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TROUBLES WITH (THE CONCEPT OF)

TRUTH IN MATHEMATICS∗

Abstract. In the paper the problem of definability and undefinability of
the concept of satisfaction and truth is considered. Connections between
satisfaction and truth on the one hand and consistency of certain systems of
ω-logic and transfinite induction on the other are indicated.
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Several concepts of truth and several approaches to this concept have
been proposed in the logic: coherence theory, correspondence theory, prag-
matist theory, redundancy theory and semantic theory. The last one due to
Tarski is probably the most influential and most widely accepted theory of
truth — though not free of critiques. Tarski hoped that his definition will
“catch hold of the actual meaning of an old notion” (Tarski 1944). Since
according to him the “old” notion of truth is ambiguous and even doubt-
fully coherent, he restricted his concern to what he called the “classical
Aristotelian conception of truth” as expressed in Aristotle’s dictum:

To say of what is that it is not, or of what is not that it is, is false,
while to say of what is that it is, or of what is not that it is not, is true.
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Tarski’s theory falls into two parts: he provided, first, adequacy condi-
tions, i.e. conditions which any acceptable definition of truth ought to fulfil;
and then a definition of truth for a specified formal language.

The question of the philosophical significance of Tarski’s theory of truth
is a hard one. It has been criticized both for saying too little and for saying
too much. For example Black wrote in (1948, p. 260):

the neutrality of Tarski’s definition with respect to the competing philo-
sophical theories of truth is sufficient to demonstrate its lack of philo-
sophical relevance.

On the other hand Mackie (1973, p. 40) said that

The Tarskian theory [. . . ] belongs to factual rather than conceptual
analysis [. . . ]. Tarski’s theory has plenty of meat to it, whereas a
correct conceptual analysis of truth has very little.

Tarski himself was modest about the epistemological pretensions of his
theory. Though he was convinced that his concept of satisfaction and truth
is a contribution to the philosophical problem of truth (cf. his famous paper
1933), on the other hand he emphasized that his conception is philosophically
neutral. In (1944) he wrote:

we may accept the semantic conception of truth without giving up
any epistemological attitude we may have had, we may remain naive
realists or idealists, empiricists or metaphysicians. [. . . ] The semantic
conception is completely neutral toward all these issues.

Despite of these controversies it is the fact that just Tarski’s theory of
truth has been accepted in the foundations of mathematics. Hence we shall
not discuss the philosophical problems connected with it but we shall indicate
some other problems — of a metamathematical and foundational character.

∗ ∗ ∗

Tarski provided in (1933) a definition (in a non-formalized metasystem) of
satisfaction and truth and, on the other hand, proved a theorem on the
undefinability of the concept of truth for a formalized language L in L itself.
It was stated as Theorem I (β) and said that:1

1Cf. Tarski, 1965, p. 247.
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Assuming that the class of all provable sentences of the metatheory is
consistent, it is impossible to construct an adequate definition of truth
in the sense of convention T on the basis of the metatheory.

It was followed by a description of the idea of the proof and then by a
sketch of the proof. Note that the theorem was proved by diagonalization.

To fix our attention and to be more precise let us restrict ourselves to
Peano arithmetic. This is a first-order theory formalized in the language
L(PA) with the following nonlogical symbols: 0, S, +, · and based on the
following nonlogical axioms:

(A1) S(x) = S(y) → x = y,

(A2) ¬(0 = S(x)),

(A3) x+ 0 = x,

(A4) x+ S(y) = S(x+ y),

(A5) x · 0 = 0,

(A6) x · S(y) = x · y + x,

(A7) ϕ(0) ∧ ∀x[ϕ(x) → ϕ(S(x))] −→ ∀xϕ(x),

where ϕ is any formula of the language L(PA).

Fix an arithmetization of the language L(PA) and denote by pϕq the
Gödel number of a formula ϕ by the given arithmetization.2 Let n be the
term S . . . S

︸ ︷︷ ︸

n

(0) denoting the natural number n.

The strong version of Tarski’s theorem (i.e., the version without param-
eters) can be now formulated in the following way.

Theorem 1 (Tarski, 1933). If Peano arithmetic PA is consistent then there

exists no formula St(x) of the language L(PA) being the definition of truth

for formulas of L(PA), i.e., such a formula St(x) that for any sentence ψ of

the language L(PA)
PA ⊢ ψ ≡ St(pψq).

