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HOW EFFECTIVE INDEED IS

PRESENT-DAY MATHEMATICS?

Abstract. We argue that E. Wigner’s well-known claim that mathematics is
unreasonably effective in physics (and not in the natural sciences in general,
as the title of his article suggests) is only one side of the hill. The other
side is the surprising insufficiency of present-day mathematics to capture the
uniformities that arise in science outside physics. We describe roughly what
the situation is in the areas of (a) everyday reasoning, (b) theory of meaning
and (c) vagueness. We make also the point that mathematics, as we know it
today, founded on the concept of set, need not be a conceptually final and
closed system, but only a stage in a developing subject.
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1. Introduction

In 1960 Eugene Wigner, the distinguished physicist who three years later
won the Nobel prize in physics, published an article ([19]) the title-phrase
of which became ever since a popular slogan among people who had even
a slight acquaintance with the epistemology and philosophy of science. Al-
though the title of the article refers, misleadingly enough, to the effectiveness
of mathematics in the natural sciences in general, its actual subject-matter
is the unquestionable fact that mathematics has been the language par ex-
cellence of modern physics, a fact that has been also long ago epitomized
in the phrase (attributed to Galileo) that “the book of nature is written in
the language of mathematics”. Wigner cites many examples to convince the
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reader about the precision of mathematical description in the formulation
of the laws of physics. But when it comes to the question about the reason

for that impressive effectiveness, he confines himself to saying that it is a
“miracle”. Moreover he closes his article as follows:

The miracle of the appropriateness of the language of mathematics for
the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it and hope

that it will remain valid in future research and that it will extend, for
better or for worse, to our pleasure, even though also to our bafflement,
to wide branches of learning. ([19, p. 9], my emphasis)

The effectiveness of mathematics in physics is just one side of the hill
which, as shown from the passage cited above, sparked off and cultivated
hopes that it could be extended to other parts of science and learning. The
other side is that these hopes never turned into reality, and there is no sign
that they will within the visible future.

The purpose of this article is twofold: On the one hand to counterbalance
Wigner’s thesis by pointing out important aspects of science that are (still)
far from being adequately captured by the mathematical tools. And on the
other to argue that this inadequacy need not be attributed to mathematics
itself, but rather to its present stage of development. That is, we want to
make the point that what we call today mathematics need not be the final
toolkit that this art possesses for grasping reality.

Besides physics, important constituents of science are also chemistry,
biology, computer science (especially its branch termed “artificial intelli-
gence”), linguistics (as study of linguistic structures), even cognitive psy-
chology and sociology in the wider sense of studying structures and patterns
of human affairs. Nevertheless the importance of the contribution of mathe-
matics in each of these particular sciences is evaluated as minor. This is not
to be meant that mathematics do not contribute at all. What we mean is
the following clearcut and striking difference that constitutes the basic fact
and the main motive for this article:

Basic Fact. While there is a great deal of important mathematics tailor-

made for physics, there is no important mathematics tailor-made for chem-
istry, biology, computer science, linguistics, commonsense reasoning etc.

Historically, there has been a very special relationship between physics
and the corpus of knowledge that we call mathematics. A very fundamental
part of the latter, namely the Differential and Integral Calculus, which later
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was refined, generalized, sharpened and deepened to Mathematical Analysis,
was discovered by physicists for the needs of physics alone. Even today
physicists regard this field as a domain ex officio “of their own”, and they can
hardly accept that it can have an existence independent of any application
in physics. The tools of this field have been manufactured for a very specific
purpose: To describe motions of points in space and time (orbits) or, in later
years, behaviors of more complex dynamic systems. And saying that the
tools are tailor-made for the job they were invented for is no exaggeration at
all: The derivative of a function isn’t just an approximate description of the
magnitude that in physics is called “velocity”. The derivative of a function
constitutes the absolutely precise description /calculation of this magnitude.
The derivative of a function f is, by definition, the rate of change of a
magnitude represented by f that varies with time.

These tools on the other hand are hardly of key-importance for chemistry
and biology, not to mention computer science and linguistics. Nor is it easy
to say what tools would be of prime importance for these sciences. What is
certain is that we possess nothing analogous to derivatives for the sciences in
question. There has been only some new mathematics for computer science
and linguistics in the framework of such independently developed branches as
algebra and mathematical logic, but nothing comparable to the relationship
between physics and analysis.

Why does this happen? To this question one might counter-pose another
one: Why should mathematics be able to contribute significantly to each one
of the knowledge fields that constitute science? Why should it be a kind of
pass-key to every domain of learning? The answer to the latter question is
simple: Mathematics exists (at least potentially and at least in principle)
wherever there are permanent abstract patterns and structures, either static
or dynamic, beneath the variety of temporal forms. It seems improbable that
we can have morphological and behavioral stability without some underlying
structural invariancy. The sciences other than physics investigate levels of
matter organization of higher and higher complexity, as compared with the
ground level of unorganized particles that physics is dealing with. One can
hardly accept that there is no underlying mathematical structure, that re-
mains unnoticed so far, in the composition of proteins, in the DNA patterns,
in the flow of information, in the creation and transmission of meaning of
a natural language, etc. The question is how to reveal this structure and
how to represent it. Although these seem to be two separate questions, I
think it is only one question with two interwoven facets. The structural uni-
formities in the above mentioned situations most probably pass unnoticed
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because they escape our existing mathematical means. In order to detect a
structure, we must first possess a cognitive template in which to represent it.
And conversely, in order to invent a new mathematical idea, we most often
(though not always) have to be inspired by an external situation of things.
However as a rule we tend to explain new things by the established schemes
of thinking, to reduce the yet unknown to the already known. This is pretty
natural: As far as we do not possess new keys, we attempt to unlock new
doors by the old keys. What is not so natural is, when the old keys do not
fit, to assume that no new keys are going to be available in the future for
the specific doors—that no mathematics ever is going to be appropriate for
the specific sciences.

