
Logic and Logical Philosophy
Volume 3 (1995), 47–86

Wojciech Buszkowski

GRAMMATICAL STRUCTURES

AND LOGICAL DEDUCTIONS

CONTENTS

1. MP-deductions and Polish notation
2. Formal grammars as deductive systems
3. Natural Deduction, lambdas and semantics

Received November 29, 1995

© 1996 by Nicolaus Copernicus University

The three essays presented here concern natural connections between gram-
matical derivations and structures provided by certain standard grammar
formalisms, on the one hand, and deductions in logical systems, on the other
hand. In the first essay we analyse the adequacy of Polish notation for
higher-order languages. The Ajdukiewicz algorithm (Ajdukiewicz 1935) is
discussed in terms of generalized MP-deductions. We exhibit a failure in Aj-
dukiewicz’s original version of the algorithm and give a correct one; we prove
that generalized MP-deductions have the frontier property, which is essential
for the plausibility of Polish notation. The second essay deals with logical
systems corresponding to different grammar formalisms, as e.g. Finite State
Acceptors, Context-Free Grammars, Categorial Grammars, and others. We
show how can logical methods be used to establish certain linguistically
significant properties of formal grammars. The third essay discusses the in-
terplay between Natural Deduction proofs in grammar oriented logics and
semantic structures expressible by typed lambda terms and combinators.
The results of section 1 have been published in Polish in [10] (here, proofs

are simplified). In section 2, the logical proof of the equivalence of Recursive
Transition Networks and Context-Free Grammars is new. Section 3 contains
no new results. However, the main objective of this paper is to emphasize the
unity of logical deductions and grammatical derivations, and that appears
the first time in print. Of course, the very idea of linking logic and grammar
is an old one. Let us explicitly mention Hiż [24] who qualifies type-theoretic
approaches to the theory of grammar as the grammatical component of the
doctrine of logicism.

1. MP-deductions and Polish notation

In a Hilbert system theorems are proven from a set of axioms/assumptions
by few inference rules of the form:

A1; . . . ;An
B

,

where the premises A1, . . . , An and the conclusion B are formulas of the
system. For many systems, the only inference rule is Modus Ponens:

(MP)
A→ B; A

B
.

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 49

Logic interprets A → B as to mean something ‘B can be inferred from A’,
hence (MP) is plausible. Semantics also refers to (MP) as the function appli-
cation principle: if F is a function of type A→ B and x is an object of type
A, then F (x) is an object of type B. The functional interpretation of (MP)
underlies the functor-argument construction which is the basic construction
of Fregean Grammar: if X is an expression of type A → B (the functor)
and Y is an expression of type A (the argument), then XY is an expression
of type B, and µ(XY) = µ(X)(µ(Y)), where µ(X) stands for the semantic
denotation of X.
The interplay between the logical and the functional meaning of (MP)

and other inference rules (e.g. Conditional Syllogism versus Function Com-
position) witnesses general relations between logical deductions and gram-
matical constructions to be discussed in this chapter. In this section we focus
on a simplest relation of that kind: MP-deductions versus Polish notation.
Each MP-deduction is graphically represented as a (rising up) tree in

which the leaves are labelled by the assumptions and the internal nodes
result from applying (MP) to their children; the outcome formula occupies
the root of the tree. To save space, we represent trees in a linear form. We
write t : A, if A is the outcome of tree t. Then, MP-deductions and their
outcomes are recursively defined as follows:

(D1) A : A, for every formula A,

(D2) if s : A→ B and t : A then [s, t] : B.

In the pattern s : A, the bracketed string s uniquely determines the outcome
A, since the conclusion of (MP) is uniquely determined by the premises.
Accordingly, MP-deductions can also be represented by bracketed strings of
formulas, the outcome formulas omitted.
A typically linguistic issue is to focus on the frontier of the tree: the plane

string of assumptions appearing on the leaves. In Fregean Grammar, formu-
las of the conditional language are interpreted as types: A→ B is the type of
functors taking an argument of type A in order to form a complex expression
of type B. The initial lexical description of the given language assigns a type
to each symbol (i.e. atomic expression) of this language. Types of non-atomic
expressions are calculated in the following way. Given a string v1 . . . vn of
symbols, one forms the string A1 . . . An, of types corresponding to these
symbols. One assigns to v1 . . . vn precisely those types which are the out-
comes of MP-deductions with the frontier A1 . . . An. If t is an MP-deduction
with outcome A and frontier A1 . . . An, then the bracketing of t induces a
grammatical structure on the string v1 . . . vn; further, if denotations µ(vi)

© 1996 by Nicolaus Copernicus University

50 Wojciech Buszkowski

are fixed, then the denotation of the expression v1 . . . vn supplied with this
structure can be obtained by function application, going along the tree in
the top-down direction.
From the linguistic point of view, a significant property of MP-deductions

is the frontier property:

(FP) each MP-deduction is uniquely determined by its frontier.

Accordingly, in Fregean languages, well-formed expressions can uniquely be
represented as strings of symbols (supplied with types) without parenthe-
ses and other structure markers. That is the leitmotive of Polish notation,
going back to Lukasiewicz for the case of sentential logics and being
extended to higher-order languages in Ajdukiewicz [2] whith origins in
Logical Syntax of Leśniewski; see Hiż [24]. Precisely, Ajdukiewicz admits
multiple-argument functors: the functor X is of type A1 . . . An → B, if to-
gether with arguments Y1, . . . , Yn of type A1, . . . , An, respectively, it forms
the complex expression XY1 . . . Yn of type B. For instance, if PN is the type
of proper nouns and S is the type of sentential formulas, then the negation
symbol ¬ is of type S→S, the implication symbol ⇒ is of type S S→S, and
the equality symbol = is of type PN PN→S. The corresponding deductions
are based on generalized MP-rules:

(MP-n)
A1 . . . An → B; A1; . . . ; An

B
.

Clearly, the formal notion of a generalized MP-deduction can be obtained
by a straightforward modification of (D1), (D2). The plausibility of Polish
notation for higher-order languages with multiple-argument functors relies
upon the following strengthening of (FP):

(FP⋆) each generalized MP-deduction is uniquely determined by its frontier.

Actually, Ajdukiewicz gives no proof of (FP⋆). Instead, he proposes an
algorithm which, for the given string A1 . . . An, produces an outcome type
A and a structure of this string. The Ajdukiewicz algorithm obeys the left
first routine. In the string, one finds the left-most appearance of an interval
of the form:

(B1 . . . Bm → A), B1, . . . , Bm

and replaces this interval with B. Starting from the initial string, one repeats
this reduction step as far, as possible. If this procedure terminates with a
single type as the final string, this type is the outcome type; otherwise, the
algorithm qualifies the initial string as ill-formed. Clearly, for any initial

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 51

string, there is precisely one left first reduction, and consequently, if this
reduction is successful, the algorithm produces a unique outcome type as
well as a unique structure.

The adequacy of the Ajdukiewicz algorithm depends on the question if all
generalized MP-deductions can be determined from their frontiers according
to the left first routine. Unfortunately, the answer is negative. Consider the
string:

((PN→PN) PN PN→S), (PN→PN), PN, (PN→PN), PN.

Following the left first routine, one first reduces the second and the third
type to PN and then the last two types to PN, and the resulting string:

((PN→PN) PN PN→S), PN, PN

is irreducible. But the initial string is the frontier of an MP-deduction with
outcome S: first apply (MP) to the last two types, then (MP-3) to the
whole. Passing to a grammar, consider the second-order predicate I defined
as follows:

I(f, x, y) iff f(x) = y.

Thus, I is of type (PN→PN) PN PN→S. The Polish expression Ifxgy is
well-formed; it means f(x) = g(y). But this expression gives rise to the
string of types written above, hence the Ajdukiewicz algorithm qualifies
it as ill-formed. Of course, the MP-deduction mentioned above (resigning
from the left-first routine) yields the proper outcome and the correct struc-
ture (Ifx(gy)). Concluding, not all well-formed expressions can correctly
be analysed by the Ajdukiewicz algorithm based on the left first routine.
Instead, one needs the non-deterministic version of the Ajdukiewicz proce-
dure: intervals can be reduced independently of their position in the string.
Non-determinism makes it possible to analyse the given string in different
ways, and one cannot a priori exclude the situation in which different anal-
yses lead to different outcome types or proof structures.

To justify Polish notation in its general scope, a proof of (FP⋆) must be
given. Further, no a constraints upon the shape of admissible MP-deductions
(like the left first routine) should be imposed, since they could eliminate some
well-formed expressions (as in the example above). Below we sketch a proof
of (FP⋆) which is based on certain fine properties of generalized MP-trees.
The reader can see in this proof a development of proof theory for Hilbert
systems in a direction non-orthodox from the logical perspective, but quite
natural from the linguistic point of view. As a consequence, we also obtain a

© 1996 by Nicolaus Copernicus University

52 Wojciech Buszkowski

proof of (FP), and we show that the left first routine happens to be adequate
for MP-deductions (one-argument types).

Greek capitals denote finite strings of formulas (types). We write Γ ⊢ A,
if there is a generalized MP-deduction t : A with frontier Γ (equivalently:
Γ reduces to A according to the non-deterministic Ajdukiewicz procedure).
The relation ⊢ fulfills the following conditions:

(C1) A ⊢ A (reflexivity),

(C2) if Γ, A,Γ′ ⊢ B and ∆ ⊢ A then Γ,∆,Γ′ ⊢ B (transitivity).

The relation A < B ‘type A is a right subtype of type B’ is recursively
defined by the clauses:

A < (B1 . . . Bn → A),

if A < B and B < C then A < C;

so, < is the transitive closure of the relation defined by the first clause.
Clearly, < is irreflexive and almost-linear:

if A < C and B < C then A < B or A = B or B < A.

We also use the property:

(B1 . . . Bn → A) 6< (C1 . . . Cn → A);

otherwise, A would be a proper subtype of itself.

We formulate three crucial lemmas:

(L1) if A1 . . . An ⊢ A, (n > 1), then A < A1,

(L2) if A < B, then B,∆ ⊢ A, for some nonempty ∆,

(L3) if Γ ⊢ A, then there is no nonempty string ∆ such that Γ,∆ ⊢ A.

(L1) is an obvious property of generalized MP-deductions. For (L2) we con-
sider two cases. (CASE 1) B = (B1 . . . Bn → A). Then, put ∆ equal to
B1 . . . Bn. (CASE 2) A < C < B. By induction, there are nonempty strings
∆′,∆′′ such that B,∆′ ⊢ C and C,∆′′ ⊢ A. Then, B,∆′,∆′′ ⊢ A, by (C2).

