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MODALITIES AS INTERACTIONS

BETWEEN THE CLASSICAL

AND THE INTUITIONISTIC LOGICS

Abstract. We give an equivalent formulation of topological algebras, inter-
preting S4, as boolean algebras equipped with intuitionistic negation. The
intuitionistic substructure—Heyting algebra—of such an algebra can be then
seen as an “epistemic subuniverse”, and modalities arise from the interaction
between the intuitionistic and classical negations or, we might perhaps say,
between the epistemic and the ontological aspects: they are not relations
between arbitrary alternatives but between intuitionistic substructures and
one common world governed by the classical (propositional) logic. As an
example of the generality of the obtained view, we apply it also to S5. We
give a sound, complete and decidable sequent calculus, extending a classical
system with the rules for handling the intuitionistic negation, in which one
can prove all classical, intuitionistic and S4 valid sequents.

Keywords: topological algebras, boolean algebras, Heyting algebras, modal
logics, intuitionistic logics.

1. Introduction

To make the paper self-contained, we begin in Section 2 by recalling the
topological algebra semantics for propositional S4. Relations of topological
algebras to Heyting algebras motivate an equivalent formulation of topolog-
ical algebras as IC-algebras, which are presented in Section 3. The only
difference consists in replacing the closure/interior operation of topological
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algebras with intuitionistic negation. The categories of topological and IC
algebras are isomorphic, but the reformulation makes explicit the relation-
ships between the intuitionistic and classical propositional logics which, to-
gether, constitute S4. A technical advantage of this formulation, exemplified
in Subsection 3.2, is that proofs of embeddings and dependencies between
these three logics, performed traditionally at the metalevel and typically
by the analysis of the respective proof systems, become internalized in the
common language of IC-algebras. Section 4 shows how the new formulation
adapts to extensions of S4, exemplified by S5. In Section 5, we augment
the sequent calculus for classical logic with two rules for handling the intu-
itionistic negation, and prove its soundness and completeness with respect
to the class of all IC-algebras. A simple argument for the decidability of the
calculus is given. The proofs and technical results of the paper are relatively
straightforward (details omitted here can be found in [10]) and a reader
familiar with the algebraic semantics of modalities can consult directly def-
inition 2 in Section 3 and the calculus in section 5. However, the emerging
observation that modalities arise as combinations of classical and intuition-
istic negation is novel and the concluding Section 6 lists some philosophical
implications of this fact.

2. Background

Definition 1. A toplogical algebra T = 〈T ;∩,∪,−, c〉 is a boolean algebra
〈T ;∩,∪,−〉 with a closure operator c : T → T (or, equivalently, interior
i(x) = −c(−x)), satisfying the equations:

c1. x ⊆ c(x)

c2. c(c(x)) = c(x)

c3. c(x ∪ y) = c(x) ∪ c(y)

c4. c(0) = 0

i1. x ⊇ i(x)

i2. i(i(x)) = i(x)

i3. i(x ∩ y) = i(x) ∩ i(y)

i4. i(1) = 1

An element x ∈ T is open/closed iff x = i(x)/x = c(x).

Closure, resp. interior, interprets the modality ♦, resp. �, and S4 logic
is sound and complete with respect to the class of all topological algebras.

Such an algebra contains a Heyting algebra of open elements, namely,
I(T) = 〈O;∩,∪, →֒,0〉, where

I1. O = {x ∈ T | x = i(x)}

I2. ∪,∩ and 0 are inherited from T

I3. ∀x, y ∈ O : x →֒ y = i(−x ∪ y)
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One verifies easily that I can be extended to a functor from the category
TA of topological algebras (with homomorpisms respecting ∩, ∪, −, c as
morphisms) to the category HA of Heyting algebras (with homomorphisms
respecting ∩, ∪, →֒, 0 as morphisms).

On the other hand, any Heyting algebra, H, can be extended in a canon-
ical way to a topological algebra, T = C(H).

Theorem 2.1. There is a functor C : HA → TA, such that C; I = IDHA.

Proof. That every Heyting algebra can be obtained as algebra of open
elements of a toplogical algebra is the theorem 1.15 from [6] (formulated
dually in terms of closed elements), or IV.3.1 from [7]. We only sketch the
main aspects of the construction.

Given H = 〈H;⊓,⊔, →֒,0〉, we consider it first as a bounded distributive
lattice 〈H,⊓,⊔,0,1〉. By [4], H can be extended uniquely to a boolean
algebra T = 〈T ;∩,∪,−〉 where

1. H is a sublattice of T (i.e., ∀x, y ∈ H : x ∪ y = x ⊔ y and x ∩ y = x ⊓ y)

2. every element b ∈ T is of the form
⋂n

1 −ai ∪ bi for some finite set of
ai, bi ∈ H.

Using the fact that a →֒ b ⊆ −a ∪ b, one shows that the choice of represen-
tatives in 2 is inessential for the definition of the interior/closure operator.
∀ai, bi, aj , bj ∈ H :

n⋂

1

−ai ∪ bi =
m⋂

1

−aj ∪ bj ⇒
n⋂

1

ai →֒ bi =
m⋂

1

aj →֒ bj (2.2)

So, for every element of T (of the form 2), interior can be defined as:

i(
n⋂

1

−ai ∪ bi) =
n⋂

1

ai →֒ bi. (2.3)

Letting C(H) = T gives I(C(H)) = H.
Verification of functoriality is based on the above representation but its

technicalities do not contribute to the present paper. Details can be found
in [10].

The canonicity of the extension mentioned above refers to the fact that
the functors are adjoint, C ⊣ I, [10]. For the following considerations, the
crucial observation is that in any TA-algebra one can define, according to I3,
the operation corresponding to the intuitionistic negation by ÷x = i(−x).
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On the other hand, according to (2.3), this equation holds in the topologi-
cal extension C(H) of a Heyting algebra H, i.e., the intuitionistic negation
“survives” this extension, albeit it gets “hidden within” i.