But one might take a step further by asking: What are at last the limits
of mathematization? Aren’t there in principle any bounds to the range of
learning areas in which mathematics can be fruitfully involved? This is a
significant question and we must dare to bring forward a thesis even at the
risk of partiality and incompleteness. To my view mathematization can be
without serious loss of precision considered as a synonym of formalization,
although mere formalization is only a preliminary stage and does not guar-
antee the development in subsequent stages of a nontrivial mathematical
theory. So we shall use throughout the following hypothesis as our main
implicit thesis:

Basic Hypothesis. Mathematics has a role to play in some part of knowl-
edge if and only if the entities and their behavior involved there are formaliz-
able, and the game of symbols thus arisen is not completely trivial. (Formal
means syntactic, i.e., void of meaning and hence capable of symbolic manip-
ulation.)

A word of caution is needed here. When we say that a part of knowledge
is formalizable, we do not mean that it should be completely formalizable,
i.e., all truths of the system should be captured by syntactic means. Because
even the most elementary part of mathematics, that is, number theory, is
not completely formalizable, as Gödel’s incompleteness theorem has shown.
There will always be truths about numbers that will never be decided by
syntactic derivations (proofs). So a more modest formalizability requirement
is set forward here: We only ask that an area of learning be formalizable
up to a certain extent, but considerable enough to provide new insights and
shed new light to what happens in the area in question.

So the first question remains: Why is mathematics so little or not at all
effective in all science except physics? The rough explanation defended in
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this article is that the present-day mathematics lack the appropriate means
to grasp and represent the uniformities outside physics. Specifically we are
going to give a (necessarily incomplete) account of the insufficiency and in-
effectiveness of existing mathematics in a host of interconnected fields of
great interest such as (a) everyday (or commonsense) reasoning (in contrast
to formal logic), (b) theory of meaning and (c) vagueness. The aforemen-
tioned areas, having as common ingredient the use of natural language, are
fundamental parts of human thought and communication. Do they fulfil the
assumption of the Basic Hypothesis, i.e., are they in principle formalizable
aspects of reality? It is almost evident that natural language cannot be for-
malized in its entirety, since it is a live organism that all the time overspills
the types and forms imposed from outside. But this by no means entails that
many aspects that are common in all natural languages of the world, like
the creation and conveyance of meaning, or the handling of vagueness, are
not in principle capable of formalization. What we can take almost for sure
is that the sought formalization is unattainable by the tools and methods
available today.

2. Everyday reasoning

Reasoning in general is any mental procedure for getting (valid) conclusions
out of given data. The mental procedures used in everyday life for making
inferences constitute everyday reasoning. In contradistinction to everyday
reasoning the term “logical reasoning” is used to entrench the kind of reason-
ing that obeys strict and explicit rules—rules of a well-defined system that is
called “logic”. For example mathematical reasoning is a prominent example
of logical reasoning, since in any instance of mathematical reasoning, every
step of it is the application of an axiom or rule of inference of two-valued clas-
sical logic. In a wider sense, everyday reasoning could also be thought of as a
sort of logical reasoning, if one could provide a system of rules that the sup-
posed underlying logic obeys. But in doing so one should be prepared to rad-
ically change the concept of logical axiom and logical rule as the latter are ex-
emplified in pure logical reasoning, e.g. in ordinary two-valued formal1 logic.

1It is an old custom to call “formal”or “symbolic” the logic whose axioms can be written
down in symbolic form. This however is not to be meant that any other system not so far
being codified as a list of symbolic rules is in principle “informal” or “unformalizable”. On
the contrary, it is a main claim of this article, that aspects of reality not formalized so far,
will be formalizable in the future, as a result of the enrichment of mathematics with new
concepts and methods.
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To get an idea of the diversity of rules one should take into account, let us at-
tempt to trace out some of the meanings (or uses) of “reasonable” (where an
inference is “reasonable” if it is reached by the rules of everyday reasoning):

(a) Reasonable as natural consequence. E.g.: “It is reasonable that after
such a squall of rain many houses would be flooded.” Or, “Since he shot
straight into the crowd it is reasonable that he would kill some body.”

(b) Reasonable as fair. E.g.: “It is reasonable that after all she suffered
from her husband she would like to take revenge on him.”

(c) Reasonable as positively purposeful, i.e., something promoting the
long-term general interest. This, in a different social code, is called “moral”.
E.g. Moses’ Ten Commandments, are not but commandments of positive
purposefulness aiming at a people’s survival. “Thou shalt not kill” because
if you do, others will too and in the end we shall exterminate each other.
In the same spirit is Kant’s Categorical Imperative: “Act only according to
that maxim by which you can at the same time will that it would become a
universal law.” Or as Jesus has put it: “All things therefore whatsoever ye
would that men should do unto you, even so do ye also unto them: for this
is the law and the prophets” (Matthew 7:12).

(d) Reasonable as optimum choice. E.g.: “Since I found the same shirt
cheaper in this shop, it is reasonable to buy it here.”

(e) Reasonable as meaningful or justifiable. E.g.: “He suddenly left his
car in the middle of the street and ran away. Quite unreasonable.”

What is common in all the above meanings of the term “reasonable”?
(1) They all refer to how certain (types of) facts B are related to other (types
of) facts A, which in some sense are their source or cause. For example
A = rain and B = flood, or A = bad behavior and B = revenge, or A = law
violation and B = punishment, or A = immorality and B = long-term
decay. (2) The facts and their causal relationships belong to the specific
world around us and not to some general or theoretical world. It is probable
that in some other possible world rain wouldn’t cause floods and bullets could
pass through bodies without hurting. If I throw a stone “upward” in outer
space, it is not going to fall “downward”. And in some primitive societies,
eating one’s parents after their death is a duty rather than a crime. In
short, the connections of events exhibited in an agent’s everyday reasoning
are mostly due to the particular physical and social order of things that
happen to hold in the part of the world where the agent lives.