We prove (L3). Assume the opposite: Γ ⊢ A and Γ,∆ ⊢ A with ∆
nonempty. Let Γ be a shortest string which can be extended in this way.
Γ is not a single type; otherwise, Γ = A, and (L1) yields A < A, which is

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 53

impossible. So, both Γ and Γ,∆ are frontiers of non-trivial deductions with
outcome A. The down-most MP-rules applied in these deductions are:

B1 . . . Bm → A; B1; . . . ; Bm
A

,

C1 . . . Cn → A; C1; . . . ; Cn
A

,

respectively. Let B0, C0 abbreviate the first premises of these rules, and let
C be the first type in Γ. By (L1), B0 < C, C0 < C, hence B0 < C0 or
B0 = C0 or C0 < B0. By the last property of < mentioned above, we get
B0 = C0, and consequently, m = n and Bi = Ci, for all i = 1, . . . , n. So, the
frontier strings can be decomposed as:

Γ = Γ0,Γ1, . . . ,Γn; Γ,∆ = Γ
′
0,Γ
′
1, . . . ,Γ

′
n,

with Γi ⊢ Bi, Γ
′
i ⊢ Ci, for all i = 0, 1, . . . , n. Since Γ 6= Γ,∆, there is a

least i such that Γi 6= Γ
′
i. Clearly, one of the two strings must be a proper

initial interval of the other, and it is shorter than Γ. That contradicts the
minimality of Γ.
To prove (FP⋆), we first show that the frontier uniquely determines the

outcome type. Assume Γ ⊢ A, Γ ⊢ B with A 6= B. Then, at least one of the
two deductions must be non-trivial, hence Γ is not a single type. Using (L1)
and almost-linearity, we get A < B or B < A. Assume A < B (the other
case is dual). By (L2), B,∆ ⊢ A, for some nonempty ∆. Using (C2), we get
Γ,∆ ⊢ A, which contradicts (L3).
We finish the proof of (FP⋆). Let Γ be the frontier of deductions t, t′.

We show t = t′. We use induction on the length of Γ. By the preceding
paragraph, there is a unique type A such that Γ ⊢ A, hence t : A and t′ : A.
If Γ is a single type, then Γ = A and t = t′ are trivial deductions. Otherwise,
both t and t′ are non-trivial. We consider the down-most applications of
MP-rules in t and t′, as in the proof of (L3), and we get m = n, Bi = Ci,
for all i = 0, 1, . . . , n, as above. Consequently:

Γ = Γ0,Γ1, . . . ,Γn = Γ
′
0,Γ
′
1, . . . ,Γ

′
n,

and these intervals satisfy the conditions above. If Γi 6= Γ
′
i, for some i, we

would obtain a contradiction with (L3) (consider the least i fulfilling this
inequality). So, Γi = Γ

′
i, for all i. By induction, there are unique deductions

ti : Bi with frontiers Γi, i = 0, 1, . . . , n, and we obtain:

t = [t0, t1, . . . , tn] = t
′.

© 1996 by Nicolaus Copernicus University

54 Wojciech Buszkowski

For pure MP-deductions (equivalently: for one-argument types), the left
first routine is adequate. By (FP) (which is a consequence of (FP⋆)), it is
enough to prove the following: if Γ ⊢ A then Γ can be reduced to A according
to the Ajdukiewicz algorithm. We use induction on the length of Γ. If Γ is
a single type, then Γ = A, and the reduction is trivial. Otherwise, Γ is the
frontier of a non-trivial deduction t : A. Let B → A and B be the premises
of the down-most application of (MP) in t. Then, Γ = Γ′,Γ′′ with:

Γ′ ⊢ B → A, Γ′′ ⊢ B.

By induction, there is an Ajdukiewicz reduction of Γ′ to B → A, which
yields a reduction of Γ to B → A,Γ′′. There is also a reduction of Γ′′ to
B. If it is non-trivial, then, at each (non-final) step, B < the first type in
the string appearing at this step, and consequently, one cannot reduce the
initial B → A with this type. So, we obtain an Ajdukiewicz reduction of
B → A,Γ′′ to B → A,B, which reduces to A in one step.
We have examined some special properties of MP-deductions which are

significant for Logical Syntax: they justify the plausibility of Polish nota-
tion. By (FP⋆), this notation can be applied to functor-argument languages
of arbitrary order; a standard example is Typed Combinatory Logic. Lan-
guages of Higher-Order Logic contain variable-binding operators, e.g. quan-
tifiers ∀xA, ∃xA (xA is a variable of type A), and one may prohibit them
to take the part of arguments in functor-argument constructions. Follow-
ing Ajdukiewicz, we introduce the barrier | written before a type to block
its argument role. For instance, quantifiers are of type |S→S; one can use
this type as the first but not the second premise of (MP), and similarly for
n-argument rules. All the results given above easily extend to types with
barriers.
Quantifiers and similar operators (integral, sum, etc.) cause no problem

due to the fact that their arguments are of a fixed type, and the operator
scope (i.e. the argument) is a unique interval in the string ((L3) is cru-
cial here). However, there is a trouble with polymorphic operators, e.g. the
lambda abstractor, whose argument types may vary. To use Polish notation
in Typed Lambda-Calculus, one must care for the definiteness of argument
types: each occurrence of λxA must be marked, say , λBxA, where B is
the type of the expected argument. Thus, λBxA is treated as a functor
of type B → (A → B). For Type-Free Lambda-Calculus, Polish notation
cannot be used, unless one introduces some extra-devices, as e.g. infinite
type-assignments for all symbols.
The Ajdukiewicz algorithm (obeying the left-first routine) can be exe-

cuted by a deterministic push-down automaton. Consequently, given a finite

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 55

set T of one-argument types and a type A, the set of all strings Γ, of types
from T , such that Γ ⊢ A is a deterministic context-free language. That
may be of some interest for Logic: frontiers of deduction trees with a com-
mon outcome form a rather simple set in the hierarchy of languages. (Yet,
Logic normally works with an infinite set T of axioms, being generated from
finitely many axiom schemes by substitution.) It is noteworthy that the left
first routine can be modified to fit generalized MP-deductions by employing
Ajdukiewicz’s barriers. Replace (MP-n), n > 1, with the following rules:

A1 . . . An → B

| A1 . . . An → B
,

| Ai . . . An → B; Ai
| Ai+1 . . . An → B

,

| An → B; An
B

.

The role of | is to block argument roles of the intermediate functor types,
untill the last argument has been consumed. Using methods discussed above,
one easily shows that generalized MP-deductions modified in this way can
be executed according to the left-first routine, hence they can be simulated
by deterministic push-down automata.
The logician may test other inference rules with regard to the frontier

property. For Conditional Syllogism:

A→ B; B → C

A→ C
,

only a half of (FP) holds. Due to the obvious associativity, all bracketings of
the given string yield the same outcome (if any). Consequently, the frontier
string uniquely determines an outcome but not a structure. If the latter
rule acts together with (MP), determinacy totally disappears. The following
deductions yield two different outcomes from the same frontier:

[(A→ A)→ ((A→ A)→ B), [A→ A, A→ A]] : (A→ A)→ B,

[[(A→ A)→ ((A→ A)→ B), A→ A], A→ A] : B,

where in the first deduction both rules are used, and in the second one
(MP) is applied twice. The reader easily sees unary rules like Necessitation
A/2A and Generalization A/∀xA also destroy determinacy. The frontier
property, then, seems to be characteristic of systems based on (MP) as
the only inference rule. Does it suggest any structural explanation for the
prominent role of this rule in both Logic and Linguistics?

© 1996 by Nicolaus Copernicus University

56 Wojciech Buszkowski

2. Formal grammars as deductive systems

Connections between logical deductions and grammatical derivations, ex-
amined in the preceding section for Logical Grammar, can be seen in many
other kinds of formal grammar inhabiting Mathematical Linguistics. In this
section we survey basic forms of this correspondence.
First, we introduce some useful logical notions. A fundamental logical

notion is a consequence relation, defined as a relation Γ ⊢ A, where Γ is a
set of formulas, and A is a formula. Both proof theory and linguistics need a
refined notion of a sequential consequence relation: a relation Γ ⊢ A, where
Γ is a finite string of formulas, and A is a formula, which satisfies conditions
(C1) and (C2) from section 1. The intended meaning of Γ ⊢ A is: there is
a derivation tree of A from the string of assumptions Γ within the given
deductive system.
For any deductive system S, the corresponding relation Γ ⊢S A can be

axiomatized in the following way. Each inference rule:

(R)
A1, . . . , An
B

gives rise to the consequence pattern:

(R’) A1, . . . , An ⊢ B.

Axioms of the system (if there are any) are represented as degenerate pat-
terns ⊢ B, that means, Λ ⊢ B, where Λ stands for the empty string. The
relation ⊢S can be defined as the smallest sequential consequence relation
which contains all consequence patterns determined by system S. Equiv-
alently, it can be presented in the form of a sequential deductive system
whose axioms are:

(AC1) A ⊢ A

and all consequence patterns corresponding to axioms and inference rules of
S, and the only deduction rule is the cut rule:

(CUT)
Γ1, A,Γ2 ⊢ B; ∆ ⊢ A

Γ1,∆,Γ2 ⊢ B
.

Clearly, (AC1) and (CUT) simulate (C1) and (C2), respectively.
Formal grammars are usually defined by means of two components:

(I) a (finite) set of lexical assumptions v : A such that v is a lexical atom
(symbol, word, etc.), and A is a formula which denotes a grammatical
category,

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 57

(II) a derivational system, consisting of production rules, transition rules,
and so like, which is to generate complex expressions of respective
categories.

In the framework of this paper, (II) is represented as a logical deductive
system. The role of (I) is to translate logical deductions into grammatical
judgements, roughly, according to the following correspondence: the expres-
sion v1 . . . vn is assigned category A (write: v1 . . . vn : A) if, for some lexical
assumptions v1 : A1, . . . , vn : An, the pattern A1, . . . , An ⊢ A is derivable
in the deductive system. Thus, lexical assumptions actually take the part of
hypothetical assumptions for logical deductions provided by (II).

Let us look at concrete examples. Following the linguistic tradition, we
use two conditionals: A → B (the right conditional) and B ← A (the left
conditional). The former takes its argument on the left, and the latter on
the right, which gives rise to inference patterns:

(MP→) A, A→ B ⊢ B, (MP←) B ← A, A ⊢ B.

