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IDENTITY, MANY-VALUEDNESS

AND REFERENTIALITY

Abstract. In the paper∗ we discuss a distinctive versatility of the non-
Fregean approach to the sentential identity. We present many-valued and
referential counterparts of the systems of SCI, the sentential calculus with
identity, including Suszko’s logical valuation programme as applied to many-
valued logics. The similarity of different constructions: many-valued, ref-
erential and mixed, leads us to the conviction of the universality of the
non-Fregean paradigm of sentential identity as distinguished from the equiv-
alence, cf. [9].
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Introduction

The classical sentential logic has a distinguished semantics provided by
the two-element matrix M2. One consequence of this fact is that the
equivalence connective meets the Fregean condition that two sentences
having the same logical values describe the same, i.e. they have the
same referent or, denotation. In other words, we may say that the only
attribute of the sentence within the classical logic is its truth-value. The
truth table condition for the equivalence is the following:

x ↔ y ∈ {1} if and only if x = y .

∗ The paper is an advanced and extended version of [4]. The author is grateful
to the editors of the volume in which the latter appeared for their kind permission to
use here some material from it.
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The right hand side equality of the formula merely serves as the equality
of logical values and not the identity of sentences in any extended or a
deeper sense. Accordingly, the truth tables semantics covers only a small
part of the ontology of referents of sentences and in no reasonable sense
describes contents of these linguistic entities.

In order to avoid the inconvenience, Suszko [9] extended the classical
logic introducing in its language a non truth-functional connective of
identity, denoted henceforth as ≡ . The intended meaning of the new
connective is explained by Suszko and his collaborators in several ways,
two of which are important for our purposes, namely through the use
of logical valuations and models, see [9] and [1]. The latter description,
by models with the designated set of elements, enables us to express
the fact that two sentences are identical, modulo given model, whenever
their semantic correlates are identical. The choice of the class of mod-
els determines the kind of sentential identity, that is applied to specific
structures of semantic correlates or, as Suszko would say, (structures
of) situations. It is crucial that every model distinguishes between two
kinds of situations: the positive ones, i.e. these which obtain, and the
negative ones. The weakest logic of identity SCI, the Sentential Calculus
of Identity, may be characterized semantically by the use of SCI-models,
see Bloom [1]. Among the extensions and theories of the SCI  the basic
system of the identity connective  one may find several known and im-
portant systems of modal logic and the many-valued logics. the fact that
SCI, in the class of its models has the matrices of many-valued logics
and, moreover, that these logics appear to be axiomatic strengthenings
of SCI gives to many-valuedness a new dimension.

The aim of the paper is to show a specific universality of the non-
Fregean paradigm of sentential identity as distinct from equivalence,
cf. [9]. To achieve this goal, we discuss several issues from some earlier
works by the author, including [3], [4], [5] and [7]. Our first task is to
compare the non-Fregean interpretation of finite many-valued Łukasie-
wicz logics, [3], and the interpretation of the Rosser and Turquette stan-
dard logics, using a common terminology of the SCI-models, [6]. Accord-
ingly, the finite Rosser and Turquette logics are seen as classical protolog-

ics based on n-element set of values and the identity connective expressed
in terms of n-element conjunction of formulas indicating the equivalence
of formulas modulo a given logical value. In the sequel, we present the ref-
erential semantics by Wójcicki. The latter is best characterized through
the selfextensionality, which resembles the Fregean Axiom  the property
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identifies the external semantic congruence relations with the equiva-
lence of formulas. The former bunch of relations is a counterpart of the
identity in non-Fregean logic. Next, the m-valued referential semantics,
received in result of generalization of referentiality to the case inspired
by the Rosser ad Turquette construction principles. It is shown that
the problem of identity in the referential framework is confined to the
external congruence relation of formulas and that, in turn, this inferential
equivalence expressed with the matrix consequence operation C may be
distributed as the intersection of the C-equivalence and the inferential
C-equivalences modulo specific formulas displaying (or, imitating) logical
values which, in the construction, are the reference points.