The specific relationships between specific types of facts constitute uni-
formities which are learned by an observer through experience, and to as-



How effective indeed is present-day mathematics? 137

certain that a certain state of affairs is “reasonable”, it only means that the
events occur as they are expected to occur according to the known unifor-
mity.

Summing up we can say that “reasonability” of everyday thinking mostly
amounts to conforming with uniformities between types of events, uniformi-
ties which are due either to the laws of nature, or to laws and social conven-
tions of humans. This is in sharp contrast to what “logical” means in the
sense of formal logic.

3. Logical reasoning and its restrictions

As everybody knows from his/her high school days, formal logic, in its more
primitive Aristotelian version, deals with syllogisms. These are inference
schemes like: “All mammals are animals with lungs; some mammals live in
the sea; therefore some animals living in the sea have lungs.” Or “Some birds
have a crest; peacock is a bird; therefore peacock has a crest”. That is, every
syllogism has the form “if A and B then C”, where A, B, C are declarative
sentences. Some syllogisms (like the first example) are true, others (like the
second example) are false. Syllogisms (more precisely true syllogisms), just
like everyday reasoning, express certain permanent connections, and hence
uniformities, between types of facts expressed by the sentences A, B, C.
However, as we said in the previous section, the uniformities of everyday
reasoning concern connections between specific types of events of the world
around us, which happen to be in such a causal relationship to each other,
because of the particular structure of the physical world, the laws of physics
or the laws of human society.

In contrast to that, the connections expressed by Aristotelian syllogisms
are independent of the particular physical and social order. These connec-
tions are supposed to hold in every possible situation or, as we say with a
grain of salt, in every possible world. Such laws are just the logical laws.
Now the fact that the syllogism is true or false independently of the par-
ticular situation that it refers to, means that a syllogism is true or false
independently of the particular meaning of the terms involved, and so its
truth or falsehood depends upon syntax alone. For example if in our first
syllogism mentioned above we substitute the symbols X, Y , Z for the terms
“mammal”, “animal with lungs” and “animal living in the sea”, respectively,
the syllogism becomes “All X are Y ; some X are Z; therefore some Y are
Z”. This is a valid syllogism no matter what X, Y , Z denote. Indeed,
the sentence “All X are Y ” means X ⊆ Y , while “Some X are Z” means
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X ∩ Z 6= ∅. The conclusion “Some Y are Z” means Y ∩ Z 6= ∅, and this
follows from X ⊆ Y and X ∩ Z 6= ∅ by the abstract Boolean properties of
collections, which coincide with the Boolean properties of propositions.

The division of truth into contingent (of this world) and logical (of all
possible worlds) is one of the most important achievements of elementary
logic. At the same time it makes us realize how insufficient logical truth is
to cope with the subtleties of everyday reasoning.

Logical reasoning operates effectively in a world of abstract entities and
relations. An ideal such world is the universe of mathematics. The truths
of mathematics are neither contingent nor logical. They belong to a third
kind that Kant termed “synthetic a priori”, that is, something between
contingent and logical. We shall not discuss this further here since this is
not our point. What is pertinent to the present issue is that the truths of
mathematics are produced by a small group of initial assertions (axioms)
by logical reasoning alone, i.e., by application of logical axioms and rules.
Mathematical axioms are not void of meaning. They are accepted as carriers
of specific mathematical content. But the face-value of this meaning is just
truth and falsehood. All sentences of the mathematical language are in last
analysis true or false and a logical derivation (proof) is correct if and only if
each step warrants the validity of the flow of truth.

In contrast, in everyday reasoning instead of a small set of axioms, we
have a huge set of initial contingent truths (a data base), concerning innu-
merable independent (types of) facts of the world around us (from knowledge
of simple natural facts about gravity, electricity etc., to knowledge about
driving, commuting in a town, cooking, child caring, etc). And instead of
logical inference between assertions, we have constraints between types of
events. The difference of the two systems can be highlighted by comparing
their “implications” (or conditionals), i.e., the sentences of the form “if-then”.
Implication is the most fundamental operation of a logical system, since it
realizes the one-step inferential procedure of the system. The implications of
everyday reasoning are causal or conventional connections (due to physical
laws, or to legal, linguistic and other constraints) of the type:

– If you fall from a height, you will be fatally injured.

– If you steal, you will be brought to justice.

– If people wear overcoats, it means that it is cold.

The general form of implications is “if A then B”, but (contrary to what
happens in mathematical languages) not every expression of the form “if A
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then B” is an admissible implication. E.g. the phrases “If you steal, it means
that it is cold”, or “If somebody wears an overcoat, then he will be fatally
injured” in plain human communication are incomprehensible. They can be
used only as curious plays on words and are probably acceptable only in
poetry or in some other context tolerant enough to meaning distortion.

On the other hand the implication of logical reasoning is the usual ma-
terial implication denoted A ⇒ B which makes sense for all sentences A,
B. It is very well-known how far material implication is from being able to
capture or comply with everyday reasoning, so there is no need to argue in
length about it. It suffices only to point out that while everyday condition-
als convey meaning, material implication conveys just truth. This is fairly
explained by the following implication: “This letter must be sent. Therefore
this letter must be sent or burned”. According to commonsense reasoning
the implication is obviously false. But if we write it as a material implica-
tion, i.e., in the form A ⇒ A ∨ B, then it becomes a tautology. That is, if a
postman burns the letters that he was given to deliver, he is in full accord
with formal logic.

We said that many (though not all) conditionals of everyday reasoning
express causal relationships between types of events. Let us cite one more
example showing how material implication fails to capture such relationships.
Consider a device consisting of a number of electric switches (say n ≥ 2),
serially connected to each other and to a light bulb. Obviously the bulb
lights if all switches are turned on. So let ∀s On(s) denote the fact that “all
switches are on”, and let L denote the fact that “the bulb lights”. If “⇒”
could faithfully stand for causal relationship, then the truth of the sentence
∀s On(s) ⇒ L would represent the relationship “if all switches are on, then
the bulb lights”. Now the sentence ∀s On(s) ⇒ L is logically equivalent to
∃s(On(s) ⇒ L). But the latter is clearly false, since there is no particular
switch whose turning on alone would cause the bulb’s lighting.