3. IC-algebras

For every Heyting algebra H and x ∈ H, we obtain in the extension T =
C(H) :

c(x) = −i(−x) = −i(−x ∪ 0)
(2.3)
= −(x →֒ 0) = −÷ x, (3.1)

This fact that the closure/interior operation of any topological algebra T

contains an aspect of intuitionistic negation is what makes the straightfor-
ward reduction of such algebras to Heyting algebras possible when defininig
the object part of the functor I, I1–I3. (3.1) gives also the dual fact:

i(x) = ÷− x (3.2)

The equations (3.1), (3.2) might look suspicious since ÷ is defined only over
H. But as observed at the end of the previous section, ÷ (as well as the
relative pseudo-complement →֒) can be introduced in any TA-algebra:

i) ÷ x = i(−x) ii) x →֒ y = i(−x ∪ y) = ÷− (−x ∪ y). (3.3)

This suggests the possibility of combining in one structure the classical and
intuitionistic elements according to the following definition.

Definition 2. An IC-algebra (“intuitionistic-classical”) is a tuple 〈C;∪,∩,
−,÷〉 where 〈C;∪,∩,−〉 is a boolean algebra, and a unary operation ÷
(intuitionistic negation) satisfies the following axioms:

s1. ÷x ⊆ −x

s2. ÷x = ÷−÷x

s3. ÷(x ∪ y) = ÷x ∩ ÷y

s4. ÷0 = 1

The formulations of s1, s2 are equivalent to those in i1 and i2 (see l1,
l2 below). s4 is equivalent to i4, and s3 to i3. Hence, every TA-algebra can
be converted into such an IC-algebra using (3.3).i), while an IC-algebra can
be converted into a TA-algebra using (3.2). For instance, every topological
space, being a TA-algebra, can be now seen also as an IC-algebra, where
the operation ÷x gives, according to (3.3), the interior of the complement
of x.

Given the mutual interdefinability of ÷ and i in the presence of the
boolean operations, one verifies easily that also TA and IC homomorphisms
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coincide: the categories of IC and of TA algebras are isomorphic. We have
thus not changed anything in the semantics, but merely given a different
language for describing it.

3.1. Some tautologies

The change of the language gives, however, a different perspective with which
we will be concerned in the rest of the paper. In particular, it brings forth the
interaction between the classical and intuitionistic negations hidden under
� and ♦. The following tautologies provide some examples. On the right
we give more familiar (and sometimes more specific) formulations in one of
the sublanguages.

l1. s1 ⇔ i1, i.e., ÷x ⊆ −x ⇐⇒ ÷− x ⊆ x . . . . . . . . . . . . . . . . . . . �x→ x

l2. s2 ⇔ i2, i.e., ÷x = ÷−÷x ⇐⇒ ÷− x = ÷−÷− x . . �x↔ ��x

l3. ÷1 = 0

l4. x ⊆ y ⇒ ÷x ⊇ ÷y . . . . . . . . . . . . . . . . . . . . . . . . . . (x →֒ y) →֒ (÷y →֒ ÷x)

l5. ÷− (÷x ∪ ÷y) = ÷x ∪ ÷y . . . . . . . . . . . . . . . i(i(x) ∪ i(y)) = i(x) ∪ i(y)

l6. ÷x = x →֒ 0, using (3.3).ii) as the definition of →֒

l7. x ∩ ÷x = 0

l8. a ∩ x ⊆ b⇐ a ⊆ x →֒ b

l9. a ∩ x ⊆ b⇒ a ⊆ x →֒ b, when (*) a = ÷a′

l10. x ⊆ ÷÷ x, when (*) x = ÷x′ . . . . . . . . . . . . . . . . . . . . . . . . . . . x →֒ ÷ ÷ x

l11. ÷− x ⊆ ÷÷ x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �x→ �♦x

l12. ÷x ∪ ÷y ⊆ ÷(x ∩ y) . . . . . . . . . . . . . . . . . . . . . . . . . . ÷x ∨ ÷y →֒ ÷(x ∧ y)

l13. ÷÷ x = ÷÷÷÷ x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ÷x↔ ÷÷÷x

l14. ÷x = 1⇒ x = 0

l15. ÷x = 0 6⇒ x = 1

3.2. Relating tautologies

The above lemmata give only a few examples of a vast variety of tautologies.
We can easily conclude that the following hold in IC-algebras (the respective
restriction of the language is given to the right):

β) any classical (boolean) tautology β ::= x | β ∩ β | β ∪ β | −β | 0

µ) any topological/S4 tautology µ ::= x | µ ∩ µ | µ ∪ µ | −µ | ÷ − µ | 0

ι) any intuitionistic tautology ι ::= ÷− x | ι ∩ ι | ι ∪ ι | ÷ − (−ι ∪ ι) | 0



198 Michał Walicki

We let γ denote the grammar of the whole language. (In β and µ, we added
0 merely to ease comparison.) The restriction on the variables in ι ensures
that all intuitionistic formulae address only the intuitionistic/open elements
of the algebras. (Equivalently, we might only require ÷x.) For instance,
l13 would be formulated intuitionistically with one ÷ less. In our case, it
acquires this additional ÷ as the intuitionistic tautology, ÷x = ÷ ÷ ÷x,
holds for the open, but not necessarily for other elements. Similarly, the
intuitionistic tautology l10 may fail when x is not open. On the other hand,
some intuitionistic tautologies survive unchanged and can be applied to all
elements, not only the open ones, e.g., l8, l12. Note also that, although
L(µ) 6= L(γ), so for every φ ∈ L(γ) there is an equivalent formula ψ ⇔ φ
with ψ ∈ L(µ), because ÷ is definable in L(µ) as ÷x = ÷− (−x).

Validity of all (instances of) classical tautologies follows since IC-algebras
are boolean algebras, and validity of all topological tautologies since they
are also topological algebras. Validity of all intuitionistic tautologies follows
since, by the restriction on the variables which must be preceded by÷−, they
address only open elements of an IC-algebra, that is, only and all elements
of its substructure which is Heyting algebra. By theorem 2.1, every Heyting
algebra is a substructure of some IC-algebra.

In addition, we have tautologies, e.g., s1 or s2, which do not belong to
any of these sublanguages but, so to speak, express “connections” between
them. They allow us to formulate and verify some of the classical results
relating the different logics in the internal language of IC.