1. Identity and its models

The basic and the weakest system of the propositional identity, SCI,
Sentential Calculus of Identity, is formulated in a standard sentential
language extended with the additional, special connective of identity ≡.
Its semantical description in terms of SCI-models was given by Bloom
in [1]. An SCI-model is a matrix M = (A, D), founded on the algebra

A = (A, ¬, →, ∨, ∧, ↔, ≡)

and such that for any a, b ∈ A

¬a ∈ D if and only if a 6∈ D,
a → b /∈ D if and only if a ∈ D and b 6∈ D,
a ∨ b /∈ D if and only if a 6∈ D and b 6∈ D,
a ∧ b ∈ D if and only if a ∈ D and b ∈ D,
a ↔ b ∈ D if and only if a, b ∈ D or a, b 6∈ D,
a ≡ b ∈ D if and only if a = b.

As it is is easily seen, all the connectives except the identity are described
classically with respect to the division of the set of elements of the matrix
M into two subsets: the set of designated elements D and the set of
undesignated elements A \ D. The matrix SCI consequence relation
|=SCI is defined as follows:

X |=SCI α if and only if X |=M α for any SCI-model M.

The interpretations of the SCI language L = (For, ¬, →, ∨, ∧, ↔, ≡)
are homomorphisms h : L → A. Moreover, for any such h there corre-
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sponds a valuation th : For → {0, 1} such that:

th(α) = 1 if and only if h(α) ∈ D .

The valuations th describe the connectives ¬, →, ∨, ∧, ↔ in terms
of truth values in precisely the same way as in the classical logic, i.e.
in terms of truth tables. Contrary to this, the identity connective is
described directly, in relation to homomorphisms

th(α ≡ β) = 1 if and only if h(α) = h(β).

Accordingly, SCI may be described using the binary logical valuations.
The logical valuation procedure forms a part of a broader semanti-

cal programme related to the general conception of non-Fregean logics,
cf. [9]. According to Suszko there are situations which play the role of
semantic correlates of propositions. Logical valuations, for their part,
are nothing more than characteristic functions of the sets of formulae
that are counterimages of the sets of positive situations, i.e. of those
which obtain, under homomorphisms settling the interpretation.

In case of pure SCI, neither the quantity nor the quality of situations
are established. Besides, that is why the number of the strengthenings of
this calculus and their expressing power is only limited by the large class
of its models. Accordingly, the class of the already known strengthenings
of SCI include the highly recognized systems of modal logic, where the
connectives of necessity and possibility are defined using the identity in
the models fulfilling Boolean and some other properties, cf. [9].

The two-element classical matrix M2 = ({0, 1}, ¬, →, ∨, ∧, ↔, ≡,
{1}) in which the equivalence ↔ and the identity ≡ coincide is the ex-
treme SCI model. Obviously, the model M2 is Fregean  it is based on
two situations, 0 and 1, which stand for the logical values of falsity and
truth. This naturally suggests that considering many-valued logics in
non-Fregean framework might be of special interest.

With Suszko there originated an approach to many-valued logics in
terms of logical valuations, i.e. the description using bi-valent logical

valuations as opposed to algebraic reference assignments. In [10] he
provided a bi-valent description for the three-valued Łukasiewicz sen-
tential calculus, which may also be treated as the first step towards
thinking about many-valued logics as axiomatic strengthenings of SCI.
The author of the present paper showed in [3] that every finite n-valued
Łukasiewicz logic has a bivalent description and, thus, it is logically two-
valued. And, referring to appropriate tautological many-valued equiv-
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alences, he also proved that all finite Łukasiewicz logics are axiomatic
strengthenings of SCI.

In the next section, we present the n-valued Łukasiewicz logic (n fi-
nite) as a two-valued logic of n situations denoted by Łukasiewicz 0,
1/n−1, 2/n−1, . . . , 1 original values. We also discuss the second quality of
Łukasiewicz systems.