Summing up: While the implication “If A then B” of everyday reasoning
conveys meaning, the implication A ⇒ B of logical reasoning conveys simply
truth value. Truth value may be regarded as a small (and in any case
not necessary) constituent of meaning. Every linguistic entity having truth
value must have also meaning, but not the other way round2. In addition

2This is obvious for non-declarative sentences, such as interrogative, imperative etc.,
which have meaning but not truth value. But it holds also for declarative ones. The most
ready to hand example is the Liar’s sentence: p:“p is not true”. The sentence p has no
truth value but has clearly meaning, since it “means” something: That a specific sentence
is not true.
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truth values present some inner mathematical structure, either as a Boolean
algebra or as a Heyting algebra, or some other more general structure. In
contrast, at least for the time being, no mathematical structure has been
possible to be built on meaning.

4. What is meaning?

In the preceding discussion the notion of meaning comes time and again.
Meaning is like time: “For what is time? Who can easily and briefly explain
it? Who can even comprehend it in thought or put the answer into words?
Yet is it not true that in conversation we refer to nothing more familiarly
or knowingly than time? And surely we understand it when we speak of
it; we understand it also when we hear another speak of it. What, then,
is time? If no one asks me, I know what it is. If I wish to explain it to
him who asks me, I do not know.” (Saint Augustine, Confessions, Book 11,
Chapter 14.) Similarly, if one asks me, I know what meaning is. If I wish
to explain it, I do not know. At least concerning time, we have constructed
machines to measure it. But there is no machine so far to grasp meaning,
unless (and to the extent that) the latter is reduced to syntax. This is the
case of course when the language is artificial, like a programming language
or a first-order mathematical language. The problem of meaning for math-
ematical languages is completely solved from the time of Alfred Tarski, and
the theory of meaning for them is a fully-developed rich and deep branch
of mathematical logic, called model theory. So the problem of meaning con-
cerns exclusively natural language. Today this is an area lying mostly in the
hands of the philosophers of language. A good list of relevant sources can be
found in [3]. We are not going to enter here a discussion of the philosophical
trends around this problem. We shall only touch very briefly on two aspects
of the problem, that help one get an idea about its hardness. The interested
reader might consult also [13] as a source book for philosophical aspects of
meaning.

First, on the demarcation of meaningful from meaningless. A basic in-
gredient of our understanding of a concept is our ability to delimit it from
its opposite, or from what it is not. For example there is a division of all
phrases of a natural language into those that do have a truth value and
those that do not. For some phrases the criterion is simply syntactic: For
instance an interrogative phrase cannot have a truth value. For others, like
the Liar’s sentence (see footnote 2), the nonexistence of a truth value is
proven. (Namely the assumption of the existence of a truth value leads to a
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contradiction.) Of course the division is not strictly defined3, so there can
certainly be a lot of borderline instances4. But even with the existence of
borderline cases, the concept of truth-vagueness is adequately demarcated.

In contradistinction there is no dependable and widely acceptable way
to delimit meaningful from meaningless phrases. E.g. there is no known di-
agonal analogue of the Liar’s sentence, which would prove the existence of
meaningless (well-formed) phrases5. Of course there is a trivial method to
get out of meaning: To violate grammar in an obvious and brute way, by
putting words in a string at random: “cat yesterday whom fire”. Linguistic
entities built according to grammar are called grammatical. Random strings
of words are clearly ungrammatical. But the term “phrase” (in contrast to
“linguistic entity”) implicitly refers to grammatical entities, so we can con-
sider these two terms, phrase and grammatical expression, as synonymous.
So the question becomes: Are there phrases (i.e., grammatical expressions)
which are meaningless? Some people tend to believe (I am one of them)
that meaningfulness, in the wide sense6, is identical to grammaticalness.

3In the case of a first-order language the division is strictly defined: A formula has a
truth value precisely when it is a sentence, i.e., when it has no free variables.

4Many phrase instances are controversial with respect to their truth value, just as a
result of the uncertainty and vagueness regarding their meaning. This is the case e.g. with
counterfactuals: “If I were the present king of France, I would be bald”. It is indeterminate
whether it has a truth value, because its meaning (sense or reference) is obscure.

5I mean a sentence q the definition of which would entail that q is meaningful if and
only if q is meaningless. Just as the Liar’s p entails that p is true if and only if p is false.
Professor Buszkowski drew my attention to the sentence mentioned in [4, p. 14]: q :=
“This sentence is either false or fails to express any claim at all” or, equivalently, q :=
“If q is meaningful then q is false”, which seems to be the meaning-theoretic analog of
the Liar. The argument is as follows: If q is meaningful, then q is equivalent to the Liar,
which is a contradiction. Hence q is not meaningful. If q is not meaningful, then q is true.
But then q is meaningful (since any sentence having a truth value is meaningful). So q is
meaningful if and only if it is not meaningful. However I think that the first part of this
argument invalidates the intended conclusion. The Liar is no more considered as a typical
contradiction. Rather it is a point of departure from truth-valuedness. So the fact that q

is meaningful and is equivalent to the Liar constitutes no contradiction. It shows simply
that q is the Liar, which is a meaningful sentence without truth-value.

6Meaning being a vague and conditional (i.e. contextual) notion, the question of mean-
ingfulness in not a yes/no question. It admits various degrees of clarity, as well as border-
line cases. There is straightforward meaning conveyed in mainstream conversation, but
there is also meaning undercover or in disguise or ambiguous, expressed in special occa-
sions. For example the implication “If you steal, it means that it is cold”, mentioned in the
previous section, lacks straightforward meaning indeed, but it might be assigned meaning
under special circumstances that one could easily manufacture. This implication is an
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Noam Chomsky [8] rejects that. He says that on the one hand there are
ungrammatical meaningful expressions, such as

(a) “Read you a book on modern music?”,

(b) “The child seems sleeping”,7

and on the other there are grammatical and yet meaningless expressions
such as

(c) “Colorless green ideas sleep furiously”.