3.2.1. An example of such a result is McKinsey-Tarski embedding of IL

into S4:

IL 7→ S4

a ∈ X : tr(a) = �a
tr(φ1 ∧ φ2) = tr(φ1) ∧ tr(φ2)
tr(φ1 ∨ φ2) = tr(φ1) ∨ tr(φ2)
tr(φ1 → φ2) = �(tr(φ1)→ tr(φ2))

In the present formulation, this embedding of syntax becomes simply an
inclusion tr(_) : L(ι) ⊂ L(µ). The statement Γ |= φ ⇐⇒ tr(Γ) |= tr(φ)
becomes now a consequence of the fact that functor I is surjective on the
objects, i.e., that every Heyting algebra can be obtained as an algebra of
opens of some topological algebra.

3.2.2. The intuitionistic logic emerges as a syntactic subset of IC-logic.
Specificity of its connectives, in particular, disjunction, can be thus seen as
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a consequence of restricting the domain of interpretation, which is reflected
in the basic case of its grammar: it addresses only the open elements. (One
checks easily (using s2, s3 and l5) that elements interpreting L(ι)-formulae
are open.)

As an example illustrating that we obtain “intuitionistic” connectives by
restricting attention to the “intuitionistic” elements, we show the disjunction
property:

Lemma 3.4. The following implications hold (x may be a sequence of vari-
ables):

1. If IC |= − ÷ φ1(x) ∩ − ÷ φ2(x) = 0, then IC |= φ1(x) = 0 or IC |=
φ2(x) = 0.

2. If IC |= ÷φ1(x)∪÷φ2(x) = 1, then IC |= ÷φ1(x) = 1 or IC |= ÷φ2(x) =
1.

Proof. 1 is the theorem 4.12 from [5] (−÷x = c(x)). It holds here because
each IC-algebra can be seen as a toplogical algebra (used in that theorem)
and vice versa.

The disjunction property 2 follows from 1. The assumption is equivalent
to IC |= (− ÷ φ1(x)) ∩ (− ÷ φ2(x)) = 0. Then either IC |= φ1(x) = 0 or
IC |= φ2(x) = 0, by 1. In either case, ÷φi(x) = 1 by s4.

3.2.3. Since ÷ is the “switch” which brings an element over into the “intu-
itionistic subuniverse”, some classical results, like those involving negative

translations, obtain an internal expression. For instance, a = 1
l3

=⇒ ÷a =

0
s4

=⇒ ÷÷ a = 1, gives the general statement:

IC |= φ(x) = 1 =⇒ IC |= ÷÷ φ(x) = 1. (3.5)

In a sense, this is stronger than the classical result, since φ can now contain
both classical and intuitionistic connectives. But for this reason it gives a
weaker relation between the respective logics.

A series of classical metatheorems arise from IC-tautologies, and we give
only one example. As a consequence of (3.5), when φ is an intuitionistic tau-
tology, so is ÷÷φ. But our ÷÷φ may involve non-intuitionistic expressions.
One direction of Glivenko’s theorem will have the following form.1 When

1We do not address the opposite implication which is a trivial consequence of the
completeness results for IL and CL, and the observation that IL-provability is contained in
CL-provability.



200 Michał Walicki

φ(x) ∈ L(β) then:

IC |= φ(x) = 1 =⇒ IC |= ÷÷ φ′(÷− x) = 1 (3.6)

where φ′ is φ with all −/→ replaced by ÷/ →֒.
Assume first φ to be in CNF, i.e.,

⋂
i(
⋃
j xij) where each x is x or −x.

We conduct the proof for an arbitrary IC-algebra T |= φ = 1:⋂
i(
⋃
j xij) = 1 ⇐⇒

⋃
j xij = 1 for all i

⇐⇒ ÷−
⋃
j xij = 1 i(x) ⊆ x &

= ÷− (
⋃
ijn−xijn ∪

⋃
ijp xijp) = 1 i(1) = 1

⇐⇒ ÷(
⋂
ijn xijn ∩

⋂
ijp−xijp) = 1

(subst)
=⇒ ÷(

⋂
ijn÷÷ xijn ∩

⋂
ijp−÷÷xijp) = 1 x 7→ ÷ ÷ x

l13
⇐⇒ ÷(

⋂
ijn÷÷÷÷ xijn ∩

⋂
ijp−÷÷xijp) = 1

s1,l4
=⇒ ÷(

⋂
ijn÷÷÷÷ xijn ∩

⋂
ijp÷xijp) = 1 x ⊆ −÷ x

s3
⇐⇒ ÷÷ (

⋃
ijn÷÷÷xijn ∪

⋃
ijp xijp) = 1

(subst)
=⇒ ÷÷ (

⋃
ijn÷÷÷÷−xijn ∪

⋃
ijp÷− xijp) = 1 x 7→ ÷ − x

l13
⇐⇒ ÷÷ (

⋃
ijn÷÷−xijn ∪

⋃
ijp÷− xijp) = 1

= ÷÷ (
⋃
ijn÷x

′
ijm ∪

⋃
ijp x

′
ijp) = 1 x′ = ÷− x

= ÷÷
⋃
ij x
′
ij = 1 for all i

⇐⇒
⋂
i÷÷

⋃
j x
′
ij = 1

s3
⇐⇒ ÷

⋃
i÷
⋃
j x
′
ij = 1

l12
=⇒ ÷÷

⋂
i

⋃
j x
′
ij = 1

(All lines between the first and the last one marked “for all i” carry this
condition.) The resulting x′ij have the form ÷ − xij and those which were
preceded by − are now preceded by ÷ instead (line -5/-4).

To complete the proof for arbitrary tautologies, not only in CNF, we
only observe that any ÷ ÷ φ(x) ∈ L(ι) is (intuitionistically) equivalent to
÷ ÷ φ′(x) where φ′ is obtained from φ by classical transformations (e.g.,
÷ ÷ (÷ψ1(x) ∪ ÷ψ2(x)) = ÷ ÷ ÷(ψ1(x) ∩ ψ2(x)), ÷ ÷ (÷ψ1(x) ∪ ψ2(x)) =
÷÷(ψ1(x) →֒ ψ2(x)), etc. Hence, if our classical tautology is not, initially, in
CNF, we transform it into CNF, apply the above result, and then transform
the final intuitionistic formula under÷÷ into the corresponding intuitionistic
form using these equivalences.

4. IC-models for S5

The development in Section 3 is not limited to S4. What is specific about
S4 is only that it contains the intuitionistic logic in an unmodified form.
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Further extensions will, typically, affect this aspect and we illustrate it by
an extension to S5.