2. Łukasiewicz SCI-models

Consider a finite n element set En = {0,1/n−1,2/n−1, . . . , 1}, n  2, of
logical values on which there are defined the connectives of negation (∼),
implication (⇒) of Łukasiewicz: for any x, y ∈ En

∼ x := 1 − x

x ⇒ y := min{1, 1 − x + y},

and the connectives of disjunction (∨), conjunction (∧) and equivalence
(≡):

x ∨ y := (x ⇒ y) ⇒ y = max(x, y),

x ∧ y := ∼(∼ x ∨ ∼ y) = min(x, y),

x ≡ y := (x ⇒ y) ∧ (y ⇒ x) = min(1, 1 − |x − y|).

Using the original Łukasiewicz’s negation and implication one may
additionally define the connectives ¬, →:

¬x := x ⇒n−1 ∼(x ≡ x),

x → y := x ⇒n−1 y,

behaving classically with respect to the division of En, when 1 is the
only designated element:1

¬x = 1 if and only if x 6= 1 ,

x → y = 1 if and only if x 6= 1 or y = 1 .

In that case ≡ is the identity connective,

x ≡ y = 1 if and only if x = y ,

in the SCI-model An = (En, ¬, →, ∨, ∧, ↔, ≡, {1}), cf. [3].

1 x ⇒n−1 y is an “ascending” implication α → (α → . . . → (α → β) . . .)) with
(n−1) antecedents. The function is described by the formula min(1, (n−1)(1−x)+y).
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The SCI models generated by finite Łukasiewicz matrices have this
particular property that the original Łukasiewicz connectives of negation
and implication are also definable. What is more, the definitions of these
connectives refer to the identity and the classical negation, conjunction
and/or disjunction, and the following logical laws:2

(∼ α) ≡ (α ≡ ¬(α ≡ α)),

(α → β) ≡ ((α ∧ β) ≡ α),

(α → β) ≡ ((α ∨ β) ≡ β).

Bloom and Brown [2] shifted the classical properties of the connec-
tives onto the properties of consequence. They studied finite consequence
operations that have the properties

(¬) C(X, ¬α) = For if and only if α ∈ C(X),
(∨) C(α ∨ β, X) = C(α, X) ∩ C(β, X),

characteristic for the classical logic and for SCI and called them classical.
Bloom and Brown also showed that any such consequence C is an ax-
iomatic strengthening of the consequence of C2, i.e. it is the consequence
of the classical logic. In any single case there exists a set of formulas
(axioms) Y ⊆ For such that C(X) = C2(X ∪ Y ).

Now, notice that the following formulas

(α ∨ β) ≡ ((α ⇒ β) ⇒ β),

(α ∧ β) ≡ (∼(∼ α ∨ ∼ β)),

¬α ≡ (α ⇒n−1 ∼(α ≡ α)),

(α → β) ≡ (¬α ∨ β),

(α ≡ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)).

belong to Cn(∅), where Cn is the consequence of Łukasiewicz n-valued
logic defined on the extended language containing the additional classical
connectives of negation ¬ and implication →.

Hence any finite Łukasiewicz logic is classical in the above sense,
cf. [2], and it is an axiomatic strengthening of the classical logic. Let
us also recall that, due to Suszko’s thesis, each of them considered as
a matrix consequence is logically two-valued and may be described in
terms of 0-1 valuations, see [3] and [9].

2 In [9] R. Suszko refers to them as to the laws of the three-valued logic.
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3. Rosser and Turquette protologics

Given a finite n element set En = {0,1/n−1,2/n−1, . . . , 1}, n  2, consider
any k, such that 1 < k ¬ n−1, and the following set of designated values:

Dk = {n−k+1/n−1, . . . , 1}.

