebraic
semantics for a logic 〈S,C〉 iff C can be interpreted in a natural way, in
the „equational” consequence operation Keq|= determined by K on the equa-
tional language corresponding to K. If conversely, Keq|= can be reconstructed
on the basis of C, the class K is called an equivalent algebraic semantics for
the logic C. The logic C is algebraizable in the strict sense iff it possesses
an equivalent algebraic semantics. (The notion of algebraizability is being
understood here more widely than in Blok and Pigozzi [1989] since the class
of algebraizable logics may contain infinite logics. Their original definition
is restricted to finitary deductive systems.) The above, apparently compli-
cated definitions, render the essence of the procedure of assigning the class
of Lindenbaum-Tarski algebras to a given logic.

Theorem 7. (Blok and Pigozzi [1989], Czelakowski [1992], Herrmann [1993])
Let 〈S,C〉 he a sentential logic. The following conditions are equivalent:

(i) C is algebraizable;

(ii) The operator Ω is injective, monotonic and commutes with
inverse substitutions on Th(C);

(iii) C is equivalential and Ω is injective on Th(C). 2

(In the above theorem, C is not assumed to be finitary, and consequently
algebraizability is understood here wider than in Blok and Pigozzi [1989].)

A logic 〈S,C〉 is regularly algebraizable iff it is equivalential (and thus
it has an equivalence system E(p, q)) and p, q/E(p, q) is a set of rules of C
for some (equivalently, for any) equivalence system E(p, q). In other words,
regularly algebraizable logics are equivalential logics in which the members
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of an arbitrary theory T are all identified under the relation ΩT . Regularly
algebraizable logics are thus characterized as equivalential logics C for which
the reduced (alias factorial) models from the classMod∗(C) have the one-el-
ement set of designated elements. (Each such reduced model is customarily
denoted by (A,1); this justifies the use of the term ‘1-algebraizable logic’.
Every regularly algebraizable logics is algebraizable, but not vice versa (see
Blok and Pigozzi [1989]). Regularly algebraizable logics encompass implica-
tive calculi in the sense of Rasiowa [1974]. Regularly algebraizable logics
are characterized in terms of the Leibniz operator as equivalential logics in
which α ≡ β (ΩC(α, β)) for any sentences α, β.
The origin of non-Fregean logics stems from the critique and abolition

of Frege axiom by Suszko [1968], [1975]. Acceptance of this axiom leads to
distinguishing the class of Fregean logics. Formally, a protoalgebraic logic C
is Fregean iff C is not almost inconsistent (i.e., C does not satisfy: C(∅) = ∅
& C(X) = S whenever X is non-empty) and the Leibniz operator Ω satisfies
the condition:

(⋆⋆) α ≡ β (ΩC(T )) ⇐⇒ C(T, α) = C(T, β),

for all T , α and β.
Classical and intuitionistic logics are Fregean since (⋆⋆) reduces for these

logics to the well-known Tarski’s condition:

α↔ β ∈ C(T ) ⇐⇒ C(T, α) = C(T, β),

for all T , α and β. Every Fregean protoalgebraic logic C is regularly alge-
braizable but not vice versa. E.g. the three-valued Łukasiewicz logic is regu-
larly algebraizable; it is not Fregean. Quantum logics, i.e., the consequence
operations C determined by classes of orthomodular lattices with the unit el-
ement designated, are known to be regularly algebraizable and non-Fregean
unless the logic C coincides with the classical consequence (Czelakowski and
Pigozzi – an unpublished result).

5. Final remarks

The class of protoalgebraic logic is too restrictive, at least from the viewpoint
of metalogic. E.g. the conjunctive-disjunctive fragment of classical logic falls
outside this class. It is not difficult to show that the protoalgebraic logics
determined by two-element truth-tables are extensions of either the implica-
tional or the equivalential fragment of classical logic (they may involve more
connectives than → or ↔). This gives rise to the problem of working out
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a more general conceptual apparatus which would make all logics, not only
protoalgebraic ones, amenable to its methods. An instrument of this kind is
available — the key role is played here by the Suszko operator. We know that
for protoalgebraic logics, the Suszko and Leibniz operators coincide. The list
of plausible properties of the Suszko operator, parallel to those studied for
the Leibniz operator, may serve as a basis for distinguishing a hierarchy
of all logics which, in turn, parallels the hierarchy of protoalgebraic logics
discussed above and, at the same time, is an extension of the above protoal-
gebraic logics hierarchy. A significant role in clarifying the basic notions of
this extended hierarchy is played by the notion of a matrix reduced in the
sense of Suszko, shortly, a Suszko-reduced matrix. A matrix M = 〈A,D〉 is
Suszko-reduced iff the congruence $AD is the identity relation on the alge-
bra A. Since the Suszko operator is always monotonic, the class Mod$(C)
of Suszko-reduced matrices for any logic C is closed under the formation of
subdirect products (Czelakowski [1992]). This fact makes it possible to use
widely the techniques of algebraic provenience in metalogical investigations
of whatever logics.
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