Let N0 be the standard interpretation of the language of Peano arith-
metic, i.e., N0 = 〈N, 0, S,+, ·〉 where N is the set of natural numbers, 0 is the
number zero, S is the successor function and + and · are addition and mul-
tiplication of natural numbers, resp. The structure N0 is called the standard

2Detailed information on the arithmetization and on the arithmetical counterparts of
various metamathematical notions can be found, e.g., in Mendelson (1964), Shoenfield
(1967) or Murawski (1999b).
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model of PA. Tarski’s theorem states that there exists no formula St of the
language L(PA) such that for any sentence ψ of L(PA), PA ⊢ ψ ≡ St(pψq),
hence in particular there exists no formula St such that for any sentence ψ
of L(PA), N0 |= ψ if and only if N0 |= St(pψq), i.e., there is no definition
(in the language of L(PA)) of the set of (Gödel numbers of) those sentences
of L(PA) which are true in the domain of natural numbers (= in the stan-
dard model N0). Consequently the notion of truth for arithmetic of natural
numbers, i.e., the set

{pϕq : ϕ is a sentence of L(PA) & N0 |= ϕ}

is not an arithmetical set. This contrasts with the fact that the notion of
provability for arithmetic, i.e., the set

{pϕq : ϕ is a sentence of L(PA) & PA ⊢ ϕ}

is an arithmetical set, in fact it is recursively enumerable. This indicates the
gap between provability and truth. On the other hand one can show that
the notion of truth for arithmetic is hyperarithmetical, i.e., it belongs to the
class ∆1

1.3

Tarski’s theorem can be easily generalized to theories extending Peano
arithmetic PA. In fact the following theorem holds.

Theorem 2. Let T be any consistent first-order theory extending Peano

arithmetic PA and let M be any model of T. Then the set Th(M) = {pψq :
M |= ψ}, i.e., the set of Gödel numbers of all sentences true in M, is not

definable in M.

Note also that in the above theorems only the notion of truth, i.e., of
satisfaction of sentences, was considered. One can generalize them of course
to the case of satisfaction of formulas with free variables. Let T be an
extension of PA (the language L(T) can also be an extension of the language
L(PA)).

Definition 3. A binary predicate S of the language of L(T) is said to be a

satisfaction predicate for the theory PA in the sense (A) if and only if for for

every formula ϕ of L(PA) all free variables of which occur among variables

x1, . . . , xn and any natural numbers k1, . . . , kn:

T ⊢ ϕ(k1, . . . , kn) ≡ S(pϕq, 〈k1, . . . , kn〉).

3Cf. Mostowski (1951). For information on the hyperarithmetical hierarchy see Rogers
(1967) or Shoenfield (1967).
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Definition 4. A binary predicate S of the language of L(T) is said to be a

satisfaction predicate for the theory PA in the sense (B) if and only if for for

every formula ϕ of L(PA) all free variables of which occur among variables

x1, . . . , xn:

T ⊢ ∀x{Seq(x) ∧ lh(x) = n → [ϕ((x)1, . . . , (x)n) ≡ S(pϕq, x)]}.

Definition 5. A binary predicate S of the language of L(T) is said to be

a satisfaction predicate for the theory PA in the sense (C) if and only if the

following formulas are provable in T:

S(u, v) → Form(u) ∧ Seq(v) ∧ lh(v) = F(u),

Term(t1) ∧ Term(t2) ∧ u = 〈SN(=), t1, t2〉 →

→ [S(u, v) ≡ val(t1, v|F(t1)) = val(t2, v|F(t2))].

u = 〈SN(¬), u1〉 ∧ Form(u1) → [S(u, v) ≡ ¬S(u1, v)],

u = 〈SN(∨), u1, u2〉 ∧ Form(u1) ∧ Form(u2) →

→ [S(u, v) ≡ S(u1, v|F(u1)) ∨ S(u2, v|F(u2))],

u = 〈SN(∃), pxkq, u1〉 ∧ Form(u1) ∧ ¬Fr(u1, 2k) →

→ [S(u, v) ≡ S(u1, v)],

u = 〈SN(∃), pxkq, u1〉 ∧ Form(u1) ∧ Fr(u1, 2k) →

→ [S(u, v) ≡ ∃xS(u1, v ∗

(

k

x

)

)]

where v ∗

(

k

n

)

denotes a sequence number w such that

lh(w) = max(lh(v), k),

∀i < lh(v)[i 6= k → (w)i = (v)i],

(w)k = x,

∀i[lh(v) < i < k → (w)i = 0].
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Add that we adopt here the following convention: if R is a recursive
relation then by R we denote a formula of the language L(PA) strongly
representing R in PA.