To the IC-axioms s1-s4, we add the S5-axiom:

s5. −÷ x ⊆ ÷÷ x

which is just − ÷ x ⊆ ÷ − − ÷ x, i.e., ♦x → �♦x. Combined with axiom
s1, this entails −÷ x = ÷÷ x. That is, in IC-algebras for S5, the negation
of open elements equals the interior of their negation, i.e., the complement
of an open is open.

An equivalent definition of S5-algebras, e.g., [2], requires that comple-
ment of every closed element is closed, i.e.,

(∗) ∀x∃y : −(−÷ x) = −÷ y.

(s5 ⇒ (*) follows since − ÷ x = ÷ ÷ x ⇒ −(− ÷ x) = − ÷ (÷x), so we
can take y = ÷x. For the opposite implication, let x be arbitrary, then

− ÷ x is closed, and so −(− ÷ x)
(∗)
= − ÷ y, i.e., ÷x = − ÷ y. But then

−÷ (÷x) = −÷−÷y = −÷y = ÷x⇒ ÷÷x = −÷x.) As is well known, a
topological algebra is an S5-algebra iff the topology is almost discrete (open
= closed).

In such algebras, we obtain, for instance:

s5-l1. −÷÷− x = ÷− x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i.e., ♦�x↔ �x

s5-l2. ÷÷÷x = −÷÷x = −−÷x = ÷x

The essential difference between the IC-algebras for S4 and for S5 is that the
former contain genuine Heyting substructures. In the latter, where comple-
ment of an open is open, every open element ÷x is regular, 2, which implies
that the Heyting substructure is actually boolean. This known fact can be
now seen as the crucial collapse enforced by S5: its modalities, still present,
express no longer a relation between a classical world and its intuitionistic
substructure, but between one classical world and its substructure which is
itself classical.

5. Reasoning

Since IC-algebras are boolean algebras with the additional operation of ÷,
the reasoning system is obtained by augmenting a sequent system for classi-
cal logic with the two rules for handling this connective. The rules given in
Table 1 form a sound and complete reasoning system, LIC, for IC-algebras.
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Having established some auxiliary results in 5.1, we prove completeness in
5.2. In 5.3 we give a decidability argument.

Ax : p ⊢ p for atomic p

L ⊢ ⊢ R

−
Γ ⊢ ∆, A

Γ,−A ⊢ ∆

Γ, A ⊢ ∆

Γ ⊢ ∆,−A

→
Γ ⊢ ∆, A ; Γ, B ⊢ ∆

Γ, A→ B ⊢ ∆

Γ, A ⊢ ∆, B

Γ ⊢ ∆, A→ B

∨
Γ, A ⊢ ∆ ; Γ, B ⊢ ∆

Γ, A ∨B ⊢ ∆

Γ ⊢ ∆, A,B

Γ ⊢ ∆, A ∨B

∧
A,B,Γ ⊢ ∆

A ∧B,Γ ⊢ ∆

Γ ⊢ A,∆ ; Γ ⊢ B,∆

Γ ⊢ A ∧B,∆

÷
Γ,÷A ⊢ A,∆

Γ,÷A ⊢ ∆

÷Γ, A ⊢

÷Γ ⊢ ÷A

(W )
Γ ⊢ ∆

A,Γ ⊢ ∆

Γ ⊢ ∆

Γ ⊢ ∆, B

Table 1. The calculus LIC.

In the rule (R÷), ÷Γ denotes a sequence of formulae each starting with ÷.

Each side of a sequent is a set of formulae. A sequent Γ ⊢ ∆ is valid
iff for every IC-algebra M and every valuation of the variables occurring in
the sequent, v : X → M ,

⋂
v(Γ) ⊆

⋃
v(∆), where valuations are extended

to (sets of) formulae in the obvious way.2

Lemma 5.1. All rules are sound, i.e., for every rule
Γi ⊢ ∆i
Γ ⊢ ∆

, for every IC-

algebraM and every valuation v, if
⋂
v(Γi) ⊆

⋃
v(∆i) then

⋂
v(Γ) ⊆

⋃
v(∆).

The opposite implication [invertibility] holds for all rules except (W ).

2One might expect this definition to require: (*)
⋂
v(Γ) = 1 ⇒

⋃
v(∆) = 1. This,

however, would give, for instance, validity of x ⊢ �x or �x, x → y ⊢ �y, which aren’t
sound for S4. (Note that �x, x →֒ y ⊢ �y does hold – it is actually the K axiom:
�x,�(x → y) ⊢ �y.) Our definition implies (*), so any valid sequent/tautology is also
valid according to (*). Finally, it squares well with the empty rhs of Γ ⊢ ∅ which becomes⋂

Γ = 0 rather than
⋂

Γ 6= 1: the rule (R÷) is both sound and invertible. All rules are
sound also with respect to (*), if only we interepret Γ ⊢ ∅ in (R÷) as

⋂
v(Γ) = 0.
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Proof. The proof for all classical rules is standard and applies since M
is, in particular, a boolean algebra. We only show the claim for (L÷) and
(R÷).

(R÷)
⋂
÷Γ ∩ A ⊆ 0 ⇐⇒

⋂
÷Γ ⊆ −A⇐⇒

⋂
÷Γ ⊆ ÷A – the last equiva-

lence holds since
⋂
÷Γ is open.3

(L÷) Γ ∩ ÷A ⊆ A ∪∆ ⇐⇒ Γ ∩ ÷A ∩ −A ⊆ ∆ ⇐⇒ Γ ∩ ÷A ⊆ ∆ – the
last equivalence holds since ÷A ⊆ −A.

Example 5.2. The formula A ∨ ÷A is not provable, since the proof cannot
proceed past the step ⊢ A,÷A. Below, we give a proof of ÷÷ (A ∨ ÷A):

A ⊢ A
A,÷(A ∨ ÷A) ⊢ A,÷A (W )
A,÷(A ∨ ÷A) ⊢ A ∨ ÷A (R∨)
A,÷(A ∨ ÷A) ⊢ (L÷)
÷(A ∨ ÷A) ⊢ ÷A (R÷)
÷(A ∨ ÷A) ⊢ ÷A,A (RW )
÷(A ∨ ÷A) ⊢ ÷A ∨A (R∨)
÷(A ∨ ÷A) ⊢ (L÷)

⊢ ÷ ÷ (A ∨ ÷A) (R÷)
The “intuitionistic” tautology A →֒ ÷ ÷ A is not provable. As observed
at the beginning of Section 3.2, this is due to the fact that A need not be
interepreted as an open element of an IC-algebra. Imposing such a require-
ment, gives the provable formula ÷A →֒ ÷ ÷÷A.