The many-valued Rosser-Turquette logics [8] are defined on the matrices
of the form

Mn,k = (Un, Dk),

where Un = (En, f1, f2, . . . , fm).3

The core idea of the author’s approach consists in considering the so-
called standard connectives having the properties similar to the prop-
erties of their classical logic counterparts and some extra connectives
important from other point of view. So, the functions ¬, →, ∨, ∧, ↔
of the matrix Mn,k corresponding to negation, implication, disjunction,
conjunction and the equivalence for any x, y ∈ En fulfill, respectively,
the following conditions

¬x ∈ Dk if and only if x 6∈ Dk

x → y 6∈ Dk if and only if x ∈ Dk and y 6∈ Dk

x ∨ y 6∈ Dk if and only if x 6∈ Dk and y 6∈ Dk

x ∧ y ∈ Dk if and only if x ∈ Dk and y ∈ Dk

x ↔ y ∈ Dk if and only if x, y ∈ Dk or x, y 6∈ Dk.

Notice that any matrix

Kn,k = (En, ¬, →, ∨, ∧, ↔, Dk)

is epimorphic to the classical matrix M2 = ({0, 1}, ¬, →, ∨, ∧, ↔, {1}).
The mapping e : En → {0, 1}:

e(x) =

{

1 if x ∈ Dk

0 if x 6∈ Dk

establishes the epimorphism.
Rosser and Turquette, in their n-valued logics, also admit one-argu-

ment connectives J = {j0, j1, . . . , jn−1}, such that their matrix counter-
parts are “characteristic functions” of logical values:

ji(x) ∈ Dk if and only if x = i/n−1

3 Rosser and Turquette originally use 1, 2, . . . , k, . . . , n for marking the elements
of the matrix.
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are definable. It appears that any standard matrix Mn,k equipped with
j’s is a good candidate for an SCI model. Actually, Mn,k may be ex-
tended to such a model under the condition of definability of the identity
connective in its algebraic structure. This is just the case, since putting

x ≡ y = (j0(x) ↔ j0(y)) ∧ (j1(x) ↔ j1(y)) ∧ · · · ∧ (jn−1(x) ↔ jn−1(y))

and using the properties of the connectives on the right side one may
easily check that for any interpretation h of the language L in the matrix
Mn,k, i.e. for any homomorphism h : L → Un,

h(α ≡ β) ∈ Dk if and only if h(α) = h(β).

Thus, ≡ is the sentential identity in the standard logic and the matrix

Mn,k = (En, ¬, →, ∨, ∧, ↔, ≡, Dk)

is an SCI-model.
In the given SCI model the identity may be represented as the con-

junction of the equivalences ≡i related to the logical correlates in the
following way:

α ≡i β = ji(β) ↔ ji(β).

We then get that the identity of formulas in the standard Rosser and
Turquette logic splits on the conjunction of n equivalences corresponding
to the logical values:

α ≡ β = (α ≡0 β) ∧ (α ≡1 β) ∧ · · · ∧ (α ≡n−2 β) ∧ (α ≡n−1 β) .

Let us remark, in the end, that standard Rosser and Turquette logics
meet Bloom and Brown [2] conditions. Any consequence operation Cn,k

corresponding to the relation of consequence |=n,k of the matrix Mn,k:

α ∈ Cn,k(X) if and only if X |=n,k α

is, therefore, an axiomatic extension of C2: Cn,k(X) = C2(X ∪ Y ) for
some set(of axiom schemes) Y ⊆ For. Finally, every logic (L, Cn,k) de-
lineates a referential logic of n situations in which the following formulas
are tautologies:

j0(p) ∨ j1(p) ∨ . . . ∨ jn−1(p),

¬(js(p) ∧ jt(p)) for s, t ∈ {1, . . . , n − 1}.

The conclusion is that these minimal models of the logic with identity
define the weakest logics of n-element identity and, similarly to SCI, large
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classes of strenghtenings. The investigation of these classes seems to be
interesting and it may result in important settlements on the class of the
strengthenings of SCI.