In functional terms, A → B is the type of left-looking functors which to-
gether with an A-argument (on the left) form a complex expression of type
B, while B ← A is the type of right-looking functors which together with
an A-argument (on the right) form a complex expression of type B. For in-
stance, the type of Noun Phrase is S←VP (VP is the type of Verb Phrase),
and VP equals PN→S (PN is the type of Proper Noun). Caution: Accord-
ing to this convention, all conditionals in section 1 should be reversed; also
for multiple-argument functors, we should write B ← A1 . . . An instead of
A1 . . . An → B.

A Finite State Acceptor (FSA) admits finitely many lexical assumptions
v : A → B and axioms Λ ⊢ A, where A,B are states. Axioms provide
initial states, and lexical assumptions correspond to transitions. The only
inference rule is (MP→). One distinguishes a finite set of terminal states.
The string X ∈ V ⋆ (V is the lexicon) is accepted by the FSA, if X : A, for
some terminal state A. Let us recall that X : A holds if, and only if, there is
an (MP→)-deduction of A from some string Γ of formulas corresponding to
atoms from X according to lexical assumptions. A crucial property is that
axioms must appear on the left-most leaf of a deduction tree, since no nested
conditionals are admitted.

In the above picture, grammar still remains external to the very logic; it
is lexical assumptions which coordinate logical deductions with grammatical
judgements. A more tight connection of grammar and logic can be reached in

© 1996 by Nicolaus Copernicus University

58 Wojciech Buszkowski

the framework of Labelled Deductive Systems (LDS’s), elaborated in Gab-

bay [18]. An LDS operates with labelled formulas X : A such that A is
a logical formula, and X is a label. Rules of the system perform at the
same time a logical transformation of formulas and an algebraic operation
on labels. For instance, the labelled (MP→) is:

(LMP→) X : A; Y : A→ B ⊢ XY : B;

here we interpret X,Y as finite strings, and XY is the concatenation of
strings X and Y . Clearly, an FSA can be represented by the LDS whose
initial postulates are axioms Λ : A and lexical assumptions v : A→ B, and
(LMP→) is the only deduction rule.

To see the real power of the logical interpretation of grammar, we discuss
logical systems corresponding to other basic formalisms of Mathematical
Linguistics.

Admitting axioms Λ ⊢ A→ B, where A,B are states, yields FSA’s with
Λ-moves; they may change state A into state B without moving along the
string. These new axioms can be eliminated: for any assumption v : C → D,
one introduces all assumptions v : C → D′ such that there is a transition
from D toD′ by Λ-moves only, and for any axiom Λ ⊢ A, one adds all axioms
Λ ⊢ B such that B can be derived from A in a similar way. It is a known
result that each FSA with Λ-moves can be simulated by a standard FSA. In
logical terms, an n-step transition from D to D′ amounts to applying (SYL)
n times. Although (SYL) is not admissible in the deductive system of FSA
((MP→) is the only rule), one easily checks the extended system with (SYL)
and (MP→) is conservative over the (MP→)-system, as concerns patterns
Γ ⊢ A, where A is a state (not a transition). The conservativity of (SYL)
over (MP→) for unnested conditionals is the logical core of the equivalence
of FSA’s with Λ-moves and standard FSA’s.

Admitting axioms with nested conditionals of the form:

Λ ⊢ A1 → (A2 → · · · (An → B) . . .),

where A1, . . . , An, B are atomic, leads to the world of Context-Free Grammar
(CFG). Now, atomic formulas represent nonterminal symbols which are to
denote grammatical categories. The lexical component consists of assump-
tions v : A assigning nonterminals A to lexical atoms v. The derivational
system is based upon production rules which rewrite a string of nonter-
minals into a single nonterminal (the standard ‘generative’ presentation of
CFG assumes the opposite direction of rewriting: from a single symbol to a

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 59

string, but our deductive approach prefers the ‘analytic’ routine). Clearly,
the production rule:

An . . . A2A1 ⊢ B

can be replaced with the axiom written above. It is certainly a matter of
taste whether production rules are represented by axioms or consequence
patterns (inference rules). A logical hint to prefer axioms is to preserve the
logical character of inferences: deduction rules should be logically valid, as
e.g. (MP→), (SYL), while axioms (and assumptions) may be nonlogical.
Thus, each CFG gives rise to a deductive system with nonlogical axioms of
the above form, assumptions v : A, and the only inference rule (MP→).

As a less trivial application of the logical approach, we give a logical
reconstruction of the known equivalence of CFG’s and Recursive Transition
Networks (RTN’s) (see Gazdar andMellish [19]). An RTN admits axioms
Λ ⊢ A, assumptions v : A and special assumptions A : B → C, where A,B,C
are states. Like FSA, the RTN proceeds the string from the left to the right,
but transitions are executed as follows. The subinterval Y of the stringXY Z
is treated as an atom which yields the transition Y : B → C provided the
RTN assigns state A to Y and A : B → C is a special assumption. Less
formally, after the RTN has passed the initial interval X and reached state
B, it may alter the mode; starting from an initial state, it proceeds the
string, till state A will be reached for the source string Y . Then, the RTN
skips Y , changing state B to state C. RTN’s are especially suitable to model
recursive constructions in language. A simple example is:

• Axiom: Λ ⊢ I (I is the initial state),

• Assumptions: Mary, John, Jim: NP; sees, knows: V; that: WH,

• Special assumptions (transitions):
NP: I → A, VP: A→S, V: A→ B,
WH: B → C, S: C →S, NP: B →S.

Here A,B,C are auxiliary states. One easily checks this RTN assigns state
S (Sentence) to strings:

• Mary sees John,

• Mary sees that John knows that Mary knows Jim,

• Mary sees that John knows that Mary sees that John knows that Mary
knows Jim,

© 1996 by Nicolaus Copernicus University

60 Wojciech Buszkowski

ans so on. For the second string, starting from I, the RTN assigns C to
Mary sees that, next it alters the mode to assign state S to the remaining
interval John knows that Mary knows Jim, which is executed in a similar
way. Incidentally, this RTN can still be simulated by an FSA. But, if one
also regards recursion in NP to include expressions:

• the man who sees Jim,

• the man who knows that Mary knows Jim,

and so like, then the resulting RTN will already surpass the capacity of
FSA’s. We also note that initial states (axioms) need not appear; due to
the form of lexical assumptions, the RTN can start the run from the state
associated with the first symbol of the string.

Our main task is to explain the equivalence of RTN’s and CFG’s. The
LDS corresponding to the given RTN is defined by:

• Axioms Λ : A, for initial states A (if there are any),

• Assumptions v : A (reporting lexical assumptions),

• Assumptions A : B → C (reporting transitions),

• Rule (LMP→).

This LDS is essentially an FSA-system in which states are included among
lexical atoms. The recursive behavior will be attained, after one adds the
labelled cut rule:

(LCUT) XAZ : B; Y : A ⊢ XY Z : B,

where X,Y,Z are strings of lexical atoms and states. Notice that (LCUT)
makes sense for those LDS’s only which allow logical formulas to take the
part of labels. Clearly, if X is a string of lexical atoms, and A is a state,
then X : A is derivable in the LDS (with (LCUT)) if, and only if, the RTN
assigns state A to X. That also remains true, if the LDS will be enriched
with identity assumptions A : A which are related to (AC1) and mirror
the double role of states: as formulas and labels. We denote this LDS by
S(RTN).

Now, each CFG can be presented in the Chomsky Normal Form, with
all production rules of the form AB ⊢ C. Instead of replacing them with
axioms:

Λ ⊢ B → (A→ C),

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 61

we can equivalently represent them in the form of unary inference rules:

B ⊢ A→ C,

which eliminates nested conditionals. The corresponding LDS S(CFG) is
given by:

• Axioms Λ : A, for Λ-rules Λ ⊢ A (if there are any),

• Assumptions v : A (reporting lexical assumptions),

• Identity assumptions A : A (here needed to include nonterminals into
labels),

• U-rules X : B ⊢ X : A→ C (executing the unary rules),

• Rule (LMP→).

The equivalence of RTN’s and CFG’s follows from the fact that sys-
tems S(RTN) and S(CFG) yield the same labelled formulas X : A (we
assume axioms and assumptions are the same in both systems, and U-rules
of S(CFG) are naturally related to special assumptions of S(RTN)). This
fact is not obvious, since systems S(RTN) and S(CFG) are apparently dif-
ferent. S(RTN) admits (LCUT) which is not a rule of S(CFG), and S(CFG)
admits U-rules which are stronger than special assumptions of S(RTN) (no-
tice that formulas A,B in (LCUT) must be atomic, hence U-rules cannot be
derived in S(RTN)). To unify these systems, we add (LCUT) to S(CFG) and
U-rules to S(RTN); the resulting systems are denoted by S(CFG)+CUT and
S(RTN)+U, respectively. Clearly, the latter systems are equivalent. Now,
the equivalence of RTN’s and CFG’s follows from two logical elimination
theorems:

(T1) S(CFG) is closed under (LCUT) (equivalently: (LCUT) can be elim-
inated from any derivation in S(CFG)+CUT),

(T2) in S(RTN)+U, U-rules can be eliminated from any derivation of X : A
with A atomic.

(T1) is proven by a straightforward induction on derivations in S(CFG) (that
is much simpler than cut-elimination proofs for Gentzen style systems, since
LDS’s admit no logical transformations of the antecedent formulas). To prove
(T2) assume the U-rule Y : C ⊢ Y : B → D be applied in a derivation of
X : A. Since B → D is not atomic, the node Y : B → D must be a premise
of a next rule; this next rule can be neither (LCUT), nor an U-rule, hence

© 1996 by Nicolaus Copernicus University

62 Wojciech Buszkowski

it must be (LMP→) with premises Z : B and Y : B → D. We modify the
derivation: first, we apply (LMP→) with premises Z : B and C : B → D
(notice the latter is a special assumption of S(RTN)), and second, we apply
(LCUT) with premises ZC : D and Y : C, which yields ZY : D as in the
initial derivation.
By (T1), if X : A is derivable in S(RTN), then X : A is derivable

in S(CFG). Conversely, each formula X : A derivable in S(CFG) is also
derivable in S(CFG)+CUT equal to S(RTN)+U, hence it is derivable in
S(RTN), by (T2). That yields the equivalence of RTN’s and CFG’s. Since
Push-Down Acceptors (PDA’s) are merely a reformulation of RTN’s, also
the equivalence of CFG’s and PDA’s may be regarded as a consequence of
the above elimination theorems.
A variety of grammar formalisms arises from the ones discussed above

by admitting more complex formulas, axioms, rules, etc.
Categorial Grammar admits assumptions v : A, where A may be an

arbitrary formula built of → and ←. In the classical form, introduced by
Bar-Hillel [3], admissible deductions are pure MP-deductions, precisely,
deductions based on (MP→) and (MP←). We refer to these grammars as
Basic Categorial Grammars (BCG’s). Clearly, BCG is a straightforward gen-
eralization of the Ajdukiewicz paradigm, discussed in section 1. Yet, the
presence of two conditionals breaks down the frontier property. These are
two deductions with the same frontier which yield different outcomes:

[[(B ← (A→ A))← A, A], A→ A] : B,

[(B ← (A→ A))← A, [A, A→ A]] : B ← (A→ A).