Note that Tarski considered in (1933) the notion of a satisfaction pred-
icate in sense (A). Observe also that if S is a satisfaction predicate in the
sense (C) then it is a satisfaction predicate in the sense (B) (this follows by
induction) and if S is a satisfaction predicate in the sense (B) then it is a
satisfaction predicate in the sense (A) (this is obvious from the definitions).
So Tarski’s theorem on undefinability of truth implies that there is no sat-
isfaction predicate for PA in the sense (A) definable in PA. Hence there are
no satisfaction predicates in the sense (B) or (C) for PA definable in PA.

A connection between the notion of satisfaction and the notion of con-
sistency is indicated by the following theorem.4

Theorem 6. Let T be an extension of Peano arithmetic PA such that in-

duction (with respect to all formulas of the language L(T)) holds in T. If

S is a satisfaction predicate for PA in the theory T in the sense (C) then

T proves the consistency of PA, i.e., T ⊢ ConPA, where ConPA denotes the

formula ¬Pr(p0 = 1q).

Note that the last theorem does not hold for S being a satisfaction pred-
icate in the sense (A) or (B).

As mentioned above Tarski used in his undefinability theorem Gödel’s
method of diagonalization. From a historico-philosophical point of view it
should be noted that Tarski made clear his indebtedness to Gödel’s methods
but on the other hand he strongly emphasized the fact that his results had
been obtained independently. Gödel was aware of the formal undefinability
of the notion of truth in 1931. In fact it was precisely his recognition of the
contrast between the formal definability of provability and the formal un-
definability of truth that led him to his discovery of incompleteness. Gödel
did not mention the undefinability of truth in his writings, he even avoided
the terms “truth” and “true”, because he feared that work assuming such
a concept would be rejected by foundational establishment dominated by
Hilbert’s ideas. Tarski was free of such limitations. In fact, in the Lvov-
Warsaw School no restrictive initial preconditions were assumed before the
proper investigations could start. Note also that Gödel had no precise defi-
nition of the concept of truth.5

4The proof of this theorem can be found, e.g., in Murawski’s (1999b).
5More information on this problem can be found in (Woleński, 1991) and (Murawski,
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Having shown that the notion of truth for Peano arithmetic PA cannot be
defined in PA itself one should ask where it can be defined. We have here two
possibilities: (1) one can consider an appropriate extension of PA (possibly
weak) in which the notion can be defined and (2) one can extend the language
L(PA) by adding a new binary predicate S (called satisfaction class) and
characterizing it axiomatically by adding to Peano arithmetic PA (as new
axioms) sentences given above in the definition of a satisfaction predicate in
the sense (C). Note that since those axioms form a finite set of axioms one
can write them as a single formula of the language L(PA) ∪ S (denote it as
“S is a satisfaction class”). Let us consider both those possibilities.

A natural extension of PA which can be considered in our context is
the so-called second-order arithmetic A−

2 . This is a first-order (!) system
formalized in a language with two sorts of variables: number variables x, y,
z, . . . and set variables X, Y , Z, . . . Its nonlogical constants are those of
Peano arithmetic, i.e., 0, S, +, · as well as symbols for all primitive recursive
functions and the membership relation ∈. Nonlogical axioms of A−

2 are the
following:

(1) axioms of PA without the axiom scheme of induction,

(2) (extensionality) ∀x(x ∈ X ≡ x ∈ Y ) → X = Y ,

(3) (induction axiom)

0 ∈ X ∧ ∀x(x ∈ X → Sx ∈ X) → ∀x(x ∈ X),

(4) recursive definitional equations for primitive recursive functions,

(5) (axiom scheme of comprehension)

∃X∀x[x ∈ X ≡ ϕ(x, . . .)],

where ϕ is any formula of the language of A−

2 (possibly with free number-
or set-variables) in which X does not occur free.

If Γ is a class of formulas of the language L(A−

2 ) then we denote by A−

2 |Γ
the subsystem of A−

2 obtained by restricting the comprehension axiom to
formulas belonging to the class Γ. Later we shall consider in particular the
system A−

2 |Σ1
1 where Σ1

1 is the class of formulas of the form ∃Xϕ(X, . . .)
where ϕ is an arithmetical formula, i.e., a formula containing possibly any

1998).
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quantifiers bounding number-variables and no quantifier over set-variables.
One can prove the following theorems:6

Theorem 7. Second order arithmetic A−

2 proves the existence of the satis-

faction predicate in the sense (C) for Peano arithmetic. Moreover, this can

be proved in the fragment A−

2 |Σ1
1 of A−

2 .

