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Abstract. The Converse Ackermann Property is the unprovability of formu-
las of the form (A → B) → C when C does contain neither → nor ¬. Intu-
itively, the CAP amounts to rule out the derivability of pure non-necessitive
propositions from non-necessitive ones. A constructive negation of the sort
historically defined by, e.g., Johansson is added to positive logics with the
CAP in the spectrum delimited by Ticket Entailment and Dummett’s logic
LC.
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1. Introduction

Consider a propositional logic L with the customary relevance logics negation
axioms. Generally speaking, the logic L has the Ackermann Property (AP)
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if any scheme of the form A → (B → C) is unprovable when → does not
appear in A, that is, when A does not contain at least an implicative formula.
(But the meaning of the property can be sharpened. See [1], §22.1.)

Intuitively, and roughly speaking, the AP amounts to rule out the deriv-
ability of necessitive propositions from pure non-necessitive ones, a necessi-
tive proposition being one of the form �B (see again [1], §22.1). In other
words, the AP would mean that “purely truth functional propositions never
entail entailments” ([1] p. 237).

Conversely, L has the Converse Ackermann Property (CAP) if (A →
B) → C is unprovable when → does not appear in C, i.e., when C does not
contain at least one implicative formula. Intuitively and generally speaking,
if the CAP is predicable of L, necessitive propositions would never entail pure
non-necessitive ones; entailments would never entail purely truth functional
propositions.

Consider now a constructive negation in the historical sense (that defined
by Kolmogorov [5] and Johansson [3], for example). It is known that this
type of negation can be introduced either by a falsity constant ⊥ or else
by a unary connective ¬. If it is introduced by means of the constant, we
build up a definitional extension of positive intuitionistic logic: we add the
constant to the positive logic language without adding any specific axiom
about ⊥ and define ¬A =df A → ⊥. Then, it is the positive logic which, so
to speak, reveals “its own underlying concept of negation”.

If minimal negation is introduced by the unary connective, as it is known,
it is formulated by adding to positive intuitionistic logic the axioms

α1. A → ¬¬A weak double negation

α2. (A → B) → (¬B → ¬A) weak contraposition

α3. (A → B) → [(A → ¬B) → ¬A)] weak reductio

or any other set of equivalent axioms.
Let us name Im the logic defined by means of ⊥ and Im′ the logic defined

by means of ¬. It is a well known fact that Im and Im′ are deductively
equivalent.

Now, it is clear that a “minimal negation” can always be introduced by
means of a falsity constant in any positive logic. However, it is not always
so if it is introduced by means of the unary connective in weaker positive
logics (but we cannot develop this point here). Nevertheless, it is obvious
that the stronger the positive logic is, the stronger its underlying minimal
negation will be.
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Let us now label a “Johansson negation” (NJ) that type of negation
resulting from adding α1, α2 and α3 to any positive logic. Well, a NJ is the
“constructive part” of the De Morgan negation characteristic of standard
relevance logics, which is, as it is konwn, the result of adding to the positive
logics the axioms

α4. ¬¬A → A strong double negation

α5. (A → ¬B) → (B → ¬A) weak contraposition

α6. (¬A → B) → [(¬A → ¬B) → A] strong reductio

or any other set of equivalent axioms.
In consequence, a Johansson negation is interesting in itself and so it is

independently of minimal intuitionism.
As it was remarked above, in weaker positive logics minimal negation is

correspondingly weaker (weaker, anyway, than intuitionistic minimal nega-
tion). Is it impossible, however, to introduce a NJ in these logics?

The aim of this paper is to show how to introduce this type of negation
by means of a unary connective in logics with the CAP, so let us return
to the logics with this property. If negation is understood along the lines
discussed above, it is clear that the AP and the CAP have to be redefined.

Definition 1 (AP ¬). A propositional logic L has the AP if A → (B → C)
is unprovable when A contains neither → nor ¬.