In linguistic terms, one says that BCG’s are both categorially and struc-
turally ambiguous. Categorial ambiguity means that one string can be as-
signed more than one category. Structural ambiguity means that one string
can be assigned to a certain category by means of at least two different de-
duction trees (which generate different structures on this string). Interest-
ingly, MP-deductions with two conditionals are still categorially unambigous
for atomic outcomes: Γ ⊢ A and Γ ⊢ B entail A = B, if A,B are atomic.
That follows from the obvious fact:

(OC) if Γ ⊢ A by means of (MP→) and (MP←) only, then each atomic
formula has a even number of occurrences in Γ ⊢ A (as a subformula).

Accordingly, if the BCG is deterministic, that means, each lexical atom is
assigned at most one type, then each string is assigned at most one atomic
type (basic grammatical category).

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 63

The key idea of Categorial Grammar is to store all the linguistic infor-
mation in lexical assumptions, whereas the derivational machinery totally
relies on some logically universal principles. In the BCG format, lexical as-
sumptions provide syntactic types of lexical atoms, and types of complexes
are to be deduced, using bidirectional Modus Ponens. This kind of gram-
matical description is naturally related to a type-theoretic semantics for the
language under consideration. Both A → B and B ← A are semantically
interpreted as types of functions from A-objects to B-objects. Thus, (MP→)
and (MP←) mirror the universal function application principle: function F
from A to B applied to an A-object yields a B-object. If semantic deno-
tations of all lexical atoms are fixed, then denotations of complex expres-
sions are to be computed by function application according to admissible
MP-deductions.
There are no a priori reasons to restrict Categorial Grammar to pure

MP-deductions. In literature, there were proposed many extended systems,
admitting other inference rules, as e.g.:

(SYL→)
A→ B; B → C

A→ C
, (SYL←)

C ← B; B ← A

C ← A
,

(TR→)
A

(B ← A)→ B
, (TR←)

A

B ← (A→ B)
.

Clearly, (SYL→) and (SYL←) are directional versions of Conditional Syllo-
gism, and they are semantically executed by function composition. (TR→)
and (TR←) are Type Raising Rules; semantically, they correspond to the
tranformation F which to each A-object x assigns the mapping Fx that
maps each function f from A to B to the B-object f(x). For instance, each
PN-denotation, i.e. an individual, is assigned an NP-denotation, where:

NP=S←(PN→S).

Here PN→S is the type of Verb Phrase (Unary Predicate), as e.g. cries
in Susan cries, hence NP is the type of Noun Phrase, as e.g. some girl
in some girl cries. The transformation F shifts each individual x to the
NP-denotation Fx that assigns the truth value f(x) to each VP-denotation
f . If sets are identified with characteristic functions, then an individual x
is transformed into the family of all sets of individuals which contain x
(the principal ultrafilter generated by x). That reminds the Leibniz idea of
identifying individuals by their properties, and Hiż [25] provides a logical
discussion of this transformation in relation to Russell’s antinomy.
Thus, a categorial grammar admitting (TR←) can ‘lift up’ each PN ex-

pression to type NP, which enables one, for instance, to interpret complexes

© 1996 by Nicolaus Copernicus University

64 Wojciech Buszkowski

like John and some girl, John but not every student as Boolean operations
on NP-denotations. A standard illustration of (SYL←) is the following. Con-
sider the NP-expression a tall girl. It consists of a Determiner, an Adjective,
and a Noun (type N), and the first two types are:

Det = NP←N, Adj = N←N.

Now, the pure MP-analysis produces the deduction:

[NP←N, [N←N, N]]: NP,

which recognizes a tall girl as an NP with the structure:

[a, [tall, girl]].

The interval a tall is not a constituent. If (SYL←) is allowed, then the
alternative deduction:

[[NP←N, N←N], N]: NP

is also possible. Here (SYL←) is responsible for recognizing a tall as a con-
stituent of type NP←N = Det, which agrees with the linguistic practice
of qualifying such expressions to restricted determiners (see Keenan and
Faltz [27]).
We focus on the logically most significant aspects of the above frame-

work. As it has been the case for BCG, the deductive machinery remains
logical: new inference rules do not depend on the particular language, but
they rely upon some universal properties of logical constants (here: condi-
tionals) and can be executed by means of general semantic transformations.
In the next section we show that these transformations can be defined in
an appropriate version of Typed Lambda-Calculus, a basic formalism for
logical semantics. Another interpretation of new rules appeals to algebras of
residuation (residuated algebras); see [7, 11].
Besides logical inference rules, exemplified by (SYL→), (SYL←), etc.,

one may assume logical axioms, as e.g.

(ASYL→) (B → C)→ ((A→ B)→ (A→ C)),

which is a version of Conditional Syllogism. Of course, axiom (ASYL→) can
simulate the action of rule (SYL→), but it produces more consequences.
If D abbreviates the formula above, then the axiom Λ ⊢ D together with
(MP→) D, D → E ⊢ E yields D → E ⊢ E by (CUT), which is not derivable

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 65

with (SYL←) only. In semantics, logical axioms can be interpreted by typed
combinators (e.g. the combinator B represents (ASYL→)) which provide
certain standard semantic transformations. This style of language descrip-
tion is exploited in Combinatory Categorial Grammar of Steedman [46],
and we shall write more on this approach in the next section.
In a historical development, new logical axioms and rules were affixed to

Categorial Grammar in order to improve the semantic adequacy of gram-
matical structures. Conditional Syllogism was assumed in Geach [20], while
Type Raising Rules can be credited toMontague [35]. As early as in Lam-

bek [28], they were justified within a deduction theory, naturally extending
MP-systems. The key idea is to consider sequential consequence relations
with introduction rules for conditionals:

(I→)
A,Γ ⊢ B

Γ ⊢ A→ B
,

(I←)
Γ, A ⊢ B

Γ ⊢ B ← A
.

Observe that with the presence of (CUT) rules (MP→) and (MP←) are
equivalent to the following elimination rules:

(E→)
Γ ⊢ A; ∆ ⊢ A→ B

Γ,∆ ⊢ B
,

(E←)
Γ ⊢ B ← A; ∆ ⊢ A

Γ,∆ ⊢ B
.

The interplay of introduction-elimination rules is characteristic of logical
Natural Deduction Systems. Accordingly, sequential deductive systems ad-
mitting I-rules and E-rules for conditionals are certain Natural Deduction
extensions of pure MP-systems, considered before. van Benthem [4] was
the first who exploited the Natural Deduction approach to grammar for-
malisms in a fully conscious way, an some main lines of his theory will be
sketched in the next section.
Using (I→), (I←), one easily derives the afore mentioned SYL-rules and

TR-rules. For (SYL→), from:

A, A→ B, B → C ⊢ C,

which holds by (MP→) and (CUT), we infer:

A→ B, B → C ⊢ A→ C,

by (I→). The remaining cases are left to the reader.

© 1996 by Nicolaus Copernicus University

66 Wojciech Buszkowski

In the above discussion, we have considered purely conditional formulas.
With new logical constants, deductive systems become more flexible also for
linguistic purposes. Already Lambek [28] uses product ◦, corresponding to
juxtaposition of strings, which is regulated by rules:

(I◦)
Γ ⊢ A; ∆ ⊢ B

Γ,∆ ⊢ A ◦B
,

(I◦L)
Γ, A,B,∆ ⊢ C

Γ, A ◦B,∆ ⊢ C
.

The second rule is a Gentzen-style left-introduction rule, not in the Natu-
ral Deduction format. Gentzen-style systems for the Lambek calculus are
discussed in [8, 6, 36]. One can also admit conjunction ∧ with rules:

(I∧)
Γ ⊢ A; Γ ⊢ B

Γ ⊢ A ∧B
,

(I∧L1)
Γ, A,∆ ⊢ C

Γ, A ∧B,∆ ⊢ C
,

(I∧L2)
Γ, B,∆ ⊢ C

Γ, A ∧B,∆ ⊢ C
.

Continuing this way leads to still richer sequential logics, including Lin-
ear Logics of Girard [21], Bilinear Logics of Lambek [31] and Yetter [51],
Arrow Logics of van Benthem [6], Modal Lambek Systems of Moortgat

[37], Labelled Deductive Systems of Gabbay [18], and others. Here we point
out some simple connections between these enriched logics and formal gram-
mars.
Generative Grammars admit production rules of the form:

A1 . . . Am ⊢ B1 . . . Bn,

which can be simulated in sequential deductive systems by patterns:

A1 . . . Am ⊢ B1 ◦ · · · ◦Bn

or, in the MP-format, by axioms:

Am → (Am−1 → · · · (A1 → B1 ◦ · · · ◦Bn) . . .).

Without product, there is no natural translation of general rewriting rules
into logical schemes (but, see [9] for an ‘artificial’ translation into purely
conditional schemes).