4. Referential semantics and identity

The referential semantics is based on the assumption that the logical
value of a sentence may depend on additional conditions treated as the
reference points. The methodology of referential matrices for structural
consequence operations was proposed and elaborated by R. Wójcicki in
[11]. The central theorem concerning the scope of this kind of semantics
leads to the reflection on the similarity between the congruence of some
kind of structural consequence and the sentential identity. On the other
hand, the generalization of the referential semantics onto a many-valued
case in [5] (see also [7]) makes the problem of expressing of the iden-
tity similar to the description in SCI models based on standard Rosser
and Turquette matrices  we deal with the problem more thoroughly in
Section 5.

A referential algebra is any algebra A = (A, f1, f2, . . . , fn), with A
being a subset of {0, 1}T , i.e., the elements of A are mappings of T
into {0, 1}. For any t ∈ T , the symbol Dt denotes the set of referential
functions r ∈ A, which on t take the value 1, Dt := {r ∈ A : r(t) = 1}.
Then

W = (A, {Dt, t ∈ T})

is a referential matrix, cf. [11].
For any referential matrix, based on the algebra similar to a sentential

language L, the structural consequence CnW defined by the valuations
h : L → A may be defined. For any formula α and a set of formulas X ,

α ∈ CnW(X) if and only if for any h, t ∈ T ,

(hα)(t) = 1 whenever (hβ)(t) = 1 for all β ∈ X .

The consequence operation C : 2For → 2For of an arbitrary sentential
language L = (For, F1, . . . , Fm), i.e. an algebra of formulas freely gener-
ated on the countable set of sentential variables, Var = {p, q, r, . . .} by
the connectives F1, . . . , Fm, is defined by the conditions:

X ⊆ C(X),
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C(X) ⊆ C(Y ), if X ⊆ Y ,

CC(X) ⊆ C(X).

C is structural provided that for any substitution e, eC(X) ⊆ C(eX).
For an arbitrary structural consequence C on L one may define two

relations ∼C and ≈C puting:

α ∼C β if and only if C(α) = C(β),
α ≈C β if and only if C(ϕ[α/p]) = C(ϕ[β/p]),

for any α, β, ϕ ∈ For and p ∈ Var. The first, ∼C , is an equivalence and
will be further called the C-equivalence. The second relation, ≈C , is the
biggest congruence θ on L such that

(c) α ≈C β(θ) implies α ≈C β.

For any α, β ∈ For α ≈C β implies that α ∼C β. The strong com-
pleteness theorem for a structural sentential logic (L, C) states that C
is complete with respect to a referential matrix W, C = CnW , always,
when the converse of the last implication also holds true. Any logic
fulfilling this condition, i.e. α ≈C β if and only if α ∼C β, is called
selfextensional, see [11].

Selfextensionality identifies two relations: C-congruence and C-
equivalence, ≈C = ∼C . This naturally suggests an analogy to the case
of the identity and equivalence connectives in the classical logic, and by
that to the Fregean Axiom, [9]. In other cases, for non-Fregean logics, the
two relations are different; we faced it while dealing with the Łukasiewicz
logics and the Rosser and Turquette protologics. In the next section we
touch upon many-valuedness within the referential framework.

5. Many-valued referential matrices

The sentential identity and the equivalence, understood as a “classi-
cal” connective in a non-classical logics are different. Nevertheless, as
we show it for standard Rosser and Turquette matrix SCI models, the
identity connective may be expressed as the multiple conjunction of
equivalences with respect to sharing the same value from the set En =
{0,1/n−1,2/n−1, . . . , 1}.

In what follows, we show a similar property for non-selfextensional
logics formalized by means of special n-valued referential matrices in-
spired by the “standard” Rosser and Turquette construction, see [7].
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Given a language L = (For, F1, . . . , Fm) and a non-empty set of refer-
ence points T , the ramified matrix W = (A, D) is an n-valued referential
matrix for L, n  2, if the following conditions are satisfied:

(W1) The algebra A is similar to L and the set A of its elements is a
subset of {e0, e1, . . . , en−1}T , i.e., the elements of the algebra are
functions of the form r : T → {e0, e1, . . . , en−1}. Assume, for the
convenience, that e0 = 0 and en−1 = 1.