Lemma 5.3. The following rules are admissible:

1. (cut)
Γ ⊢ ∆, A ; Γ′, A ⊢ ∆′

Γ,Γ′ ⊢ ∆,∆′

2. (L′÷)
Γ ⊢ A,∆

Γ,÷A ⊢ ∆

3. (T)
Γ, A ⊢ ∆

Γ,�A ⊢ ∆
(S4′)

÷Γ ⊢ A

÷Γ ⊢ �A
(S4)

�Γ ⊢ A

�Γ ⊢ �A

3We do not have the distinction between the bound and free variables, and hence,
between the open and closed formulae in the usual sense. Therefore, it should not be
confusing if we call a formula “open”/“closed” when it denotes an open/closed element for
all possible valuations.
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Proof. 1. The proof by induction (i) on the complexity of the cut formula
and, secondarily, (ii) on the sum of the heights of the derivations of the
premisses is standard – new cases for ÷ present no serious difficulties. Details
are given in [10].

2. (L′÷) Γ ⊢ A,∆
Γ,÷A ⊢ A,∆ (LW )
Γ,÷A ⊢ ∆ (L÷)

3. Admissibility of these rules follows by expansion of �.

(T) Γ, A ⊢ ∆
Γ ⊢ −A,∆ (R−)

Γ,÷−A ⊢ ∆ (L′÷)

(S4′) ÷Γ ⊢ A
÷Γ,−A ⊢ (L−)
÷Γ ⊢ ÷ −A (R÷)

(S4) is just a special case of (S4’).

Remark 5.4. Notice that, given the rule (L′÷), the rule (L÷) becomes ad-
missible, simply as its special case. However, the latter is invertible while
the former is not. (Invertibility may fail whenever, semantically, ÷A 6= −A.
It obtains whenever this equality holds, e.g., when A is closed, in particu-
lar, has the form − ÷ A′.) Non-invertibility of (L′÷) is suggested by the
mere fact that the proof of its admissibility uses (W ). (Analysis showing
that such a use is required might even establish non-invertibility.) Since all
rules of LIC, except for (W ), are invertible, the proofs identify explicitly the
“non-invertible transitions” needed, typically, in the intuitionistic logic.

(W ) is necessary because of (R÷). Given only the classical rules, (W )
can be made admissible by generalizing the form of the axioms to Γ ⊢ ∆
where Γ∩∆ 6= ∅. However, in the presence of (R÷), this is no longer possible.
Without (W ) no sequent of the form ⊢ ÷A,÷B would be provable. This
strengthenes the conjecture that no sound and complete set of invertible
rules can be designed for the intuitionistic logic.

Note, furthermore, that the rule (L÷) involves implict contraction, as
the principal formula ÷A is retained in the premiss.4 Replacing this rule
with (L′÷) would require us to view each side of the sequents as a multiset,
and not a set, of formulae, and would demand explicit contraction rule. For
instance, the bottom part of the proof from example 5.2, would have to be
modified as follows:

4Following the standard terminology, e.g., [8], we call a formula appearing explicitly in
the conclusion of a rule its “principal formula”.
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...
÷(A ∨ ÷A) ⊢ ÷A ∨A

÷(A ∨ ÷A),÷(A ∨ ÷A) ⊢ (L′÷)
÷(A ∨ ÷A) ⊢ (LC)

⊢ ÷ ÷ (A ∨ ÷A) (R÷)

5.1. Some auxiliary results

The lemmata from this subsection are used in the completeness proof in 5.2.

Lemma 5.5. Each of the follwing formulae is provable:

i. ⊢ A→ A

ii. ⊢ (A→ B)→ ((B → C)→ (A→ C))

iii. ⊢ A→ A ∨B

iv. ⊢ (A→ C)→ ((B → C)→ (A ∨B → C))

v. ⊢ A ∧B → A

vi. ⊢ (C → A)→ ((C → B)→ (C → (A ∧B)))

vii. all the above with X → Y replaced by X →֒ Y , i.e., by ÷− (X → Y )

viii. ⊢ (A→ (B → C))↔ (A ∧B → C)

ix. the above with A repalced by ÷A and → by →֒

x. ⊢ A ∧ −A→ B

xi. ⊢ (A→ (A ∧ −A))→ −A

xii. the two above with −,→ replaced by ÷, →֒

xiii. ⊢ A ∨ −A

Proof. i–vi, viii, x, xi and xiii follow since our calculus includes the classical
sequent calculus. The respective “intuitionistic” versions, vii, ix, xii follow
by appropriate removal of ÷− using (S4), (T ). We give only one example
terminating the proof once it arrives at a propositional form.

ix. →: B → C,A,B ⊢ C
A,B ⊢ C,A ÷− (B → C), A,B ⊢ C (T )
A→ ÷− (B → C), A,B ⊢ C (L→)
A→ ÷− (B → C) ⊢ A ∧B → C (R→), (L∧)
÷− (A→ ÷− (B → C)) ⊢ A ∧B → C (T )
÷− (A→ ÷− (B → C)) ⊢ ÷ − (A ∧B → C) (S4)
⊢ ÷ − (A→ ÷− (B → C))→ ÷− (A ∧B → C) (R→)
⊢ ÷ − (÷− (A→ ÷− (B → C))→ ÷− (A ∧B → C)) (S4)

⊢ (A →֒ (B →֒ C)) →֒ (A ∧B →֒ C) =
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←: ÷A ∧B → C,÷A ⊢ B → C
÷− (÷A ∧B → C),÷A ⊢ B → C (T )
÷− (÷A ∧B → C),÷A ⊢ ÷ − (B → C) (S4′)
÷− (÷A ∧B → C) ⊢ ÷A→ ÷− (B → C) (R→)
÷− (÷A ∧B → C) ⊢ ÷ − (÷A→ ÷− (B → C)) (S4)
⊢ ÷ − (÷A ∧B → C)→ ÷− (÷A→ ÷− (B → C)) (R→)
⊢ ÷ − (÷− (÷A ∧B → C)→ ÷− (÷A→ ÷− (B → C))) (S4)

⊢ (÷A ∧B →֒ C) →֒ (÷A →֒ (B →֒ C)) =

The statements i-vi, together with x, xi and xiii imply that the Linde-
baum algebra for LIC, L, is boolean and we will use this in the proof of
completeness below. The statements vii, ix and xii, apply to all elements ex-
cept for the one direction of ix, where the restriction to open elements, ÷A,
is needed. As these statements apply, in particular, to all open elements,
this means that the Lindenbaum algebra actually contains a Heyting alge-
bra of open elements with →֒ being the relative pseudo-complement and ÷
pseudo-complement. This fact will not enter directly into the completeness
proof, but it is related to the following lemma, which will ensure that L is
actually an IC-algebra.