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 67

Context-Sensitive Grammars use context-dependent production rules,
like:

C,A1, . . . , An ⊢ C,B;

that means, the CF-rule A1, . . . , An ⊢ B may be applied only if A1 is pre-
ceded by symbol C. Again, using product, the above rule can be replaced
with the axiom:

An → (An−1 → · · · (C → C ◦B) . . .),

but without product no direct translation is possible.
Conjunction can be used to collapse a finite number of category sym-

bols into one symbol. Thus, a nondeterministic categorial grammar which
assigns, say, A1, . . . , An to v can be transformed into a deterministic one
which assigns A1 ∧ · · · ∧ An to v. Some work on categorial grammars with
conjunction and other booleans has been done by Kanazawa [26]. In the
theory of FSA’s, conjunction formulas can be applied to give a logical in-
terpretation of the classical construction of a deterministic FSA equivalent
to the given nondeterministic FSA. Recall that a deterministic FSA asso-
ciates to each lexical atom v a mapping Tv from states to states such that
v : A → B is a transition if, and only if, B = Tv(A) (intuitively, the next
state is uniquely determined by the current state and the scanned symbol);
one also assumes there is exactly one initial state. Scott’s powerset construc-
tion modifies the given (nondeterministic) FSA into a deterministic one by
taking sets of states of the former FSA as states of the latter FSA. For each
atom v, the mapping Tv sends each state-set W into the set of all states B
such that, for some A ∈W , v : A→ B is admissible by the former FSA. The
set of all initial states of the former FSA is the only initial state of the latter
FSA, and final states of the latter FSA are those state-sets which contain
at least one final state of the former FSA.
If S = {A1, . . . , An} is a nonempty set of states, then

∧
W denotes

the conjunction A1 ∧ . . . ∧An. Each transition v :W → W
′ of the resulting

deterministic FSA can be modelled as the labelled formula v :
∧
W →

∧
W ′,

and the only initial state of this FSA can be represented as
∧
I, where I is

the set of initial states of the nondeterministic FSA. Now, the equivalence of
the nondeterministic FSA and the deterministic one is based on the following
property of derivability with rules (MP→), (I∧), (I∧L1), (I∧L2):

∧
I,
∧
I →

∧
W1,
∧
W1 →

∧
W2, . . . ,

∧
Wn →

∧
W ⊢

∧
W,

holds true, for transitions v1 :
∧
I →

∧
W1, . . ., vn :

∧
Wn →

∧
W of

the deterministic FSA if and only if, for every B ∈ W , there are A0 ∈ I,

© 1996 by Nicolaus Copernicus University

68 Wojciech Buszkowski

A1 ∈ W1, . . . , An ∈ Wn such that v1 : A0 → A1, . . ., vn : An → B are
transitions of the nondeterministic FSA and:

A0, A0 → A1, A1 → A2, . . . , An → B ⊢ B

holds true (the latter is a pure MP-deduction).
Throughout this section we have departed rather far from the simple

picture of section 1 where the focus is MP-trees, directly modelling gram-
matical structures. However, sequential deductive systems can be refined to
make derivation structures explicit. One considers sequents Γ ⊢ A in which
Γ is a bracketed string of formulas. Then, (MP→) and (MP←) take the
form:

(SMP→) [A,A→ B] ⊢ B, (SMP←) [B ← A,A] ⊢ B,

and the rule (CUT) is changed into:

(SCUT)
Γ[A] ⊢ B; ∆ ⊢ A

Γ[∆] ⊢ B
,

where Γ[A] denotes a bracketed string Γ with a designated occurrence of
formula A, and Γ[∆] denotes the substitution of ∆ for the designated oc-
currence of A in Γ. For the case ∆ = Λ, that means, A is an axiom, the
substitution removes the node A from the tree. Now, if Γ ⊢ A is derivable,
then grammatical structures of expressions are produced by replacing each
leave A by a lexical atom v such that v : A is a lexical assumption. Again,
this correspondence can be inserted in the very logic by applying Labelled
Deductive Systems. The structured rule (LMP→) is:

(SLMP→)
X : A, Y : A→ B

[X,Y] : B
,

where X,Y denote bracketed strings of lexical atoms, and similarly for ←.
Structures may contain more information; in the presence of two condi-

tionals, it is natural to make the position of the functor explicit in the struc-
ture. We write [X,Y]1, if the functor is X, and [X,Y]2, if the functor is Y .
Structures sensitive to the position of functors are called functor-argument
structures. Now, SMP-rules should be written:

(SMP→) [A,A→ B]2 ⊢ B, (SMP←) [B ← A,A]1 ⊢ B,

and similarly for labelled patterns.
Structured sequential and labelled systems make it possible to directly

account for the correspondence between logical deductions and grammatical

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 69

structures. As shown in [9], Lambek style grammars are structurally com-
plete in the sense that they provide all possible functor-argument structures
on the admissible strings. On the contrary, BCG’s are structurally more re-
strictive than CFG’s: the latter generate all phrase language of finite index
(with respect to the basic intersubstitutability congruence), while the for-
mer only those phrase languages of finite index which satisfy the additional
requirement that the least distance from each node to the leaves is bounded
for the language.

At the end, we note that more advanced grammar formalisms cannot be
modelled by purely sentential logics, discussed in this section. Computational
Linguistics uses First-Order Logic to execute Unification Systems, as e.g.
Definite Clause Grammars (Pereira and Shieber [41]) and Unification
Categorial Grammars (Uszkoreit [49]). Actually, many linguistic goals can
be accomplished with the aid of systems essentially weaker than the Classical
First-Order Logic, namely first-order expansions of the sequential systems
discussed above.

3. Natural Deduction, lambdas and semantics

In section 2 we have mentioned rules (I→), (I←), (E→) and (E←) as in-
troduction and elimination rules for directed conditionals. Introduction and
elimination rules for logical constants are characteristic of Natural Deduc-
tion systems. The Curry-Howard isomorphism establishes a strict corre-
spondence between Natural Deduction proofs and typed lambda terms [22].
Typed lambda terms are a canonical encoding for semantic denotations of
linguistic expressions. Thus, grammatical derivations represented as Natural
Deduction proofs allow one to directly compute semantic denotations of the
derived expressions, which is a leitmotive of Computational Semantics.

The logico-linguistic side of the Curry-Howard isomorphism was thor-
oughly elaborated by van Benthem in a series of papers and books, the
most representative ones being [4, 5, 6], and his collaborators and students,
as e.g. Zwarts [53], Moortgat [36], Wansing [50], Sanchez Valen-

zia [42] and Hendriks [23]. Some origins can be traced back to Curry

[14] and Montague [35]. Actually, most people interested in natural lan-
guage semantics used typed lambda terms for the semantic representa-
tion of language, and certain ideas from their enterprises are closely re-
lated to this subject. A typical example is Cresswell [13] whose theory
of lambda-categorial languages studies lambda terms as semantic struc-
tures of expressions, but the deductive aspects are hidden, and the same

© 1996 by Nicolaus Copernicus University

70 Wojciech Buszkowski

might be said of the American semantic school (D. Davidson, D. Lewis,
B. Hall-Partee, D. Dowty and others). However, the parallel problem of com-
puting semantic denotations along the derivation tree of a Phrase Structure
Grammar has been investigated in e.g. Lewis [34], Partee [40], Suppes

[47]. An essentially equivalent approach with Hilbert style proofs instead of
Natural Deduction proofs and typed combinators instead of typed lambda
terms has been developed by Steedman [1, 45, 46] with origins in Curry

[14] and Shaumyan [44]. More advanced theories which confront unifica-
tion systems with the second-order lambda calculus have been proposed in
Unification Categorial Grammar [49]; also see Leiss and Emms [33]. Also,
deeper connections between grammatical derivations, logical deductions and
category-theoretic formalisms, the latter being algebraically oriented exten-
sions of the lambda calculus, can be found in recent papers of Lambek [29,
30, 31].
Following the approach of van Benthem [4], we consider semantic types

which are formed out of atomic types e (entity), t (truth value), and pos-
sibly others, by means of the rule: if A and B are types, then A → B is a
type (van Benthem writes (A,B)). To each type A one assigns a nonempty
set DA, called the ontological category of type A. De and Dt are the set of
entities (i.e. individuals) and the set of (classical) truth values, respectively;
DA→B is the set of all functions from DA to DB . Linguistic expressions
are assigned semantic types according to the ontological types of their (in-
tended) denotations. Below we list semantic types corresponding to some
basic grammatical categories.

PN e

S t

VP e→ t
TV e→ (e→ t)
N e→ t
NP (e→ t)→ t
Det (e→ t)→ ((e→ t)→ t)
Prep (e→ t)→ (e→ t)
Adv (e→ t)→ (e→ t)

Here, as usual, PN stands for Proper Noun, S for Sentence, VP for Verb
Phrase, TV for Transitive Verb (Phrase), N for Common Noun, NP for
Noun Phrase, Det for Determiner, Prep for Prepositional Phrase, Adv for
Adverb. Observe that different syntactic categories may fall into a com-
mon semantic type, witness VP and N, Prep and Adv. Clearly, the above
correspondence is merely a first approximation. Intensional treatments use

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 71

the special type s for possible worlds, and each extensional type A is ac-
companied with type s → A (the type of senses of objects of type A); see
Montague [35]. Keenan and Faltz [27] prefer to use t and NP as the
basic semantic types, where NP is the family of NP-denotations, i.e. fami-
lies of sets of individuals, while VP-expressions are assigned type NP→ t,
being understood as the type of complete homomorphisms from the Boolean
algebra NP to the Boolean algebra of truth values. For the sake of brevity,
we stick at the simplified, purely extensional hierarchy of types, based on e
and t.
Typed lambda-terms (shortly: terms) are defined as follows. For each type

A, there are infinitely many variables of type A: xA, yA, zA, . . ., and, possibly,
some constants of type A. One defines terms of type A by the following
recursion:

(TER.1) variables and constants of type A are terms of type A,

(TER.2) if s is a term of type A→ B, and t is a term of type A, then (st)
is a term of type B,

(TER.3) if s is a term of type B, and x is a variable of type A, then (λxs)
is a term of type A→ B.

(TER.2) and (TER.3) are the formation rules of application and lambda
abstraction, respectively. Given a valuation µ which to each variable and
constant assigns an object of the corresponding type, one naturally extends
it to a function which to each term t of type A assigns an object µ(t) ∈ DA
(see e.g. [6, 22]).
In natural language semantics, terms take the part of semantic structures

of expressions. A key idea, going back to Montague and Cresswell, is
to regard lexical units as constants; complex terms are semantic structures
of expressions which are obtained from these terms by dropping all formal
symbols (lambdas, variables, parentheses). A baby example is the sentence
John works with the structure:

((λxe→t(xe→tJohn))works);

here, John and works are constants of type e and e → t, respectively.
Clearly, the above structure is a term of type t. Analogously, the sentence
John hits Paul is given the structure:

((λxe→t(xe→tJohn))(hits Paul));

here, hits is a constant of type e→ (e→ t).

© 1996 by Nicolaus Copernicus University

72 Wojciech Buszkowski

Both the examples above illustrate interchanging functors and arguments
by lambda transformations. For any term t of type A, by tB we denote the
term:

(λxA→B(xA→Bt))

of type (A → B) → B; here, xA→B is a variable not free in t. If s is an
arbitrary term of type A→ B, then (st) and (tBs) have the same denotation,
that means, µ((st)) = µ((tBs)), for any valuation µ. Consequently, tB takes
the part of a functor which with argument s of type A→ B yields the same
value as functor s with argument t. Using this notation, the above structures
can be written:

(Johntworks); (Johnt (hits Paul)).