Using this theorem and Theorem 6 we obtain

Theorem 8. A−

2 |Σ1
1 ⊢ ConPA.

In this way we showed that the notion of truth (in fact the notion of
satisfaction in the sense (C)) for L(PA) can be defined in the theory A−

2 |Σ1
1.

It turns out that, in contrast with Tarski’s theorem, the notion of satis-
faction and truth for certain fragments of the language L(PA) can be defined
in Peano arithmetic itself. To formulate precisely appropriate results a hier-
archy of formulas of the language L(PA) similar to the arithmetical hierarchy
of relations is needed. Let Σ0

0 = Π0
0 = ∆0

0 be the smallest class of formulas
of the language L(PA) containing atomic formulas and closed under connec-
tives and bounded quantifiers. We define Σ0

n+1 to be the set of all formulas
equivalent (in PA) to formulas of the form ∃xψ for ψ ∈ Π0

n and Π0
n+1 to be

the set of all formulas equivalent (in PA) to formulas of the form ∀xψ for
ψ ∈ Σ0

n. We put also ∆0
n to be the set of all formulas equivalent (in PA) to

a Σ0
n formula and to a Π0

n formula.
One can show that there exist formulas Sat∆0

0
, SatΣ0

n
and SatΠ0

n
of

L(PA) which are definitions of satisfaction for, resp., ∆0
0, Σ0

n and Π0
n for-

mulas (n ∈ N). Moreover, the formula Sat∆0
0

can be written as both Σ0
1 and

Π0
1 formula. Hence one can say that there exists a ∆0

1 definition of satisfac-
tion for ∆0

0 formulas of L(PA). Consequently the formulas SatΣ0
n

and SatΠ0
n

are, resp., Σ0
n and Π0

n definitions of satisfaction for Σ0
n and Π0

n formulas of
L(PA) (n ∈ N). One can also show that the appropriate properties of those
formulas (corresponding to the metamathematical properties of the appro-
priate notions of satisfaction) can be proved in Peano arithmetic PA.7 Let
further TrΣ0

n
and TrΠ0

n
denote truth predicates for Σ0

n and Π0
n sentences.8

In the sequel we shall identify formulas defining satisfaction and truth and
their extensions in the standard model N0.

6Proofs of those theorems can be found in (Murawski, 1999a and 1999b).
7In fact it can be proved even in the fragment of Peano arithmetic with induction for

Σ0
1 formulas only. Cf. Kaye (1991), Murawski (1999b) and Hájek-Pudlák (1993).

8Construction of SatΣ0
n

and SatΠ0
n

can be found in Kaye (1991) and Murawski (1999b).
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It turns out that the (partial) truth (in the standard model N0), i.e.,
truth for Σ0

n formulas can be approximated by iterations of the so-called
ω-rule. Hence one can say that the (infinitary) ω-rule enables us to express,
to reach the partial truth. To be more precise let us introduce the following
hierarchies. Let T be any first-order theory in the language L(PA) of Peano
arithmetic. The first hierarchy is defined as follows:

T0 = T,

Tα+ 1

2 = Tα ∪ {ϕ : ϕ is of the form ∀xψ(x) and ψ(n) ∈ Tα,

for every n ∈ N},

Tα+1 = the smallest set of formulas containing Tα+ 1

2

and closed under the rules of inference of PA,

Tλ =
⋃

α<λ

Tα for λ limit.

The second hierarchy is defined so (cf. Niebergall, 1996):

T(0) = T,

T(α+ 1

2
) = T(α) ∪ {ϕ : ϕ is of the form ∀xψ(x) and ψ(x) ∈ Σ0

2α+1

and ψ(n) ∈ T(α) for every n ∈ N},

T(α+1) = the smallest set of formulas containing T(α+ 1

2
)

and closed under the rules of inference of PA,

T(λ) =
⋃

α<λ

T(α) for λ limit.

Hence the ω-rule is now applied at stage n to Σ0
2n+1 formulas only.

The last hierarchy is the following one (cf. Niebergall, 1996):

(ΣkT)0 = T,

(ΣkT)α+ 1

2 = (ΣkT)α ∪ {ϕ : ϕ is of the form ∀xψ(x) and ψ(x) ∈ Σ0
k

and ψ(n) ∈ (ΣkT)α for every n ∈ N},

(ΣkT)α+1 = the smallest set of formulas containing (ΣkT)α+ 1

2

and closed under the rules of inference of PA,

(ΣkT)λ =
⋃

α<λ

(ΣkT)α for λ limit.
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We still need one notion—reflection principle. So let T be a theory whose
set of (Gödel numbers of) theorems is strongly representable in PA. Denote
by RFN(T) the uniform reflection principle for T, i.e., the scheme

∀x PrT(pϕ(x)q) → ∀xϕ(x)

for ϕ(x) formula of L(T) with at most one free variable. If one restricts
the class of formulas to a class Γ (for example Σ0

k
or Π0

k
) then one obtains

RFNΓ(T).