Lemma 5.6. The following are provable:

i. ÷A ⊢ −A

ii. ÷A ⊢ ÷ −÷A and ÷−÷A ⊢ ÷A

iii. ÷(A ∨B) ⊢ ÷A ∧ ÷B and ÷A ∧ ÷B ⊢ ÷(A ∨B)

iv. ⊢ ÷(A ∧ −A)

Lemma 5.7. The following rules are admissible:

i.
⊢ A→ B

⊢ ÷B → ÷A

ii.
Γ ⊢
∨

∆,∆′

Γ ⊢ ∆,∆′
and

∧
Γ,Γ′ ⊢ ∆

Γ,Γ′ ⊢ ∆

Proof. i. The last step in the proof of ⊢ A → B must apply (R→) to
A ⊢ B, so we get

A ⊢ B
÷B,A ⊢ (L′÷)
÷B ⊢ ÷A (R÷)

ii. Consider the first of the rules. We proceed by induction on the number
n of disjuncts in

∨
∆. The basis n = 1 is obvious, so assume IH for

∨
∆

and a proof of Γ ⊢
∨

∆∨D,∆′. Consider the first place l. in the bottom-up
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proof (i.e., the lowest place when viewed top-down) where this disjunction
is the principal formula. It may be introduced by (R∨) or by (W). In the
first case we have the following situation:

...
l − 1. Γ′′ ⊢

∨
∆, D,∆′′

l. Γ′′ ⊢
∨

∆ ∨D,∆′′ R∨
...

...
z. Γ ⊢

∨
∆ ∨D,∆′

By IH, we have a proof l′. Γ′′ ⊢ ∆, D,∆′′. (The situation is entirely analogous
if
∨

∆∨D is split in any other way as
∨

∆1,
∨

∆2.) Since the disjunction is
not processed between l and z, the rule (R÷) could not be applied anywhere
between l and z. But then, since all the other rules are context insensitive,
we can reuse the derivation l...z starting from l′ instead. This will yield a
proof z′. Γ ⊢,∆, D,∆′.

If
∨

∆ ∨D is introduced at l by (W), we simply introduce ∆, D instead
and copy the rest of the derivation which is possible by the same argument
as above.

The proof of the other rule proceeds analogously by induction on the
number n of conjuncts in

∧
Γ, with the trivial basis case n = 1.

Note that the empty lhs in i. is essential – the rule
Γ ⊢ A→ B

Γ ⊢ ÷B → ÷A
is

not admissible!. For instance, A → B ⊢ A → B, but A → B 6⊢ ÷B → ÷A,
which would be unsound. E.g., −A ∪B 6⊆ − ÷B ∪÷A, if we take −÷B =
B ⊂ ÷A ⊂ −A = −(÷−A).

5.2. The completeness proof

5.2.1. The construction of the Lindenbaum algebra L for LIC, over a given
alphabet X, follows [7] (numbers in square parantheses refer to the results
given there). Let F(X) denote the set of all formulae over the alphabet X
where, for convenience, we use the symbols ∪,∩ instead of ∨,∧. We define:

1. ∀A,B ∈ F(X) : A ≤ B ⇐⇒ ⊢ A→ B

2. ∀A,B ∈ F(X) : A ≃ B ⇐⇒ A ≤ B and B ≤ A.

3. the domain of L is F(X)/≃, and for op ∈ {−,÷,∪,∩,→} : opL([Ai]) =
[op(Ai)]

5.2.2. 5.5.i-ii ensure that ≤ is a quasi-ordering over F(X) and hence ≃ is
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an equivalence. It induces an ordering (reflexive, transitive, antisymmetric)
over F(X)/≃ with [A] ⊆ [B]⇔ A ≤ B. Thus [A] ⊆ [B]⇔ ⊢ A→ B.

Now, 5.5.iii-vi (iii and v apply to both arguments, only one of which
was mentioned) ensure that L is a lattice and ≃ a congruence wrt. ∪,∩
[VI.10.3]. When also viii, x, xi, xiii of 5.5 hold, L is a boolean algebra and
≃ is a congruence also wrt. to −, [VI.10.6].

5.2.3. That ≃ is a congruence also wrt. ÷ follows by Lemma 5.7.i which
implies that if A ≤ B and B ≤ A, then also ÷B ≤ ÷A and ÷A ≤ ÷B. So
L is well-defined.

5.2.4. Thus L is a boolean algebra, and we verify that it is also IC, i.e.,
satisfies the axioms s1–s4. By Lemma 5.6.i–iii (and (R→)), for each of the
axioms s1–s3, l = r, the respective implications ⊢ l → r and ⊢ r → l are
provable. Hence L satisfies these axioms. By 5.5.x, 0 = [A ∧ −A], and by
5.6.iv we have that L |= ÷0 = 1, i.e., also s4 holds in L.

5.2.5. We consider only the canonical valuation of formulae in L, i.e., one
given by c(p) = [p] for p ∈ X, which extends to c(A) = [A] for all formulae
A. L |=c A means thus that [A] = 1 under the canonical valuation, where
1 = [A ∨ −A] = [A→ A].

5.2.5.i. ⊢ A⇔ L |=c A, [VI.10.4]. If ⊢ A, then also (by (LW ) and (R→))
⊢ (A → A) → A, so 1 = [A → A] ⊆ [A]. Conversely, if [A] = 1, then
[A→ A] ⊆ [A] and by 5.2.2 ⊢ (A→ A)→ A. Hence also A→ A ⊢ A. Since
⊢ A→ A by 5.5.i so, by admissibility of (cut), we conclude ⊢ A.