However to my view, (a) and (b) stand only as imperfect or awkward sub-
stitutes for their fully grammatical counterparts. As far as one can almost
immediately restore the disabled phrase, and hence its meaning, then the
disabled phrase is “essentially grammatical”. On the other hand it is at least
doubtful whether (c) is meaningless. If we reject it, we should also reject a
vast amount of past, present and future literature as meaningless, e.g. the
totality of surrealistic poetry and not only that.

A second aspect that makes meaning extremely difficult to formalize is
the notoriously decisive role of context. The same phrase, e.g. “you are
a thief”, is dressed on quite different meanings when uttered by different
people and addressed to different people in different situations. Context is
a semantical domain that acts like a filter or transformer that shapes the
ultimate form of meaning of an utterance when the latter passes trough
it. This is nicely illustrated e.g. by Stanisław Ulam in a conversation with
Gian-Carlo Rota:

Now look at that man passing by in a car. How do you tell that it is
not just a man you are seeing, but a passenger? When you write down
precise definitions for these words, you discover that what you describe
is not an object, but a function, a role that is inextricably tied to some
context. Take away the context, and the meaning also disappears. [. . . ]
What is it that you see when you see? You see an object as a key, you
see a man in a car as a passenger, you see some sheets of paper as

a book. It is the word ‘as’ that must be mathematically formalized,

example of a phrase that is meaningful “in the wide sense”. I believe that all grammatical
phrases could be assigned meaning under very special circumstances, that’s why they can
be classified as potentially meaningful.

7The expressions follow the syntactic pattern of the grammatical analogues
(a′) “Have you a book on modern music?”,
(b′) “The book seems interesting”,
respectively.
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on a par with the connectives ‘and’, ‘or’, ‘implies’ and ‘not’ that have
already been acceptable into a formal logic. Until you do that, you will
not get very far with your AI problem. [15, pp. 98–99]

What can mathematics say about the problems cited above, especially the
contextual character of meaning? As far as I know, the only serious, sys-
tematic and lasting project for a mathematical theory of meaning has been
undertaken by Jon Barwise, in the early eighties. Of course this is not to
be meant that there have not been proposed other theories of meaning be-
fore. The emphasis is on “mathematical”. While other theories had used one
or the other kind of soft logical and/or mathematical formalism (e.g. Frege
[11] (meaning and denotation), Ajdukiewicz [2] (meaning postulates of lan-
guage), Carnap [7] (meaning as the method of verification), intuitionists [12]
(meaning as proof), Montague [14] (meaning as intension)), Barwise’ theory
was from the outset intended to create new powerful mathematical tools and
prove hard mathematical theorems. However the plan was not accomplished
(see below). As Professor Buszkowski remarked “the weakness of Barwise’s
approach was his overestimation of set-theoretic methods and at the same
time an underestimation of other logical issues (nonclassical logics, modal
logics, intensional logics etc).” I agree with the first part of this comment,
but not with the second part, since all methods used in mathematics to-
day are, at last analysis, set-theoretical! The methods of nonclassical logics,
modal logics, etc., are not but special techniques easily representable by set-
structures (for example the net mathematical objects behind possible world
semantics used in modal and intensional logics are just sets equipped with bi-
nary relations). Barwise believed, at least in the first stages of his endeavor,
that the ultimate mathematical notion of set would be proved adequate even
for the new task of capturing and representing the extremely intricate and
elusive notion of meaning. For that purpose he didn’t hesitate to go beyond
ZFC, into the controversial realm of non-well-founded sets as formalized by
P. Aczel [1], in order to cope with circular phenomena occurring in thinking
and more generally in intensional situations (see [4] and [5]).

The project started with the publication of [6] and led gradually to the
so called “situation logic” and “situation theory”. (“Situation” here is a
coding name for the key-factor of context.) J. Barwise was already a well-
known logician (see e.g. Barwise compactness theorem), when he decided
to make the crucial step from the semantics of mathematical language to
the semantics of natural language and thus to the theory of meaning. The
Center for the Study of Language and Information (CSLI) that was founded
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in 1983 for this purpose, produced and is still producing a large number of
publications relevant to the subject. In 1989 CSLI published Barwise’s book
[3] that contains an anthology of articles by the author, and at the same time
is a kind of synopsis that epitomizes and assesses the research done over the
past 10 years in situation theory. In order to reinforce my argument that
theory of meaning have always been among the pursuits of mathematics,
but the tools for attain it have been and still are inadequate, I shall quote a
few passages from [3]. In the end of the book we read:

The dream of a mathematics of meaning has inspired mathematicians
from Aristotle, to Descartes, on to Peirce, Frege, Russell and more
recent logicians. It has gotten logic where it is today. What I am saying
is that we must not rest content with the current state of things, but
we must pursue the dream that got us this far.

A mathematics of meaning, when it really comes of age, will have
profound implications for a host of problems that bedevil us today,
problems in the study of language, intelligence and the mind. Situation
theory is one attempt to develop such a field. Naturally enough, I think
it is headed in the right direction. But whether or not that is the case is
less important than the vision that a calculus of meaning is a possibility,
a challenge worth the effort. [3, pp. 295–297]

A little later, when the author evaluates the new mathematical tools that
had been used in the development of the theory, the optimistic message turns
into melancholy:

But mixed with these feelings of the importance of the enterprize, and
of progress we have made carrying it out, are competing feelings. For I
have to face the fact that we have failed, so far, to turn the theory into
a piece of serious mathematics. Worse, having these papers all before
me at once makes me realize what a small fraction of my own research
over this decade has been spent in contributing to the mathematics
which is my real dream.

But he soon regains his optimism:

I still think that situation theory is on the right track to a mathematics
of meaning. Of course, I might be wrong. Maybe some other approach
entirely [different] will emerge. But of one thing I am sure: Someone

will eventually lay the foundations of a theory of meaning.