Definition 2 (CAP ¬). A propositional logic L has the CAP if (A → B) →
C is unprovable when C contains neither → nor ¬.

Generally (and syntactically) speaking, logics with the CAP are charac-
terized by the absence of assertion, i.e.,

A → [(A → B) → B]

and contraction

[A → (A → B)] → (A → B)

though restricted versions of these theses are present. In particular, both of
them are valid when B is an implicative formula. So, logics with the CAP
are the natural bridge between contractionless logics (see the foundational
Ono and Komori [9] or the overview Kowalski and Ono [6]) and logics with
contraction.
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Next, we briefly summarize the results related to the Converse Acker-
mann Property. The problem concerning which systems do have the CAP
is first posed in [1], §8.12 and in [7] it is solved for positive logics. Regard-
ing negation, in [8], a so-called “semiclassical” negation and in [4], a strong
negation are added to the positive logics in [7]. Finally, in [11] and [12] an
intuitionistic negation is added to Intuitionistic and Dummett’s LC positive
logics with the CAP. The aim of this paper is to show how to introduce a
constructive negation of the kind just discussed in any logic including To

+,
i.e., Positive Ticket Entailment with the CAP. In addition, we shall intro-
duce this constructive negation in some prominent logics in the spectrum
between To

c and LCo
c (see below, structure of the paper).

Unlike the negation of intuitionistic (and minimal) logic, this notion of
negation is devoid of paradoxical theses as A → (¬A → B) and others of the
sort and it could intuitively be described as containing the following essential
principles: contraposition (A2, T2 below), double negation (T1), reductio
(T15, T16, T17), interdefinition between → and ∧ (T18, T19, T20, T21),
De Morgan laws (T9, T10) and non-contradiction (T22).

Before describing the structure of the paper, we recall the abbreviations
for some well known propositional logics which we will have to mention.
T, E, R, RMO, S4, I and LC refer to Ticket Entailment, Entailment logic,
Relevance logic, Relevance logic with mingle, Lewis’s Modal logic S4, Intu-
itionistic logic and Dummett’s superintuitionistic logic LC, respectively (T+,
E+ etc. refer to the positive fragments).

Now, the structure of the paper is as follows. In §2, the logic To
c is syn-

tactically defined. To
c is T with the CAP and constructive negation. In §3,

4, To
c semantics are defined and semantic consistency and completeness are

proved. In addition, a variety of syntactical and semantic axiomatizations
of To

+ are provided. In §5, we recall the restrictions with the CAP of the
unrestricted posive logics mentioned above (that is, the logics in [7] except
for LCo

+, which was defined in [12]), and in §6, we add the constructive nega-
tion to each one of these logics. Finally, in §7, it is proved that the CAP
is a property of the logics defined. We assume reader’s acquaintance with
the relational ternary semantics and especially, with the logic TW+, that is,
Ticket Entailment without the contraction axiom.

2. The logic To
c

The logic TW+ (positive Ticket Entailment without contraction) is axioma-
tized as follows (see, e.g., [1])
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Axioms:

a1. A → A

a2. (B → C) → [(A → B) → (A → C)]

a3. (A → B) → [(B → C) → (A → C)]

a4. (A ∧ B) → A / (A ∧ B) → B

a5. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

a6. A → (A ∨ B) / B → (A ∨ B)

a7. [(A → C) ∧ (B → C)] → [(A ∨ B) → C)]

a8. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

Rules of inference:

Modus ponens: if ⊢ A and ⊢ A → B, then ⊢ B

Adjunction: if ⊢ A and ⊢ B, then ⊢ A ∧ B

The logic To
+ is positive Ticket Entailment (see [1]) with the CAP (see

[7]). It is the result of adding the restricted contraction axiom

A1. [A → [A → (B → C)]] → [A → (B → C)]

to TW+. The following theorems belong to To
+:

t1. (A → B) → [[A → [B → (C → D)]] → [A → (C → D)]]

t2. [A → [B → (C → D)]] → [(A → B) → [A → (C → D)]]

t3. [A → [B → (C → D)]] → [(A ∧ B) → (C → D)]