5.2.5.ii. LIC is consistent (does not prove some formula) iff L is not de-
generate, i.e., contains at least two elements, [VI.10.7]. For by 5.2.5.i 6⊢
A ⇔ [A] 6= 1, which means that the domain of L has at least two distinct
elements.

(p → −p, for p ∈ X, gives an example of an unprovable A. I.e., L is
non-degenerate.)

5.2.6. If for some formula 6⊢ A then, by 5.2.5.i, [A] 6= 1, i.e., L 6|=c A. That
is, L 6|= A and, since L ∈ IC by 5.2.4, IC 6|= A.

Thus, combined with Lemma 5.1, we have for any A : ⊢ A⇔ |= A.

5.2.7. The general statement follows: Γ |= ∆ ⇔
⋂

Γ ⊆
⋃

∆ ⇔ −
⋂

Γ ∪⋃
∆ = 1, which by the above obtains iff ⊢

∧
Γ →

∨
∆. But any proof of

the latter must begin (bottom-up) with
∧

Γ ⊢
∨

∆. Lemma 5.7.ii gives then
Γ ⊢ ∆.
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5.3. Decidability

A tree of all possible (and attempted) derivations of a given sequent S is
constructed bottom-up starting with S in the root node. From each node,
we split the tree into n branches where n is the number of all possible
applications of all rules to the sequents contained in the current node. The
subsequent node in each branch contains all the premisses of the respective
rules’ application. When no rule is applicable to the (set of sequents in a)
node, the branch terminates. It terminates with success when the final node
contains only instances of axioms, and with failure otherwise.

All rules have the subformula property. Applied bottom-up they also
reduce the complexity of the sequent (measured by the number of connec-
tives), with the only exception of (L÷) which preserves the principal formula
in the premiss. Hence, branches whose nodes contain sequents with ÷A on
the left of ⊢, may be infinite. Then such branches contain also infinitely
many applications of (L÷). But due to the subformula property, in any
such branch there will be (infinitely many) nodes with identical (sets of)
sequents. We terminate a branch once such a repetition occurs.

Hence all branches terminate and the tree gives a proof iff at least one
branch terminates with success. Putting the possible worries about the
branching and complexity aside, we see that LIC is decidable. Recalling the
grammars β, ι, µ from page 197, we thus obtain in one stroke decidability of
classical, intuitionistic and S4 logics.

6. A concluding note on a possible reading

One can attempt a variety of readings of the operation ÷ and, consequently,
of the modalities ÷− and −÷. To avoid torturous arguments, let us follow
Heyting’s contention that while the classical logic addresses the ontological
aspect of the world, the intuitionistic logic addresses the (finite/constructive)
epistemic aspect. Accepting this general statement, the Heyting substruc-
ture of an IC-algebra can be seen as a subuniverse of epistemic approx-
imations to objects which, in general, may lay outisde it in the classical
universe. All elements of this universe can be seen as objects knowledge
might be about, while the opens as the objects knowledge is actually using.
While IL is only logic of the solipsistic knowledge unrelated to any world
outside its finite constructions, the modal logics arise from the interacion
between these two dimensions.
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6.1. The reading of the arising modalities will depend on the more spe-
cific reading of the opens. Given the above view of opens as the epistemic
elements, and the fact that ÷x is open, one might propose to read it as some
form of epistemic impossibility.5

�x = ÷−x becomes then the (epistemic) impossibility of the negation of
x. Thus, � read as knowledge, becomes an epistemic impossibility (unimag-
inability) of the contrary. But this is no different from necessity, at least if
we grant its epistemic character. At least to the common-sense, necessity is
simply impossibility of accepting other alternatives, as when we say: “This
is unavoidable!” Surely, few things are ever unavoidable/necessary in the
strict sense of logical impossibility. In the more mundane situations, logical
impossibility is replaced by milder, that is, more epistemic predicates: irrel-
evancy, implausibility or incapacity, and x appears unavoidable just when
its contrary falls under some such predicate.

Possibility, having classical negation as the main operator, acquires a
more ontological character. ♦x = −÷ x ⊇ ÷÷ x, i.e., x is possible not only
when its impossibility appears (is epistemically) impossible, ÷÷ x, but also
when it actually – ontologically – does not obtain, −÷ x.

6.2. The IC-formulation does not commit one to any specific choice as
to where the line separating the ontological from the epistemic should be
drawn. It only acknowledges the distinction between the two, and obtains
modalities out of their combination. Necessity acquires an epistemic aspect
and knowledge turns out as ... its synonym – of course, knowledge under-
stood not merely as an acceptance of a fact, but as inadmissibility of a
contrary, we might say, as a justified belief.

6.3. The epistemic-ontological complementarity can be also read into S5

as presented here. We have seen that the s5 axiom amounts to equating
the epistemic and the ontological negation when applied to the epistemic
elements. The epistemic subuniverse can still be distinct from the ontolog-
ical one, but it is itself a classical universe. This is the counterpart of the
specific property of S5, namely, that any chain of modalities is equivalent
(“collapses”) to the rightmost one. In IC-formulation, having once entered

5Speaking stricly and intuitionistically, such an impossibility amounts to the presence
of a counter-proof, namely, of the proof ÷Γ, A ⊢ ∅, from which ÷Γ ⊢ ÷A follows by (R÷).
Observe that this rule implies that only other “epistemic” elements, ÷Γ, can contribute to
establishing the “epistemic” impossibility ÷A of A. Alternative formulations will appear
with different variants of modal logics.
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the epistemic subuniverse (by means of ÷), the ÷ becomes −, ÷÷x = −÷x,
and so no more properly modal operations are available. This seems to ex-
press well the traditional reading of S5 as the logic of metaphysical necessity:
it comprises a subset of the actual universe (all necessary truths) which is
itself governed by the same (classical) laws without any extraneous epistemic
disturbances.

6.4. Working with the “possible world” semantics (of modal logic), one
has been in need to repeatedly emphasize that “possible worlds” are not any
strange other-worldly entities but simply possible variations of the states of
affairs obtaining in the world we are actually living in. Some interpreters
could take the phrase “possible worlds” more literally. Such an interpretative
misuse is, however, grounded in the semantic formalism itself where, indeed,
different possible worlds can have nothing ontological in common. If one
points at one world claiming that this is the actual one, there is still nothing
in the framework ensuring that all agents actually share in this particular
world; there may even be agents to whom this world remains inaccessible.
(A residual trace of the “common world” can be found, e.g., in the concept of
rigid designators whose role (apart from giving an interpretation of proper
names) is exactly to establish a common ontology shared by all possible
worlds.)