Another linguistically significant action of lambda-terms is to provide the
composition of two functions. If s, t are terms of type B → C and A → B,
respectively, then the term:

u = (λxA(s(txA))),

of type A → C, fulfils µ(u) = µ(s) ◦ µ(t). For instance, consider constants
not, every and girl, of type t→ t, (e→ t)→ NP and e→ t, respectively,
where NP stands for the semantic type corresponding to NP. Then, the
negative NP not every girl is given the structure:

(λxe→t(not((every girl)xe→t))),

of typeNP. Notice that pure application cannot join the three constants into
a meaningful whole. Also, complexes like John and Mary, works and rests
etc. can correctly be interpreted with and of the basic type t → (t → t).
For the first case, we form the auxiliary structure:

(λxe→t((and(xe→tJohn))(xe→tMary))),

of typeNP, which can be modified to an equivalent structure by interchang-
ing functor and and its first argument, and the second case is treated in a
similar way. We refer the reader to [36, 6, 11] for further semantic roles of
lambda-terms.
Typed lambda-terms can equivalently be represented as Natural Deduc-

tion proofs in the positive logic of implication, based upon axioms (Id) A ⊢ A
and rules:

(E⋆ →)
Γ ⊢ A→ B; ∆ ⊢ A

Γ,∆ ⊢ B
,

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 73

(I⋆ →)
Γ ⊢ B

Γ′ ⊢ A→ B
,

where Γ′ results from dropping a finite number (possibly equal to zero) of
occurrences of A in string Γ. The correspondence is quite clear, if formation
rules for terms are given by the labelled deductive system:

(TER.1’) xA : A, cA : A (cA is a constant of type A),

(TER.2’) if s : A→ B and t : A, then (st) : B,

(TER.3’) if s : B and x : A, then (λxs) : A→ B.

Clearly, each Natural Deduction proof corresponds to a proof in this LDS,
and conversely, with (Id) parallel to (TER.1’), (E⋆ →) to (TER.2’), and
(I⋆ →) to (TER.3’). A Natural Deduction proof must be labelled in the fol-
lowing way: each assumption A, being removed by an application of (I⋆ →),
is replaced by a variable xA, and these and only these occurrences of A which
are removed by the same instance of (I⋆ →) are replaced by the same vari-
able (in terms of Girard et al. [22], assumptions are distributed in different
boxes according to their cooccurrence in introduction rules). If Γ′ equals Γ
(that means, no occurrence of A is removed), then (TER.3’) uses a variable
x not free in s, and otherwise, x is precisely the variable which replaces the
removed occurrences of A.

In this way, the lambda-term corresponding to John hits Paul represents
the following proof.

(e→ t)x e
t

(e→ t)→ t e→ (e→ t) e
e→ t

t

Here (e → t)x symbolizes assumption e → t being removed by the only
application of (I⋆ →). Equivalently, this proof can be written in a form
making ‘active’ assumptions explicit.

e→ t ⊢ e→ t e ⊢ e
e→ t, e ⊢ t
e ⊢ (e→ t)→ t e→ (e→ t) ⊢ e→ (e→ t) e ⊢ e

e→ (e→ t), e ⊢ e→ t

e, e→ (e→ t), e ⊢ t

© 1996 by Nicolaus Copernicus University

74 Wojciech Buszkowski

The latter is precisely a proof tree in the system based on (Id), (E⋆ →)
and (I⋆ →), and it can be rewritten as the following formation tree for the
lambda-term given above for John hits Paul.

x : e→ t John : e
(x John) : t

(λx(x John)) : (e→ t)→ t hits : e→ (e→ t) Paul : e
(hits Paul) : e→ t

((λx(x John))(hits Paul)) : t

Accordingly, each Natural Deduction proof of sequent A1 . . . An ⊢ A can
be represented by a term t, of type A, containing precisely n free variables
of type A1, . . . , An, respectively; these variables appear in t in the horizon-
tal order determined by the order of assumptions A1, . . . , An. Clearly, free
variables can be replaced by constants of the corresponding type, as in the
example above. Now, if v1, . . . ,vn are constants such that:

µ(vi) = ai ∈ DAi , for i = 1, . . . , n,

then, for each term t representing a Natural Deduction proof of the above
sequent, the object µ(t) ∈ DA may be regarded as the denotation of the
expression v1 . . . vn determined by the given proof. In this sense, seman-
tic denotations can be computed according to possible Natural Deductions
proofs from the string of assumptions corresponding to lexical units of the
expression in question.

The full lambda language equivalent to Natural Deduction proofs of the
full positive logic of implication is too strong to be treated as an adequate
generator of admissible semantic structures. For instance, (I⋆ →) with Γ′ = Γ
justifies the inference:

B ⊢ B

B ⊢ A→ B
,

being represented by the semantic transformation:

(λyAxB) : A→ B,

which lifts up each object b ∈ DB to the constant function Fb ∈ DA→B
such that Fb(a) = b, for all a ∈ DA. No linguistically sound interpretation
of this move is possible, however. For the PN John cannot function as a
functor of type, say, t → e. This special case of (I⋆ →) yields the logical
Thinning which corresponds to the monotonicity of consequence: everything
which follows from the given assumptions also follows from any larger array

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 75

of assumptions. Clearly, Thinning is not plausible for semantic transforma-
tions, and the same may be said of Contraction: each repetition of A in the
assumption string can be removed. Contraction is equivalent to (I⋆ →) with
Γ′ having two or more occurrences of A removed. A sample argument is:

e→ (e→ t) ⊢ e→ (e→ t) e ⊢ e e ⊢ e
e→ (e→ t), e ⊢ e→ t

e→ (e→ t), e, e ⊢ t

e→ (e→ t) ⊢ e→ t

where (I⋆ →) is used at the root and removes two occurences of e at
once. Accepting this argument would allow each TV-expression to act as
a VP-expression, which is linguistically disputable. But, the semantic struc-
ture for John and Mary, given above, uses λ binding two occurrences of
xe→t, and no Contraction-free analysis of this case is possible.

It would be difficult to fix one definite system which could provide pre-
cisely the linguistically sound deductions, but attempts in this direction lead
to different interesting subsystems of positive logic. van Benthem [4] fo-
cuses on a Contraction- and Thinning-free system which is given by (Id),
(E⋆ →) and (I⋆ →) with Γ′ having exactly one occurrence of A less than Γ
and Γ′ 6= Λ. Proofs in this system are represented the terms fulfilling the
following constraints:

(CON.1) each subterm contains a free variable (or a constant),

(CON.2) each occurrence of λ binds at least one variable free in its scope,

(CON.3) each occurrence of λ binds at most one variable free in its scope.

Clearly, (CON.1) enforces the nonemptiness of Γ′ in (I⋆ →), (CON.2) blocks
Thinning, and (CON.3) blocks Contraction. Removing (CON.1) yields the
BCI-logic, known from investigations in Combinatory Logic and Relevant
Logic (see Ono and Komori [39], Došen and Schroeder-Heister [16]).
Also, dropping (CON.1) and (CON.2) corresponds to the BCK-logic, while
dropping (CON.1) and (CON.3) to the BCIW-logic (the marks B, C, I, W, K
come from Combinatory Logic). A systematic account of systems determined
by each of the eight subsets of this set of constraints is given in [8].

Even van Benthem’s system is still too strong in some respect. It over-
generates syntactic structures, since it is closed under the permutation rule:

(PER)
Γ, A,B,∆ ⊢ C

Γ, B,A,∆ ⊢ C
.

© 1996 by Nicolaus Copernicus University

76 Wojciech Buszkowski

Consequently, if X is qualified an expression of type C, then every permu-
tation of X is so; thus, not only every girl whistles but also whistles girl
every is assigned type t. Further, it overgenerates semantic structures. For
instance, the transformation:

(λye(λxe((loves xe)ye)))

allows one to interpret loves as to mean is loved by, and similarly, each binary
function F ∈ DA→(B→C) is transformed into its reversal F

′ ∈ DB→(A→C)
such that F ′(b)(a) = F (a)(b) (or, according to the Schönfinkel convention,
F ′(b, a) = F (a, b)).
Essentially weaker systems can be obtained from the directional calculi,

considered in section 2. Recall that types are formed out of atomic types by
means of two conditionals → and ←. The (product-free) Lambek Calculus
is given the Natural Deduction form by axioms (Id) and rules (E→), (E←),
(I→) and (I←) (with Γ 6= Λ in I-rules). Notice that now ← takes the part
of → from the nondirectional systems, discussed above (compare (E←) and
(E⋆ →), but (I←) is remarkably weaker than (I⋆ →) (only the left-most
assumption is to be removed).
As suggested in [8, 9], the van Benthem correspondence between proofs

and (special) terms can be extended to directional systems with applying a
directional version of the lambda calculus. With directional types and two
lambdas λr, λl, new formation rules for terms are (TER.1) and:

(TER.2r) if s is a term of type A, and t is a term of type A→ B, then (st)
is a term of type B,

(TER.2l) if s is a term of type B ← A, and t is a term of type A, then (st)
is a term of type B,

(TER.3r) if s is a term of type B, then (λrxAB) is a term of type A→ B,

(TER.3l) if s is a term of type B, then (λlxAB) is a term of type B ← A.

This directional lambda calculus has thoroughly been discussed inWansing

[50]. It can be shown that proofs in the (product-free) Lambek Calculus are
represented by directional terms fulfilling the constraints (CON.1) and

(DCONr) each occurrence of λr binds precisely the right-most occurrence
of a free variable in its scope,

(DCONl) each occurrence of λl binds precisely the left-most occurrence of
a free variable in its scope.

Variations of these constraints can be considered, as well.