Barwise closes the book with the following fragment of the dialogue be-
tween Stanisław Ulam and Gian-Carlo Rota, part of which we have already
mentioned above:

– Rota: But if what you say is right, what becomes of objectivity,
an idea that is so definitely formalized by mathematical logic and the
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theory of sets, on which you yourself have worked for many years of
your youth?

– Ulam: Really? What makes you think that mathematical logic
corresponds to the way we think? You are suffering from what the
French call deformation professionnelle. . .

– Rota (in fake amazement): Do you then propose that we give up
mathematical logic?

– Ulam: Quite the opposite. Logic formalizes only very few of the
processes by which we actually think. Time has come to enrich formal
logic by adding to it some other fundamental notions [. . . ]. Do not lose
your faith. A mighty fortress is mathematics. Mathematics will rise to
the challenge. It always has. [15]

5. Mathematics and vagueness

Behind the inability of existing mathematics to cope with natural language
and meaning lies, to my view, its inability to cope with something more fun-
damental, something that infiltrates entirely natural language and meaning,
namely vagueness. The vast majority of nouns and adjectives of a natural
language, expressing objects and properties, respectively, are vague. The
term “vague property” means here a property whose extension has no crisp
boundary, but rather its boundary is a grey region. For example properties
such as “tall”, “smart”, “bald”, “blond”, “clear”, etc., as well as notions such
as “tree”, “lemon”, “fish” etc., are all of this kind. Examples of crisp proper-
ties are “dead”, “pregnant” and of course the mathematical entities and their
properties, such as “even number”, “prime number”, “continuous function”
etc. If we identify a notion with its extension, i.e., a collection X, then the
vagueness of X consists in that there are objects which definitely belong to
X, others that definitely do not belong to X, and others that it is difficult to
tell whether they belong to X or not (or they belong up to a certain degree).
One of the least comprehensible facts is how human communication flows
unhampered in a language governed by the rule of vagueness! Meaning itself
is a highly vague concept, with a thick grey zone between meaningful and
meaningless.

What can mathematics do toward grasping vagueness? Some may say
that every endeavor is doomed to fail before it starts, because mathematics,
being the archetype of clarity and precision, cannot in principle represent
right its opposite. But this is a shallow and superficial argument. The
real question is whether vagueness has some structure and presents some
uniformities.
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Mathematics found already by the early sixties a method to represent
and handle in a practical level some aspects of vagueness. I refer to the
L. Zadeh’s theory of fuzzy sets (see [20]). Let V be a class of objects. A
crisp subset X of V can be thought of as a function X : V → {0, 1}: For
every x ∈ V , X(1) = 1, if x ∈ X, and X(x) = 0, if x /∈ X. Now if X is
vague and there are grey regions along its boundary, it suffices to replace the
two-element set {0, 1} with the real interval [0, 1], and call fuzzy subset of V
every mapping X : V → [0, 1]. If for instance X(x) = .85, then we say that
“x belongs to X with degree .85”. With a little care we can extend many of
the operations and relations between ordinary sets to fuzzy ones. E.g. for
the complement of X we define (V − X)(x) = 1 − X(x), while X ⊆ Y if
X(x) 6 Y (x), for all x ∈ V .

But such a “quantification” of vagueness, though it can find useful appli-
cations to modern technology (some washing machines use already programs
in fuzzy logic in order to regulate the supply of cold and hot water) is far
from helping us understand the inner structure of the situation. Does vague-
ness have a structure? We guess yes, and some of its aspects are apparent.
Vague predicates (just like crisp ones) partition reality (more precisely a
certain piece of it) into disjoint parts. The difference (compared to crisp
predicates) lies in the boundaries. E.g. The predicate “even” partitions nat-
ural numbers into two classes,—evens and odds—whose boundary has null
breadth. The passage from one class to the other constitutes a jump—
nothing lies between. In contrast, the predicate “hot” partitions the various
states of water into two classes again—hot and not hot—but now the pas-
sage from one class to the other is made through a long hazy borderline
region, and the passage itself is not quite comprehensible. How (or when)
exactly do we pass from the state of non-hot to the state of hot water, if we
add to the cold water a unit of hot water per unit of time? This is the same
type of situation as the one more vividly illustrated in the so called Bald
Man (or Sorites) Paradox: If a man loses a single hair from his head each
day, then surely one day he will be bald. But there is no definite such day.
Because it is agreed that if we remove a single hair from a non-bald man, he
remains non-bald (and equivalently, if we add a single hair to a bald man,
he remains bald). It is clear that in this form vagueness is a kind of failure
of mathematical induction.

The aforementioned passage from non-hot to hot water cannot be rep-
resented with conventional quantitative means. Indeed, suppose we assign
numbers from [0, 1] to the scale of cold/hot states of water, using e.g. a
thermometer. Then each vague property describing a state of the water
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temperature (e.g. “cold”, “cool, “very warm” etc.) reasonably corresponds
to an interval of [0, 1]. Moreover incompatible states (like “cold” and “hot”)
correspond to disjoint intervals. The vague predicates hot and non-hot are
complementary, so they correspond to intervals Ih and Inh of [0, 1] such that
Ih ∩ Inh = ∅ and Ih ∪ Inh = [0, 1]. Note that Ih and Inh need not be the two
halves of [0, 1], i.e., Inh = [0, 0.5〉 and Ih = 〈0.5, 1] (where 〉 is ) or ]). It may
well be for instance that Inh = [0, 0.7〉 and Ih = 〈0.7, 1]. However, whatever
the form of these intervals could be, for every ε > 0, we can find a non-hot
point N and a hot point H, such that the distance |NH| is less than ε.