The presented view resolves this problem by means of the distinction
between the classical world of ontology and its intuitionistic substructure of
epistemic approximations. A variety of possibilities is then simply a poten-
tial multiplicity of such “epistemic subuniverses” which all are substructures
of the same (classical) world. Formally, one would simply introduce a mul-
tiplicity of ÷i, one for each agent i.6

6.5. To give an impression of such a modelling of multiple agents, let us
give two simple examples for, respectively, S4 and S5.

6.5.i. Consider a simple classical world B = P({a, b, c}) and its two epis-
temic substructures, Heyting algebras H1, H2. (We denote joins by con-

6Thus, the “philosophical” view of modalities might seem contrary to that involved in
Kripke semantics. At the technical level, however, there is no need to posit any opposition
since reachability relation can be recovered from the topological (and hence IC) algebra
applying Jónsson-Tarski’s representation theorem (3.10 from [3], also chap. 5 of [1]).
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catenation, e.g., a ∪ b is written ab.)

H1 abc B abc abc H2

ac ac

yyyy

ab bc

EEE

bc

a

{{{{
c

BBBB

a

yyyy
c

EEEE
yyyy
b

EEEE

c

||||
b

BBBB

0

CCCC
||||

0

EEEE
yyyy

0

BBBB
||||

We have, for instance:

H1 H2

1. −c = ab ab
2. ÷c = a b
3. ÷− c = c c
4. −÷ c = bc ac
5. ÷÷ c = c c

H1 H2

−b = ac ac
÷b = ac c

÷− b = 0 b
−÷ b = b ab
÷÷ b = 0 b

H1 H2

−bc = a a
÷bc = a 0

÷− bc = c bc
−÷ bc = bc abc
÷÷ bc = c abc

The first table concerns the element c present in both H1 and H2. The
differences in rows 2. and 4. reflect the differences between the respective
epistemologies. Reading ÷c as “recognized impossibility of c”, for H1 it can
be only a while for H2 only b. This is then reflected in what appears as c’s
possibility in row 4. In either case it can be c itself, but for H1, possibly also
b – as it does not belong to its epistemic world, the possibilities it harbours
are not recognizable by H1.

The two last tables concern elements which are in the epistemic world
H2 but not H1. Thus, either a or c of H1 amount to impossibility of
b, while for H2, it is only c. Dually, the necessity of b, row 3., does not
obtain in H1, while it is present in H2 as the element b itself. (In the
third table, although bc 6∈ H1, its necessity still obtains as the element b –
the best available approximation of this epistemically absent element.) The
possibility of b, row 4., is not however absent for H1, although it does not
meet any elements in H1 – it is an “external” possibility, obtaining only
due to the ontological structure of the whole B. For H2, this possibility is
further extended by the element a which is not part of his epistemic world
(and hence might, potentially for H2, harbour the possibility of b, even if it
actually does not).

6.5.ii [S5] Consider the same B as above and two S5 epistemic substruc-
tures H1, H2. Since s5 axiom makes complements of opens open, the
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Heyting substructure becomes a boolean algebra where all opens are also
closed.

H1 abc B abc abc H2

bc

EEE

ac

yyyy

ab bc

EEE

ac

yyyy

a

{{{{

a

yyyy
c

EEEE
yyyy
b

EEEE

b

BBBB

0

CCCC
yyyyy

0

EEEE
yyyy

0

EEEEE
||||

We have, for instance:

H1 H2

1. −c = ab ab
2. ÷c = a b
3. ÷− c = 0 0

4. −÷ c = bc ac
5. ÷÷ c = bc ac

H1 H2

−b = ac ac
÷b = a ac

÷− b = 0 b
−÷ b = b ab
÷÷ b = b ab

H1 H2

−bc = a a
÷bc = a 0

÷− bc = bc b
−÷ bc = bc abc
÷÷ bc = bc abc

Note that although the epistemic substructures are now boolean algebras,
the epistemic negation ÷ does not coincide with the ontological one −. The
difference concerns the epistemically absent elements. Thus, for instance, in
the first table, c is epistemically absent from H1, but its impossibility, ÷c,
amounts only to the epistemically available contraries, namely, a, and not
to its ontological negation ab. Likewise, in the third table, bc 6∈ H2, but its
epistemic impossibility amounts to contraditiction 0, although ontologically
it can be also obtained as a.

6.6. Finally, let us observe an entirely different aspect of epistemic mod-
elling. The view of knowledge as the ability to draw and relate distinctions
indicates intimate relations to topology. The fact that topological opens
form a Heyting algebra provided the basis, in [9] (and in the tradition of for-
mal topology), for viewing them as representing finite observations allowing
to draw distinctions. Such a view of knowledge emerges naturally from the
topological interpretation of IC-algebras.

Consider, for instance, a classical world P({a, b, c, d}) and a Heyting sub-
structure containing (the opens) {∅, a, b, ab, abcd} with ∅ = 0 and abcd = 1.
Following the topological view, this amounts to (being capable of) distin-
guishing a from b (having disjoint opens covering each of them). However, c
and d fall outisde the epistemic world and, consequently, they (or their join)
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are indistinguishable by the available epistemic means (table on the left).
Also, no interaction of these elements with the available a, b will uncover
any difference between them (table on the right):

c d cd

− abd abc ab
÷ ab ab ab
÷− 0 0 0

−÷ cd cd cd

ac ad acd

− bd bc b
÷ b b b
÷− a a a
−÷ acd acd acd

Expanding the epistemic base with, say, recognition of the element c will, of
course, lead to new distinctions, e.g., ÷c = ab 6= abc = ÷d.

Viewing the epistemic elements as the distinctions one is capable of rec-
ognizing, the modalities arise now from the interaction between such dis-
tinctions and the ontological ones which, however, remain epistemically in-
distinct. One might even be tempted to read now ÷x as the impossibility
to apprehend/recognize x, with the consequences for:

– ‘necessity’ of x = ÷ − x = impossibility to apprehend the negation of x
and

– ‘possibility’ of x = −÷ x = the absence of impossibility of apprehension
of x.
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