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 77

In semantics, A → B and B ← A can be interpreted in the same
way: both stand for the type of functions from A-objects to B-objects. In
(TER.2r), functor t follows argument s, while in (TER.2l), functor s pre-
cedes argument t, but the meaning remains the same: the application of
the functor to the argument. In (TER.3r) and (TER.3l), both (λrxAs) and
(λlxAs) denote the same function from A-objects to B-objects. So, deno-
tations of complex expressions can be computed along Natural Deduction
proofs, as it has been the case for nondirectional systems. Now, (PER) is not
admissible, and arguments of binary functions cannot be commuted. Since
(SYL→) and (SYL←) are derivable, with proofs being represented by the
terms:

(λlxA((xAyA→B)zB→C)),

(λrzA(xC←B(yB←AzA))),

then function composition is admissible. The nondirectional transformation
of Type Raising:

(TR)A ⊢ (A→ B)→ B

is directionally imitated by (TR→) and (TR←) (replace the line by ⊢). In
directional systems, sentence John works can be analysed in a direct way,
as the structure:

(John works),

since works is of (directional) type e → t, hence it takes the argument on
the left, and similarly for John hits Paul.
There are, however, semantic structures which require the nondirectional

approach. One of them is non-sentential conjunction, as in John and Mary,
works and rests, which cannot be accounted by means of λr and λl; the
basic type (t→ t)← t cannot be transformed into a type (A→ A)← A in
the directional framework. Also, the double quantifier sentence every student
reads some book admits two correct nondirectional deductions, the first with
the wide scope of every and the second with the wide scope of some, in
which the NP’s every student and some book are assigned type (e→ t)→ t,
and the TV reads is assigned type e → (e → t). On the other hand, the
directional approach requires two nonequivalent types of NP’s: t← (e→ t)
for the subject position and (t ← e)→ t for the object position, with type
(e→ t)← e for the TV reads. Accordingly, directionality may increase the
number of types needed in lexical assumptions.

Directionality is, apparently, a concession to syntax, while nondirec-
tional systems are strictly semantical in spirit. Some authors propose mixed
systems in which directional deductions are supplied with nondirectional

© 1996 by Nicolaus Copernicus University

78 Wojciech Buszkowski

semantic structures in the form of standard lambda-terms. This approach
seems to be predominant in linguistic writings; an especially advanced study
of mixed systems can be found inMoortgat [36] and Hendriks [23]. Hen-
driks considers sequents of the form:

A1 : x1, . . . , An : xn ⊢ B : t

such that A1, . . . , An, B are directional types, x1, . . . , xn are distinct vari-
ables whose types are the semantic counterparts of A1, . . . , An, respectively,
and t is a standard term whose free variables are precisely x1, . . . , xn. Ax-
ioms and inference rules operate on sequents of this form. For instance, the
counterparts of (I→) and (I←) are:

A : x,A1 : x1, . . . , An : xn ⊢ B : t

A1 : x1, . . . , An : xn ⊢ A→ B : (λxt)
,

A1 : x1, . . . , An : xn, A : x ⊢ B : t

A1 : x1, . . . , An : xn ⊢ B ← A : (λxt)
.

Mixed systems preserve the standard form of semantic structures and block
overgeneration by a kind of syntactic control for semantic description. Ac-
tually, both Moortgat and Hendriks focus on Gentzen style formalisms and
prove several cut elimination and normalization theorems for them.
An alternative (but essentially equivalent) approach to semantic struc-

tures is Combinatory Categorial Grammar, developed by Steedman and
his collaborators [1, 45, 46]. Lambda-terms without free variables are called
combinators. Some most important combinators are:

I = λxAxA, type: A→ A,

K = λxA(λyBxA), type: A→ (B → A),

W = λx(λy((xy)y)), type: (A → (A → B)) → (A → B), where y : A and
x : A→ (A→ B),

C = λx(λy(λz((xz)y))), x : A → (B → C), y : B, z : A, type of C:
(A→ (B → C))→ (B → (A→ C)),

B = λx(λy(λz(x(yz)))), x : B → C, y : A → B, z : A, type of B:
(B → C)→ ((A→ B)→ (A→ C)).

Clearly, I yields the identity mapping,K produces constant functions,W di-
agonalizes binary functions,C commutes arguments of binary functions, and
B yields the composition of two functions. Combinatory terms are formed

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 79

out of combinators and variables by application (rule (TER.2)). It is well
known [15] that each lambda-term is equivalent to some combinatory term
built from variables and two combinators: K and

S = λx(λy(λz((xz)(yz)))),

of type (A→ (B → C))→ ((A→ B)→ (A→ C)), with x : A→ (B → C),
y : A → B, z : A. Consequently, all semantic structures expressible in the
lambda language can also be expressed by means of combinatory terms.

Steedman explains the role of particular combinators in the semantic
description of different constructions in natural language. A simple example
is Harry cooked and might eat the beans with directional types:

cooked : (NP→ t)← NP, might : (NP→ t)← VP,

eat : VP← NP, Harry, the beans : NP,

whereVP = e→ t. As above,→ and← are semantically synonymous. Here
and should act as the Boolean conjuction on the semantic denotations of
VP’s cooked and might eat, which would require computing the denotation
of the latter. Clearly, if F,G are denotations of might, eat, respectively, then
(BF)G provides the denotation of might eat, i.e. the function F ◦G. Using
combinators, Steedman provides adequate semantic structures for various
‘difficult’ constituents of sentences, including wh-constructions, non-adjacent
connections and others.

Semantic structures obeying constraints (CON.1)-(CON.3) can be pro-
duced by means of combinators B, C and I. Szabolcsi [49] finds out that
constructions like file without reading in e.g. Harry will copy and file with-
out reading some articles require combinator S which is not expressible by
means of B, C and I. For with type (VP→ VP)← NP of without reading
and type VP← NP of file the type VP← NP of file without reading can
be derived by so-called Backward Crossed Substitution:

B ← C, (B → A)← C ⊢ A← C;

if F,G represent the assumptions, then (SG)F is a function from C to A
which correctly describes the meaning of this construction. That is another
evidence for the need of a larger lambda language than the fragment delim-
ited by van Benthem.

Returning to our leitmotive: logical proofs versus grammatical struc-
tures, we notice that Combinatory Categorial Grammar is naturally related

© 1996 by Nicolaus Copernicus University

80 Wojciech Buszkowski

to Hilbert style systems rather than Natural Deduction systems. Since for-
mation rules for combinatory terms are (TER.1) and (TER.2), and lambda
abstraction is abandoned, then the corresponding deductions do not employ
I-rules, and the remaining E-rules reduce to MP-rules (plus (CUT)). Fixed
combinators, as e.g. I, B etc., appearing in combinatory terms provide logi-
cal axioms for the corresponding deductions, and variables take the part of
assumptions.

All possible combinatory terms are equivalent to all possible proofs (from
assumptions) in the full system of positive implication, with axioms:

(K) A→ (B → A),

(S) (A→ (B → C))→ ((A→ B)→ (A→ C)),

and the only rule (MP). Notice that these axioms amount to types of combi-
nators K, S which generate all combinators. Restricted systems of combina-
tors correspond to subsystems of positive logic. For instance, combinatory
terms formed out of B, C and I are equivalent to proofs in the BCI-logic
whose axioms are types of these three combinators, and similarly one obtains
the BCK-logic, the BCIW-logic and so on.

Above, we have merely outlined basic ideas of generating semantic struc-
tures by means of lambda-terms and combinators according to Natural De-
duction proofs and Hilbert style proofs, respectively. Now, we briefly discuss
some more fine properties of these formalisms which are of both logical and
linguistic significance.

Different deductions of sequent Γ ⊢ A are represented by different terms
which yield different semantic structures of the underlying expression (with
the same outcome type). Structures s, t are said to be equivalent, if µ(s) =
µ(t), for every valuation µ. As shown by van Benthem [4], for any expres-
sion, there are only finitely many equivalence classes of structures (fulfilling
(CON.1)–(CON.3)) with the given outcome type. In other words, each ex-
pression admits only finitely many readings in the given semantic category.
The proof is based on normalization properties of the systems in question.
A redex is a term (λxs)t, and the term s[x := t] (i.e. the substitution of t for
every free occurrence of x in s) is the contractum of this redex. Another form
of a redex is λx(sx) (x not free in s) with the contractum s. A reduction of a
term consists in successive replacing redexes appearing in the term by their
contracta. A term is in the normal form, if it contains no redex. In the typed
lambda calculus, each term t can be reduced to exactly one term in the nor-
mal form (up to renaming bound variables) which is called the normal form
of t (see e.g. [22]). Clearly, reduction always produces terms equivalent to

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 81

the initial term, hence each term is equivalent to its normal form. Applied
to Natural Deduction proofs, reduction eliminates circularities like inferring
Γ ⊢ A → B from Γ, A ⊢ B, by (I⋆ →), and next inferring Γ, A ⊢ B, by (Id)
and (E⋆ →). For any sequent Γ ⊢ A, there are only finitely many normal
deductions in the van Benthem calculus; equivalently, there are only finitely
many terms in the normal form with the outcome type A and the fixed
string of free variables and constants. That proves van Benthem’s theorem.
As stated here, the proof is sound for the contraction-free fragments of the
lambda language.

Another interesting question concerns the equivalence of Natural Deduc-
tion systems and Hilbert style systems. Given a Natural Deduction format,
one seeks for a Hilbert style system which produces the same sequents, and
conversely (actually, one wants a kind of strong equivalence: both systems
should provide the same semantic structures of derivable sequents, at least
up to the semantic equivalence of terms, defined above). Some negative
results have been obtained by Zielonka [52] for directional systems and
myself [8] for nondirectional systems. Namely, the (product-free) Lambek
calculus admits no finite Hilbert style axiomatization, and the same is true
for the van Benthem system. Since no sequent of the form ⊢ A is provable
in these systems, Hilbert style presentations have no logical axioms; instead,
they use unary rules of the form A ⊢ B. Systems of Lambek and van Ben-
them can easily be axiomatized by infinitely many unary rules plus (MP)
(the first axiomatization of that style is due to Cohen [12]), but the infi-
nite collection of rules cannot be reduced to a finite one. These results are
relevant to some earlier research in semantics, when people have improved
the flexibility of purely applicative systems by affixing some logically sound
inference patterns, as e.g. (SYL), (TR); it follows that none of those calculi
can simulate all possible Lambek style deductions and produce a combinato-
rily complete system of semantic structures. On the contrary, the logic BCI,
being a ‘slight’ extension of the van Benthem calculus (one admits Γ′ = Λ in
(I⋆ →)), possesses a finite Hilbert style axiomatization (given by B, C and
I), and so do its strengthenings BCIW, BCK etc. (For directional versions
of these systems, the question remains open.) Thus, semantic structures ful-
filling (CON.2) and (CON.3) can be generated from the finite base B, C, I,
enriched by variables and constants, by application only, whereas no finite
base can generate all structures obeying (CON.1)–(CON.3) (here, elements
of a base cannot be combinators, but they must be some terms fulfilling the
constraints; in particular, they must contain free variables).