The local reflection principle for T denoted by Rfn(T) is the following
scheme

PrT(pϕq) → ϕ

for ϕ closed.

We have now the following facts:9

Theorem 9. (1) PAn ⊇ PA+TrΣ0
2n+1

, i.e., for every n ∈ N the theory PAn

is complete with respect to Σ0
2n+1 sentences.

(2) (Niebergall, 1996) For any n ∈ N, PA(n) = PA + TrΣ0
2n+1

.

(3) (Niebergall, 1996) For any n ∈ N, (ΣkPA)n+1 = PA +TrΣ0
k+2

, if k ≤ 2n.

(4) (Niebergall, 1996) For any n ∈ N, PAn+1 = PA+TrΣ0
2n+3

+RFN(PAn).

(5) (Niebergall, 1996) For any n ∈ N, (PA + TrΣ0
k

)n = PAn + TrΣ0
k+2n

.

(6) (Feferman, 1962) For a suitable class of ordinals: (a) iterating T →
T + ConT or T → T+Rfn(T) one has

⋃
PAα = PA+TrΠ0

1
; (b) iterating

T → T +RFN(T) one obtains
⋃

PAα = Th(N0) = all true sentences of

arithmetic.

Turn now to the second possibility indicated above, i.e., to the axiomatic
characterization of satisfaction and truth. Recall that one extends now the
language L(PA) by adding a new binary predicate S (called a satisfaction
class; denote the new language by LS) and characterizing it axiomatically by
adding to Peano arithmetic PA (as new axioms) sentences given above in the
definition of a satisfaction predicate in the sense (C). Note that since those
axioms form a finite set of axioms one can write them as a single formula of

9They are only examples of theorems that should indicate the character of results.
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the language L(PA)∪S (denote it as “S is a satisfaction class”). One can add
certain additional axioms stating that S has special properties. Two such
properties are significant: being full and being inductive. A satisfaction class
S is said to be full if and only if it decides every formula on any valuation.
And S is said to be inductive if and only if the induction principle holds for
all formulas of the extended language LS. If Γ is a class of formulas of LS

and one requires that the induction principle holds for all formulas of Γ only
then S is called Γ-inductive. Denote by Γ − PA(S) the theory PA + “S is
a full Γ-inductive satisfaction class” and by PA(S) the theory PA + “S is a
full inductive satisfaction class”.

There arises a question whether theories of the type Γ − PA(S) or the
theory PA(S) are consistent, i.e., whether they have models. Note that if
〈M, S〉 is a model of such an extension of PA then M is a model of PA
and S is a satisfaction predicate for L(PA) over the model M (S is called a
satisfaction class over the model M). It turns out that not over every model
M of PA one can define a predicate S such that the structure 〈M, S〉 is a
model of PA + “S is a satisfaction class”, i.e., not for every model of PA
the notion of satisfaction (truth) (satisfying the natural Tarski’s conditions)
exists. The crucial property of a model M needed here is recursive saturation
defined as follows:

Definition 10. A model M |= PA is said to be recursively saturated iff for

every recursive type Θ over the model M, if Θ is consistent over M then

Θ is realized in M.

In fact the following theorem holds:

Theorem 11. For any countable model M of PA the following conditions

are equivalent:

(a) M is recursively saturated,

(b) M has a satisfaction class,

(c) M has a full satisfaction class,

(d) M has an inductive satisfaction class.

From this theorem it follows also that the theories:

PA + “S is a satisfaction class”,

PA + “S is a full satisfaction class”,

PA + “S is an inductive satisfaction class”
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are all conservative extensions of PA, i.e., one can prove in those theories
exactly the same theorems about natural numbers (i.e., formulas of the lan-
guage L(PA)) as in Peano arithmetic PA. Hence the addition of a new notion,
i.e., of a notion of a satisfaction (truth), with properties indicated above does
not increase the prooftheoretical power of a theory with respect to sentences
of the language L(PA). On the other hand the assumption that a satisfac-
tion class is full and ∆0

0-inductive gives a nonconservative extension of PA!
In fact one can prove in this theory, i.e., in ∆0

0–PA(S) the consistency of PA.
This leads us to the problem when does there exist a model of a theory of

the type Γ − PA(S) for Γ such that ∆0
0 ⊆ Γ, i.e., when for a model M of PA

does there exist a full Γ-inductive satisfaction class over M? The answer
is: the model M must be recursively saturated and must satisfy certain
extension of Peano arithmetic. Those extensions can be characterized in the
language of consistency of appropriate ω-logics or of appropriate transfinite
induction.