The logic To
c is To

+ with the constructive negation we have discussed.
It is defined by adding the unary connective ¬ (negation) to the positive
language together with the axioms:

A2. (A → ¬B) → (B → ¬A)

A3. B → [(A → ¬B) → ¬A]

The axiom A2 is (a form of) weak contraposition (the other is T2 below)
and A3 is permuted A2. The following theses are derivable in To

c (a sketch
of the proof is given on the right-hand side of each theorem):

T1. A → ¬¬A A2

T2. (A → B) → (¬B → ¬A) A2, T1
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T3. ¬B → [(A → B) → ¬A] A3, T1

T4. A → [(A → ¬B) → ¬B] A2, A3

T5. [A → (B → ¬C)] → [B → (A → ¬C)] T4

T6. B → [[A → (B → ¬C)] → (A → ¬C)] T4

T7. ¬A → [A → ¬ (A → A)] A2, T3

T8. [A → ¬ (A → A)] → ¬A A3

T9. ¬ (A ∨ B) ↔ (¬A ∧ ¬B) A2, T2

T10. (¬A ∨ ¬B) → ¬ (A ∧ B) T2

Now, by using A1 in the form

[A → [A → (B → ¬C)]] → [A → (B → ¬C)]

T7 and T8, we prove

T11. [A → (A → ¬B)] → (A → ¬B) A1, T7, T8

T12. [A → (B → ¬C)] → [(A → B) → (A → ¬C)] T11

T13. (A → B) → [[A → (B → ¬C)] → (A → ¬C)] T11

T14. [A → (B → ¬C)] → [(A ∧ B) → ¬C] T13

T15. (A → ¬A) → ¬A A2, A3, T11

T16. (A → B) → [(A → ¬B) → ¬A] A2, T15

T17. (A → ¬B) → [(A → B) → ¬A] T5, T16

T18. (A ∧ B) → ¬ (A → ¬B) A2, T4, T14

T19. (A → ¬B) → ¬ (A ∧ B) A2, T18

T20. (A → B) → ¬ (A ∧ ¬B) T1, T19

T21. (A ∧ ¬B) → ¬ (A → B) A2, T20

T22. ¬ (A ∧ ¬A) T20

Note that given To
+ and weak contraposition (A2, A3), the reductio the-

orems T11-T22 are derivable. In other words, any logic including To
+ and

with weak contraposition necessarily has the reductio axioms T11-T22 (on
the aplication of the label “reductio axioms”, see [10]). On the other hand,
notice that T4, T5, T6, T11, T12, T13 and T14 are restricted versions of
assertion

A → [(A → C) → C]
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permutation

[A → (B → C)] → [B → (A → C)]

conditioned modus ponens

B → [[A → (B → C)] → (A → C)]

contraction

[A → (A → C)] → (A → C)

autodistribution of the conditional

[A → (B → C)] → [(A → B) → (A → C)]

permuted autodistribution of the conditional

(A → B) → [[A → (B → C)] → (A → C)]

and the importation axiom

[A → (B → C)] → [(A ∧ B) → C]

to the case in which C is a negative formula. We remark that these unre-
stricted versions are unprovable in all the logics with CAP discussed in this
paper. This fact easily follows from the set of matrices in §7. Finally, we
remark that T4-T6 and T11-T14 can be generalized:

T4g. A → {[A → [B1 → ((... (Bn → ¬C) ...))]] → [B1 →

((... (Bn → ¬C)...))]}

T5g. {A → [B1 → ((... → (Bn → ¬C) ...))]} → {B1 → [A → (B2 →

((... (Bn → ¬C) ...))]}

T6g. B1 → {[A → [B1 → ((...(Bn → ¬C)...))]] → [A → [B2 →

((... (Bn → ¬C) ...))]]}

T11g. {A → [A → [B1 → ((... (Bn → ¬C) ...))]]} → {A → [B1 →

((... (Bn → ¬C)...))]}

T12g. {A → [B1 → ((... (Bn → ¬C) ...))]} → {(A → B1) → [A →

[B2 → ((... (Bn → ¬C) ...))]]}

T13g. (A → B1) → {[A → [B1 → ((... (Bn → ¬C) ...))]] → [A →

[B2 → ((... (Bn → ¬C) ...))]]}
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T14g. {A → [B1 → ((... → (Bn → ¬C) ...))]} → {(A ∧ B1) →