On the other hand, if the above attribution of numbers represents faith-

fully the situation, any two hot points or any two non-hot points should stand
closer together than any two points of which one is hot and the other non-hot.
That is, if the representation were faithful, we should have |N1N2| < |NiHj|
and |H1H2| < |NiHj| for any two hot points H1, H2 and any two non-hot
points N1, N2. But this contradicts the fact that hot and non-hot points
can be arbitrarily close together. There is some mathematical representation
that conforms to the above commonsense requirement, but it requires the
use of nonstandard natural numbers8, which however have no application at
all in real situations (see [17]). The problem becomes acuter when instead of
two-class partitions of reality (generated by a single predicate) we consider
many-class (vague) partitions produced by natural kinds or color shades.
Such partitions have potentially infinitely many classes, since between any
two species, or colors, there is potentially a third one. Two rose objects or
two red objects should be less far apart than one rose and one red object. In
addition, between rose and red it should always be room for a third subtler
shade to be interpolated (this is a “density requirement”). Usual real-valued
metrics cannot represent partitions of this kind for the same reasons as be-
fore. But the nonstandard-valued metrics of [17] may capture some of these
structural aspects of vagueness9.

8Briefly, instead of the real interval [0, 1], one may consider a nonstandard model M

of arithmetic. For Inh we can take a cut I of M closed with respect to addition, i.e.,
a, b ∈ I ⇒ a + b ∈ I . Then for every a, b ∈ I and for every c ∈ M − I , |a − b| < |a − c|,
which partially fulfills the above requirement.

9Recently I observed that one can obtain appropriate modelings of vague partitions,
if one changes the underlying metric of the space instead of the numbers employed. Let
(X, d) be an ordinary metric space. A partition {Xi : i ∈ I} of X, finite or infinite,
is said to be nice if for all i 6= j and any x, x′ ∈ Xi and y, y′ ∈ Xj , d(x, y) < d(x, x′)
and d(x, y) < d(y, y′). A nice partition is exactly what one needs (except of the density
requirement) for the representation of vague partitions of reality. None of the ordinary
metrics (e.g. the Euclidean metrics on R

n) allows for the existence of nice partitions.
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Everybody knows however that in dealing with all these vague predicates
our mind makes no use of real numbers, nonstandard numbers, or any other
mathematical device; moreover it does not leave the ground of two-valued
classical logic either, for the sake of a supposedly more flexible many-valued
“fuzzy logic”. How does it succeed then in being so effective? A partial
answer is that natural language is incredibly flexible. It includes structural

rather than quantitative mechanisms, namely intensity determiners—such
as “much”, “very”, “ very-very”, “a little” etc—as well as comparatives—
such as “taller than”, “much better than” etc. Moreover, it is an implicit
rule built in the use of language, that only actually vague predicates admit
intensity determiners, not crisp ones. (That is why the phrase, say, “a little
pregnant” sounds bizarre or just funny.) From a mathematical point of view
the intensity determiners are operators. Actually they can be reduced to a
single operator v (for very). If X is, say, the class of tall men, then v(X) is the
set of very tall men, v2(X) is the set of very tall men etc. We postulate that
for every X, v(X) ⊆ X and thus X ⊇ v(X) ⊇ v2(X) ⊇ · · · . Endowed with
appropriate axioms, v can represent many important aspects of vagueness
and, interestingly enough, can also recover (up to a certain extend) Zadeh’s
real number approach. Such a structural approach to vagueness is contained
in [18].

Despite the above isolated approaches to various aspects of vagueness,
the phenomenon itself remains elusive. The available mathematical means
seem inadequate. A “calculus of vague predicates” (I mean an authentic
one, not simply a simulating caricature) does not seem attainable for the
time being—just as a calculus of meaning, as envisaged by Barwise, does
not seem attainable either.

6. The set-theoretic ontology and Castoriadis’ “magma”

The preceding discussion might bring forward once again the question “what
is mathematics’? Asking that, one is interested not in what the “nature” of
mathematical entities actually is, but rather in the closeness or openness of

So, are there nice partitions at all? The answer is yes. Here is a simple example: Let
(X, d) be a metric space, and let X1, . . . , Xn be pairwise disjoint and bounded subsets of
X, with bounds, say, M1, . . . , Mn respectively. Let Y = X1 ∪ · · · ∪ Xn. Pick some real
M > M1, . . . , Mn and define ρ : Y 2 → R as follows:

ρ(x, y) =

{

d(x, y), if x, y ∈ Xi for some i,

M, if x ∈ Xi & y ∈ Yj & i 6= j.

It is easy to see that ρ is a metric on Y and {X1, . . . , Xn} is a nice partition of (Y, ρ).
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the mathematical universe. Is mathematics a more or less completed system,
ultimately defined as the universe of ZFC (or some variant of it), where of
course new, undefined today, entities may appear in the future, but where all
entities will eventually be sets or classes? To put it somewhat differently: Is
an abstract entity mathematical if and only if it has a set-theoretic represen-
tation? To be honest, for the vast majority of the mathematicians of today
the answer is yes. In particular this is the dominant view among researchers
who shape the face of science at the given moment. We can hardly think
that we can go somewhere beyond sets10. Set has been declared the ultimate,
irreducible mathematical entity. Its simple figure has been deeply engraved
into every mathematician’s intuition, thought and language. Any attempt
to formalize and represent some aspect of the reality, whatever, starts with
the invocation of a “set”. And once this is done the subsequent steps are
almost expected: The set is going to be endowed with some relations, either
orderings or equivalences, maybe some topology, and then we are going to
prove some facts or to appeal to known theorems etc, etc.

I wonder if the notion of set has gradually and unnoticeably been grown
into an obstacle and a barrier for our thought and imagination. Lest should
we break the barrier in order for mathematical thinking to reach new pre-
sently inconceivable territories? Meaning, for instance, is not, nor seems
capable of being, representable by sets. Nor a “vague set” is a set. Nor
language—the language used by a concrete user (the “internal” language of
Chomsky, in contrast to the “external” language of Montague, see [16])—is
a set. Nor Castoriadis’ “magma” is a set or even a class.