Consider the following sequence of formulas of the language L(PA) (one
uses here arithmetization):

Γ0(ϕ) = “PA ⊢ ϕ“,

Γ
n+ 1

2

(ϕ) = “ϕ is of the form η ∨ ∀zψ(z) and ∀zΓn(η ∨ ψ(Sz0))”,

Γn+1(ϕ) = “there exists a proof of ϕ based on PA ∪ {ψ : Γ
n+ 1

2

(ψ)}”.

Observe that in this system of ω-logic only the application of the ω-rule
increases the degree of complexity of a proof.

Theorem 12 (Kotlarski, 1986). Let M be a countable recursively saturated

model of PA. Then there exists a full ∆0
0-inductive satisfaction class over

M iff for any n ∈ N: M |= ¬Γn(0 = 1).

It can also be proved (cf. Kotlarski, 1986) that the theory ∆0
0 − PA(S)

is equal to the theory

PA + S is a full satisfaction class + ∀ϕ[(PA ⊢ ϕ) → S(ϕ)].

The last sentence can be read as: “S makes all theorems of PA true”. It is
equivalent to the ∆0

0-inductiveness of the satisfaction class S.
The system of ω-logic described above can be iterated in the transfinite.

So let us fix a “natural” system of notations for ordinals < ε0 (one gets it
by Cantor’s Normal Form Theorem). By transfinite induction on α < ε0 we
define theories Tα and formulas Γα

n in the following way:

T0 = PA,
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Γ0
0(ϕ) = “PA ⊢ ϕ”,

Γα
0 (ϕ) = “Tα ⊢ ϕ”,

Γα

n+ 1

2

(ϕ) = “ϕ is of the form η ∨ ∀z ψ(z) and ∀z Γα
n(η ∨ ψ(z))”,

Γα
n+1(ϕ) = “Tα ∪ Γα

n+ 1

2

⊢ ϕ”,

Tα+1 = Tα ∪ {¬Γα
n(0 = 1) : n ∈ N},

Tλ =
⋃

α<λ

Tα, λ limit.

Using Recursion Theorem one can formalize those definitions in PA. Define
now for an ordinal α a sequence ωm(α) in the following way: ω0(α) =
α,ωm+1(α) = ωωm(α). The following theorem holds.

Theorem 13 (Kotlarski and Ratajczyk, 1990a). (1) Let m be a natural

number and let M |= PA be countable and recursively saturated. Then

there exists a full Σ0
m-inductive satisfaction class over M iff for every k ∈ N:

M |= ¬Γ
ωm(k)
k

(0 = 1).
(2) Let M be a countable and recursively saturated model of PA. Then

there exists a full inductive satisfaction class over M iff for every n ∈ N:

M |= ¬Γωn

n (0 = 1)

where ωn = ωn(ω).

Let now TI(ρ), where ρ is an ordinal, denote the scheme of transfinite
induction up to ρ. Then the following theorem holds.

Theorem 14 (Kotlarski and Ratajczyk, 1990b). Let M be a countable and

recursively saturated model of PA and let m be a natural number. Then

(1) there exists a full Σ0
m-inductive satisfaction class over the model M iff

for every k ∈ N, M satisfies the transfinite induction up to εωm(k), i.e.,

M |= TI (εωm(k)),

(2) there exists a full inductive satisfaction class over the model M iff for

every k ∈ N, M satisfies the transfinite induction up to εωk
, i.e., M |=

TI (εωk
).

The above theorems show that not always a full Γ-inductive satisfaction
class does exist. In fact a given model of PA must satisfy additional condi-
tions. Those conditions indicate connections between satisfaction (truth) on
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the one hand and transfinite induction and consistency of certain ω-logics
on the other.

They do this also in another way. Let T be an extension of Peano
arithmetic PA. Define a theory PAT in the following way:

PAT = {ϕ ∈ L(PA) : T ⊢ ϕ}.

Hence theorems of PAT are those sentences of the language L(PA) of Peano
arithmetic (hence sentences about natural numbers) which can be proved in
the stronger theory T.