An (infinite) Hilbert style axiomatization of the van Benthem system is
given by the rules:

© 1996 by Nicolaus Copernicus University

82 Wojciech Buszkowski

(TR) A ⊢ (A→ B)→ B,

(C’) A→ (B → C) ⊢ B → (A→ C),

together with all rules produced from them by means of the higher level
rules:

(M1)
A ⊢ B

C → B ⊢ C → A
,

(M2)
A ⊢ B

A→ C ⊢ B → C
,

which express the antitonicity of → in the first argument and the mono-
tonicity in the second one. One also needs MP (in the sequential format,
(CUT) and (Id) are affixed). That the resulting system is equivalent to the
van Benthem system is proven by showing (I⋆ →) (Γ′ 6= Λ has one occur-
rence of A less than Γ) be derivable in the former system, which is, actually,
a Deduction Theorem for the Hilbert style system. The nonexistence of a
finite axiomatization follows from the fact that (M1), (M2) cannot be re-
placed by any finite collection of patterns derivable with the aid of them [8].
Yet, even this infinite axiomatization is of linguistic significance. Consider
the expression v1 . . . vn with the lexical assignment vi : Ai, i = 1, . . . , n. To
derive v1 . . . vn : B by means of the latter system one, first, transforms each
Ai into a type Bi, by a finite application of unary rules, and second, executes
an MP-deduction for B1 . . . Bn ⊢ B (this arrangement of proofs is always
possible, since each application of a unary rule after MP can be changed into
an application of a unary rule before MP). Semantically, all denotations b of
v1 . . . vn can be produced in the following way: first, the initial denotations
ai ∈ DAi are transformed into some denotations bi ∈ DBi by the axiomati-
cally given semantic mappings, and second, the object b is computed from
b1, . . . , bn by function application only. Consequently, the non-applicative
component of structure generation can be reduced to the lexical level, while
keeping function application as the only construction joining constituents
into an whole. Semantic lexicalization in this sense is possible for all combi-
natorily complete families of semantic structures.
At the end, we merely mention some major topics not discussed here.

The above considerations are restricted to the pure lambda calculus and
the corresponding purely propositional (implicative) systems. This frame-
work may be extended in different ways. New logical constants (product,
booleans, etc.) lead to extended versions of the lambda calculus, and we re-
fer the reader to van Benthem [6] and Lambek/Scott [32] for a detailed
discussion. Another extension is Higher-Order Logic in which one has the
logical constant = in each type; then, the semantic equivalence of structures

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 83

admit a direct treatment, and the Montague theory of intension can be incor-
porated (here the references are Gallin [17] and again van Benthem [6]).
A natural problem is to characterize the objects which are denoted by
lambda terms of a given form; as shown in van Benthem [6], in finite
models (that means, all sets DA are finite), all permutation invariant ob-
jects are definable by (pure) lambda terms, which evidently fails for infi-
nite models (van Benthem has some interesting partial results). Recently,
Sanchez Valenzia [42, 43]] has developed a theory of monotonic infer-
ence, based on Natural Deduction supplied with monotonicity marking. In
his approach, types may contain an information of the positive (negative)
character of expressions. For instance, every is typed NP− → (VP+ → t),
since it denotes a function antitone in the NP-argument and monotone in
the VP-argument, and some is typed NP+ → (VP+ → t), since it de-
notes a function monotone in both arguments (the order here is the natural
Boolean order in ontological categories; see [27]). Natural Deduction rules
are sensitive to monotonicity marking, which propagates the markers along
the tree. The resulting marked structures provide information of the role of
expressions in natural inferences like:

every X is Y ; X ′ ⊂ X

every X ′ is Y
.

References

[1] A. E. Ades and Mark J. Steedman, On the Order of Words, Linguistics and
Philosophy 4 (1982), 517–558.

[2] K. Ajdukiewicz, Die syntaktische Konnextität, Studia Philosophica 1 (1935),
1–27.

[3] Y. Bar-Hillel, C. Gaifman and E. Shamir, On categorial and phrase structure
grammars, Bull. Research Council Israel F 9 (1960), 155–166.

[4] J. van Benthem, Essays in Logical Semantics, D. Reidel, Dordrecht, 1986.

[5] J. van Benthem, The Lambek Calculus, in: [38].

[6] J. van Benthem, Language in Action. Categories, Lambdas and Dynamic
Logic, North-Holland, Amsterdam, 1991.

[7] W. Buszkowski, Completeness Results for Lambek Syntactic Calculus, Zeit-
schrift für mathematische Logik und Grundlagen der Mathematik 32, (1986),
13–28.

© 1996 by Nicolaus Copernicus University

84 Wojciech Buszkowski

[8] W. Buszkowski, The logic of types, in: J. T. Srzednicki (ed.), Initiatives in
Logic, Nijhoff, Dordrecht, 1987.

[9] W. Buszkowski, Generative Power of Categorial Grammars, in: [38].

[10] W. Buszkowski, The Ajdukiewicz Calculus and Polish Notation, in Polish, in:
J. Pogonowski (ed.), Eufonia i Logos, The Book devoted to Professors Maria
Steffen-Batogowa and Tadeusz Batóg, Adam Mickiewicz University Press,
Poznań, 1995.

[11] W. Buszkowski, W. Marciszewski and J. van Benthem (eds.), Categorial
Grammar, J. Benjamins, Amsterdam, 1988.

[12] J. M. Cohen, The equivalence of two concepts of categorial grammar, Infor-
mation and Control 10 (1967), 475–484.

[13] M. J. Cresswell, Logics and Languages, Methuen, London, 1974.

[14] H. B. Curry, Some Logical Aspects of Grammatical Structure, in: R. Jakobson
(ed.), Structure of Language and Its Mathematical Aspects, AMS, Providence,
1961.

[15] H. B. Curry and R. Feys, Combinatory Logic, I, North Holland, Amsterdam,
1958.

[16] K. Došen and P. Schroeder-Heister (eds.), Substructural Logics, Oxford Uni-
versity Press, Oxford, 1993.

[17] D. Gallin, Intensional and Higher-order Modal Logic, North Holland, Ams-
terdam, 1975.

[18] D. Gabbay, Labelled Deductive Systems I, CIS-München, Munich, 1991.

[19] G. Gazdar and C. Mellish, Natural Language Processing in Prolog. An Intro-
duction to Computational Linguistics, Addison-Wesley, Workingham, 1989.

[20] P. T. Geach, A program for syntax, Synthese 22 (1968), 3–17; reprinted in
[11].

[21] J. Y. Girard, Linear Logic, Theoretical Computer Science 50 (1987), 1–102.

[22] J. Y. Girard with P. Taylor and Y. Lafont, Proofs and Types, Cambridge
University Press, Cambridge, 1989.

[23] H. Hendriks, Studied Flexibility, Ph. D. Thesis, University of Utrecht, 1993.

[24] H. Hiż, Grammar Logicism, The Monist 51, (1967), 110–127; reprinted in
[11].

[25] H. Hiż, On the Abstractness of Individuals, in: M. Munity (ed.), Identity and
Individuals, New York University Press, 1971.

[26] M. Kanazawa, The Lambek Calculus Enriched with Additional Connectives,
Journal of Logic, Language and Information 1.2 (1992), 141–171.

© 1996 by Nicolaus Copernicus University

Grammatical Structures and Logical Deductions 85

[27] E. L. Keenan and L. M. Faltz, Boolean Semantics for Natural Language, D.
Reidel, Dordrecht, 1985.

[28] J. Lambek, The mathematics of sentence structure, American Mathematical
Monthly 65 (1958), 155–170.

[29] J. Lambek, On categorial and categorical grammars, in: [38].

[30] J. Lambek, Logics without structural rules, in: [16].

[31] J. Lambek, From Categorial Grammar to Bilinear Logic, in [16].

[32] J. Lambek and P. J. Scott, Introduction to higher order categorical logic,
Cambridge University Press, Cambridge, 1986.

[33] H. Leiss and M. Emms, Second-order Lambek Calculus and Cut Elimination,
DYANA Reports, 1993.

[34] D. Lewis, General Semantics, in: D. Davidson and G. Harman (eds.), Seman-
tics of Natural Language, D. Reidel, Dordrecht, 1972.

[35] R. Montague, Formal Philosophy, (ed. by R. Thomason), Yale University
Press, New Haven, 1974.

[36] M. Moortgat, Categorial Investigations: Logical and Linguistic Aspects of the
Lambek Calculus, Foris, Dordrecht, 1988.

[37] M. Moortgat, Residuation in Mixed Lambek Systems, manuscript, University
of Utrecht, 1994.

[38] R. T. Oehrle, E. Bach and D. Wheeler (eds.), Categorial Grammars and
Natural Language Structures, D. Reidel, Dordrecht, 1988.

[39] H. Ono and Y. Komori, Logics without the contraction rule, Journal of Sym-
bolic Logic 50 (1985), 169–201.

[40] B. Partee, Montague Grammar and Transformational Grammar, Linguistic
Inquiry 6 (1975).

[41] F. C. Pereira and S. M. Shieber, Prolog and Natural Language Analysis, CSLI
Lecture Notes, 10, Chicago University Press, Stanford, 1987.

[42] V. Sanchez Valenzia, Studies on Natural Logic and Categorial Grammar, Ph.
D. Thesis, University of Amsterdam, 1991.

[43] V. Sanchez Valenzia, Natural Logic: Parsing Driven Inference, to appear.

[44] S. K. Shaumyan, Applicational Grammar as a Semantic Theory of Natural
Language, Edinburgh University Press, Edinburgh, 1977.

[45] M. Steedman, Combinators and grammars, in: [38].

[46] M. Steedman, Categorial grammar. Tutorial overview, Lingua 90 (1993),
221-258.

© 1996 by Nicolaus Copernicus University

86 Wojciech Buszkowski

[47] P. Suppes, Logical inference in English, Studia Logica 38 (1979), 375–391.

[48] A. Szabolcsi, ECP in Categorial Grammar, Max Planck Institute, Nijmegen,
1983.

[49] H. Uszkoreit, Categorial Unification Grammar, Proc. 11th International Con-
ference on Computational Linguistics, Bonn, 1986.

[50] H. Wansing, The Logic of Information Structures, Ph. D. Thesis, University
of Amsterdam, 1992.

[51] D. N. Yetter, Quantales and (Non-Commutative) Linear Logic, The Journal
of Symbolic Logic 55 (1990), 41–64.

[52] W. Zielonka, Axiomatizability of Ajdukiewicz - Lambek calculus by means
of cancellation schemes, Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 27 (1981), 215–224.

[53] F. Zwarts, Categoriale grammatica en algebraische semantiek, Ph. D. Thesis,
University of Groningen, 1986.

Wojciech Buszkowski

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
ul. Matejki 48/49
60-769 Poznań, Poland

© 1996 by Nicolaus Copernicus University