(W2) D is a family of all sets Dt := {r ∈ A : r(t) = 1}, for t ∈ T .
(W3) If n  3, then the functions E0

1 , . . . , E0
n−2 : A → A such that

E0
i (r)(t) =

{

1 if r(t) = ei

0 otherwise

are definable in A.

It is obvious that the two-valued referential matrices are a special
case of the many-valued matrices and they are defined only by (W1) for
n = 2 and by (W2). Any set K of n-valued referential matrices for L,
n  2, forms an n-valued referential semantics. Accordingly, the logics
(L, CnK) may be called n-referential.

In many-valued referentiality just introduced, it is possible to bring
in the counterpart of selextensionality. This property will be referred
to as a property of n-normality. The strong completeness theorem says
then that a structural sentential logic (L, C) is complete with respect
to an n-valued referential matrix W, C = CnW , is n-normal and its C-
congruence is expressible through an intersection of C-equivalence and
the equivalences corresponding to n − 2 logical values. In the sequel, we
shall give more precise formulation of the completeness property.

We will say that a sentential logic (L, C) is n-normal, for a finite
n  3, if in the language L there are definable unary connectives E1,
. . . , En−2 such that for i, j ∈ {1, . . . , n − 2}

(N0) C(Ei(p)) 6= For,
(N1) C(α, Ei(α)) = For,
(N2) C(Ei(Ej(α))) = For,
(N3) C(Ei(α), Ej(α)) = For, provided that i 6= j,

for any p ∈ Var(L) and α ∈ For.
If (L, C) is n-normal, we define, for any i ∈ {1, . . . , n − 2}, two

argument relation ∼i putting

α ∼i β if and only if C(Ei(α)) = C(Ei(β)).
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The final, precise formulation of the completeness theorem is the
following: (L, C) is n-referential if and only if it is n-normal and

≈C = ∼1 ∩ · · · ∩ ∼n−2 ∩ ∼C

Further going similarity to the representation in Rosser and Tur-
quette logics may be also obtained. To this aim the referential semantics
receives two additional functions E0

0 and E0
n−1 corresponding to the ref-

erence points e0, en−1. Then, ∼C = ∼n−1 and the C-congruence playing
the role of the inferential identity is presented in the following way:

≈C = ∼0 ∩ ∼1 ∩ · · · ∩ ∼n−2 ∩ ∼n−1 .

Comparing this equality to the formula used for description of the iden-
tity connective in n-valued Rosser and Turquette logic, we find the same
structural expressibility of the identities located on different semantical
levels.

6. Final remarks

Rosser and Turquette determined the conditions that make finitely-
valued sentential logics resemble more the classical logic, and hence sim-
plified the problem of axiomatization. We remarked that in any standard
n-valued logic it is also possible to define the identity connective and by
this, its matrix may be redefined as an SCI model. In turn, the identity
may be represented as an intersection of n equivalence relations corre-
sponding to the original values. Accordingly, every minimal model of
the logic with identity define precisely some weakest logic of n-element
identity.

Our interest in Wójcicki’s referential matrices was forced by the iden-
tity on the inferential grounds. It it straightforward that the selfexten-
sionality condition of the existence of the referential matrix, and by
that a referential semantics, resembles very much the Fregean postu-
late. A logic (L, C) is selfextensional whenever two inferential relations:
C-congruence and C-equivalence coincide. So, we decided to match the
referentiality with Rosser and Turquette many-valuedness. The resulting
many-valued referential semantics is non-Fregean and its identity may
also be represented as an intersection of n equivalences corresponding to
the original values.
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The similarity of these constructions, expressed by the decomposition
of the identity on the interesection of the equivalences shows that the
descriptions and criteria of identity may be formulated on several levels
of the logical “engagement”.
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