Let now T be a theory of the type of PA(S) or its fragment. How do
theories PAT look like? The answer is provided by the following theorem.

Theorem 15. (i) (Kotlarski, 1986) PA∆0
0
−PA(S) = PA ∪ {¬Γn(0 = 1) :

n ∈ N}.

(ii) (Kotlarski and Ratajczyk, 1990a) Let m be a natural number. Then

PAΣ0
m−PA(S) = PA ∪ {¬Γ

ωm(k)
k

(0 = 1) : k ∈ N},

PAPA(S) = PA ∪ {¬Γωn

n (0 = 1) : n ∈ N},

where ωn = ωn(ω).

(iii) (Kotlarski and Ratajczyk, 1990b) Let m be a natural number. Then

PAΣ0
m−PA(S) = PA ∪ {TI (εωm(k)) : k ∈ N},

PAPA(S) = PA ∪ {TI (εωk
) : k ∈ N}.

This theorem shows that what can be proved about natural numbers
using Peano axioms and the notion of satisfaction (truth) that is assumed
to be full and Σ0

m-inductive is exactly the same as what can be proved in
PA plus transfinite induction for ordinals εωm(k) (for all k ∈ N) or in PA
plus appropriate consistency statements. Similarly for PA plus full induc-
tive satisfaction (truth) on the one hand and PA plus transfinite induction
for ordinals εωk

(for all k ∈ N) or PA plus appropriate consistency statements
on the other. It shows also that by adding to PA the notion of a satisfaction
(truth) and assuming that it is full and makes all theorems of PA true one
obtains a theory with exactly the same theorems about natural numbers as
by taking PA augmented with a concept of a full and ∆0

0-inductive satisfac-
tion (truth) or PA plus appropriate consistency statements. So (the usage
of) satisfaction (truth) can be in a certain sense approximated by transfinite
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induction or by adding certain consistency statements concerning appropri-
ate systems of ω-logic. Recall also that if T is PA + “S is a full satisfaction
class” or PA + “S is an inductive satisfaction class” then PAT = PA. Hence
only the assumption that satisfaction (truth) is inductive and full gives new
information about natural numbers.

Next problem is the problem of uniqueness: so assume that over a given
model M there exists a satisfaction class. Is it determined uniquely, i.e.,
does M admit exactly one satisfaction class or do there exist a variety of
them over M? In other words: if a theory in the language LS extending PA
has a model then can it posses also other models with the same fixed part
corresponding to the language L(PA)? The answer is given by the following
theorems.

Theorem 16 (Krajewski, 1976). For any countable model M of PA which

admits a full satisfaction class S there exists a countable model M1 such that

(1) M1 ≡ M and (2) there exist 2ℵ0 full satisfaction classes over the model

M1 which are mutually inconsistent on sentences and (M, S) ≡ (M1, Sα)
for α < 2ℵ0 .

Theorem 17 (Kossak, 1985). If there exists a full inductive satisfaction

class over a countable model M then

(1) there exist 2ℵ0 full inductive satisfaction classes over M which are pair-

wise elementarily inequivalent, i.e., such that

(M, Sα1
) 6≡ (M, Sα2

)

for α1 < α2 < 2ℵ0 ,

(2) there exist 2ℵ0 full inductive satisfaction classes over M which are ele-

mentarily equivalent but pairwise nonisomorphic.

Explain that two satisfaction classes over a given model M are said to be
mutually inconsistent on sentences iff there exists a (nonstandard) sentence
ϕ (i.e., a formula without free variables) of the language Form(M) such that
S1(ϕ, ∅) and S2(¬ϕ, ∅) or vice versa. Hence one of satisfaction classes over
M (i.e., one of the notions of satisfaction for the language Form(M)) says
that the sentence ϕ is true and the other says that ϕ is false! In general,
satisfaction classes S1 and S2 over M are said to be mutually inconsistent iff
there exists a formula ϕ in the sense of the model M and an M-valuation a

for the formula ϕ such that S1(ϕ, a) and S2(¬ϕ, a) or vice versa. Hence one
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of satisfaction classes says that the formula ϕ is satisfied on the valuation a

and the other one says that ϕ is not satisfied on a!

Add that two models are said to be elementarily equivalent if and only if
they satisfy exactly the same sentences (i.e., formulas without free variables).