Cornelius Castoriadis11 in his seminal book [9] embarks on a critical
analysis of what he calls “identistic- setistic” (identitaire-ensembliste) logic.

For twenty five centuries, the Greek-western thought is being devel-
oped, expanded and refined upon the following thesis: To be means to

10Of course we do not ignore the alternative approach to foundations based on the
notion of category. But from the point of view of this article the category and set-theoretic
approaches are rather equivalent. Clearly categories encompass sets as a particular “topos”.
And conversely: If a situation is representable by means of category-theoretic tools, these
tools, being essentially functions, can in turn be copied in the usual set-theoretic universe,
and so the situation is also representable by sets.

11Cornelius Castoriadis (1922–1997) has been a prominent social and political thinker
of our time. He spent most of his life in Paris. From 1979 till his death he was Director
of Studies at the École des Hautes Études en Sciences Sociales (EHESS). [9] is widely
considered his main work. Although a humanitarian philosopher by training, he had got
an impressive and solid background in science, especially in economics, mathematics and
theoretical physics.
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be something determined, and to say means to say something deter-
mined; and of course, to say the truth means to determine the saying
and what is said in terms of the being or to determine the being in
terms of the saying, and the eventual verification of the congruence of
these two. This result which relies on the demands of a certain aspect
of saying, was neither accidental nor indispensable; it was the pro-
claiming of Logos (ratio) as the institutionalized thought by the West.
[. . . ] I call the logic mentioned above identistic (identitaire), as well
as setistic (ensembliste), being aware of the terminological abuse of
language, for reasons which will be clear immediately. [. . . ] The most
advanced and wealthy reach of the identistic logic is the working out
of mathematics. [. . . ] We are interested here in the elementary logical
principles of set theory, because these principles abbreviate, clarify and
point out vividly what was always subject to this logic.

([9, p. 319–321], my translation)

Castoriadis proposes the verb “setify” (ensembliser) to signify the act
of “creating sets” out of something pre-existent and rather undifferentiated.
This kind of undifferentiated reality out of which the setistic-identistic logic
creates sets, classes, objects and properties, is, roughly, what he calls magma.

We aim at revealing the way of being of what is given, before the
human mind imposes upon it the setistic-identistic logic; this, which is
offered in that way of being, is what we call magma. Obviously, giving
a typical definition of the notion, is out of question. Nevertheless the
following statement might not be quite useless:

Magma is that from which we can extract (or in which we can
construct) setistic organizations in indefinite number, but which can
never be recovered (ideally) by a finite or infinite combination of any
of these organizations. [9, p. 479]

Objects and properties of the ordinary world seem to be the outcome of
the ability of our mind for separation, partitioning and individuation. Sets
and classes are also products of this very mental mechanism. Castoriadis,
mentions times and again Cantor’s well-known “definition” of set: “A set is a
collection into a whole of definite and separate objects of our intuition or our
thought. These objects are called ‘elements’ of the set.” Any specification of
a set is clearly an act of separation and individuation. When we say “let X
be the set of all x such that [. . . ]”, we focus on a particular part of reality,
we individualize it and cut it off as a separate object by an act of saying,
i.e., a linguistic term (a formula).

On the other hand, the main characteristic of magma, that distinguishes
it from the ordinary sets and classes, seems to be the fact that its “ele-
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ments” are neither fully determined nor fully distinguishable and separable
from each other. As a consequence, we can’t construct new magmas or
submagmas by the acts of saying, i.e., by the help of linguistic properties.

As a magma the (collection of) meanings of the language are not
elements of a set that are subject to determinacy as a condition and
manner of being. A meaning is unboundedly determinable, without be-
ing determined. It can always be pointed out, be temporarily assigned
an identistic element (as in naming), be ‘something’ as a departure in
an open series of successive determinations. But these determinations
can never completely exhaust it. Moreover, they can enforce us, and
actually they always do it, to return to the ‘something’ of the departure
and consider it as ‘something else’. [9, p. 483]

In [10] Castoriadis devotes a whole chapter to the subject entitled “The
logic of magmas and the problem of autonomy”. There he attempts to ax-
iomatize magmas by the help of four axioms. The axioms are formulated in
the natural language using a rather obscure primitive relation of signifying,
or pointing out (repérage). Unfortunately, as he himself shows, the axioms
in question are contradictory. (See [10], p. 299 ff.)

7. Epilogue

We shall close by returning to Wigner’s article referred to in the beginning.
The author also poses, as we did, the question “what is mathematics?” and
answers as follows:

Somebody once said that philosophy is the misuse of terminology which
was invented just for this purpose. In the same vein, I would say
that mathematics is the science of skilful operations with concepts and
rules invented just for this purpose. The principal emphasis is on the
invention of concepts. [19, p. 2]

And he adds a little later:

Most more advanced mathematical concepts, such as complex num-
bers, algebras, linear operators, Borel sets—and this list could be con-
tinued almost indefinitely—were so devised that they are apt subjects
on which the mathematician can demonstrate his ingenuity and sense
of formal beauty.

Actually this is a good enough definition, because it refrains from speak-
ing about mathematical ontology, and thus it may embrace both what math-
ematics is today and what is going to be in the future. It focuses only on



152 Athanassios Tzouvaras

“skilful operations with concepts and rules” without putting any restrictions
to the sort of these concepts and rules. There is an objection, however. It
concerns the phrase “invented just for this purpose”. I do not think that, as
a rule, one does mathematics just in order to play skilfully with concepts and
operations. If that were the case, then chess would be a prominent branch
of mathematics, but it is not. Why? Because mathematical activity ought
to be meaningful, i.e., although it sometimes presents itself as a light and
leisurely play, its true source and origin is eventually the outer world (as
well as the inner world of our consciousness as an objectified reality), not
just the playful dispositions of a boring mind. So in conclusion, to relate
the main idea of this article with Wigner’s definition, we need to invent new
mathematical concepts and skilful operations, even of the most radical sort,
in order to make some as yet formally unrepresentable aspects of reality,
representable and comprehensible.
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