The above theorems show that the axiomatic characterization of satis-
faction and truth is non-unique. The reason is that Tarski’s conditions put
on satisfaction classes are too weak and do not uniquely determine the sat-
isfaction and truth. What more, they admit various interpretations, even
mutually inconsistent on sentences! Hence the classical principle of biva-
lency is not any longer valued for nonstandard languages. Moreover, one
can find mutually inconsistent satisfaction classes being elementarily equiv-
alent, i.e., having the same elementary properties in the language L(PA)
with predicate S.

∗ ∗ ∗

Let us turn to conclusions. As Gaifman (2004, p. 15) wrote:

Intended interpretations are closely related to realistic conceptions of
mathematical theories. By subscribing to the standard model of nat-
ural numbers, we are committing ourselves to the objective truth or
falsity of number-theoretic statements, where these are usually taken
as statements of first-order arithmetic. The standard model is supposed
to provide truth-values for these statements.

Deductive systems can only yield recursively enumerable sets of theorems
and therefore they can only partially capture truth in the standard model.
Even more, the truth in the standard model is not arithmetically definable.

On the other hand there are nonstandard (hence unintended) models (not
only for Peano arithmetic but even for the theory of the standard model N0).
This shows an essential shortcoming of a formalized approach: the failure to
fully determine the intended model.

An attempt to define arithmetical truth (truth for arithmetic) in a higher
order theory, for example in the second-order arithmetic or its appropriate
fragment where its existence can be proved, does not give a satisfactory
solution. Indeed second-order arithmetic as a deductive system is incomplete
and, additionally, there appears the problem of nonstandard models and
interpretations.

So we are forced to attempt to characterize the concept of truth (for PA
or for other theories) in an axiomatic way. But here again we encounter
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the phenomenon of nonstandardness. In fact, considering a nonstandard10

model 〈M, S〉 for the theory Γ − PA(S) or its fragment we have that M is a
nonstandard model of PA and S is the appropriate satisfaction class over M,
hence the satisfaction class for formulas of the language Form(M) consisting
of all those elements of the universe M (standard and nonstandard numbers)
that (from the point of view of M) are (i.e., behave like) formulas (identified
here with their Gödel numbers). Among them there are also nonstandard
formulas, i.e., objects that formally behave like formulas but have no proper
metamathematical meaning (they are formulas from the point of view of the
world of M, but not from the point of view of the real metamathematical
world). Of course L(PA) ⊆ Form(M) and

Str = {(pϕq, a) : ϕ standard formula of L(PA) a M-valuation for ϕ,

M |= ϕ[a]} ⊆ S.

But this “real” satisfaction Str (and consequently also “real” truth) can-
not be arithmetically defined in (“cut” from) the satisfaction class S. Indeed,
the notion of being standard is not arithmetically definable.

Theories of the type Γ−PA(S) have a rich variety of models. But on the
other hand not every model M of PA can be extended to a model 〈M, S〉
of Γ − PA(S)—indeed, the structure M must satisfy appropriate conditions
that can be characterized in the language of consistency of certain systems
of ω-logic or of the transfinite induction. This shows also that the usage of
satisfaction (truth) in proving theorems about natural numbers (i.e., proving
properties of natural numbers in theories of the type PAΓ−PA(S)) can be in
a certain sense approximated by transfinite induction or by adding certain
consistency statements concerning appropriate systems of ω-logic.

Moreover, even for a fixed model M of Peano arithmetic for which there
exists a satisfaction class, the concept of satisfaction and truth cannot be
uniquely determined and, even worse, not always can be defined in such a
way that the required (and expected because useful) nice metamathematical
properties would be satisfied. There is no uniqueness and no bivalency (for
nonstandard models). But nonstandard models and nonstandard languages
(generated by such models and by axiomatic approach to the concept of
truth) turn out to be useful and to have an impressive spectrum of appli-
cations. In particular they can be used to establish properties of deductive

10It is impossible to exclude nonstandard models and to restrict ourselves to the standard
one only since the latter cannot be characterized arithmetically (in an axiomatic way).
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systems, provide insight into fragments of Peano arithmetic as well as into
(second-order) expansions of it. They can also serve as a heuristic guide for
behavior of the infinity (one can code by nonstandard objects appropriate
infinite sets, in particular infinite sets of standard formulas).

Note also that considering satisfaction classes and truth for the language
of Peano arithmetic and attempting to characterize them axiomatically we
use the whole time at the metatheoretical level Tarski’s definition with re-
spect to structures of the type 〈M, S〉 and the latter is understood as being
defined in a non-formalized metasystem.

A general moral of our considerations is that semantics needs infinitistic
means and methods. Hence finitistic tools and means proposed by Hilbert
in his programme are essentially in sufficient.
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