[B2 → ((... (Bn → ¬C) ...))]}

These generalized theorems are proved as follows:

T4g (n = i) : T4g (n = i − 1) ,T5g (n = i)

T5g (n = i) : T4g (n = i − 1)

T6g (n = i) : T4g (n = i − 1)

T11g (n = i) : T5g (n = i) ,T5g (n = i + 1) ,T11g (n = i − 1)

T12g (n = i) : T5g (n = i + 1) , T11g (n = i − 1)

T13g (n = i) : T11g (n = i − 1)

T14g (n = i) : T13g (n = i)

For instance, let us prove T11g(n = k).

Proof. By T11g(n = k − 1):

(1). {A → [A → [B2 → ((... (Bk → ¬C) ...))]]} → {A → [B2 →

((... (Bk → ¬C)...))]}

By the prefixing rule of TW+

(2). {B1 → [A → [A → [B2 → ((... (Bk → ¬C) ...))]]]} → {B1 →

[A → [B2 → ((... (Bk → ¬C)...))]]}

By applying T5g(n = k) in the consequent

(3). {B1 → [A → [A → [B2 → ((... (Bk → ¬C) ...))]]]} → {A →

[B1 → [B2 → ((... (Bk → ¬C)...))]]}

By applying T5g(n = k),T5g(n = k + 1) in the antecedent

(4). {A → [A → [B1 → [B2 → ((... (Bk → ¬C) ...))]]]} → {[A →

[B1 → [B2 → ((... (Bk → ¬C)...))]]}

That is, T11g(n = k).

On the relationships between A2, A3 and T1-T8, we have (the proof is
left to the reader):

Proposition 1. i. Given TW+, A2 is interchangeable with T4 or T5.

ii. Given TW+ and A3, T2 and T6 are equivalent to A2.

iii. Given TW+ and A2, A3 is equivalent to T3.

iv. Given TW+ and A2, A3 is equivalent to T1 and T2.
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And regarding the generalized versions, it is proved

Proposition 2. The following group of theses do axiomatize To

c
:

i. A3, T7 and T4g (or T5g) and

ii. A3, T2, T7 and T6g.

We will prove that A3, T7 and T4g is an axiomatization of To
c (given To

+,
of course). The other two cases can be proved similarly. First, we remark
that the following lemma is provable

Lemma 1. The replacement theorem holds for To
c . That is, if ⊢ A ↔ B

(i.e., if ⊢ A → B and ⊢ B → A), then A and B are interchangeable in any
wff in which one of them appears.

Proof. The resources of Routley’s basic positive logic B+ (see [2]) suffice
for the negationless part of To

c . Then, use T2 for the negation case.

This is the proof that A3, T7 and T4g axiomatize To
c :

Proof. Let T4g be T4(n = k), i.e.,

(1). A → {[A → [B1 → ((...(Bk → ¬C)...))]] → [B1 →

((...(Bk → ¬C)...))]}

Next, ¬C is substituted by ¬ (Bk → Bk) in (1):

(2). A → {[A → [B1 → ((...(Bk → ¬ (Bk → Bk))...))]] → [B1 →

((...(Bk → ¬ (Bk → Bk))...))]}

By T7 and T8

(3). ¬Bk ↔ [Bk → ¬ (Bk → Bk)]

By Lemma 1, (2) and (3)

(4). A → {[A → [B1 → ((...(Bk−1 → ¬Bk)...))]] → [B1 →

((...(Bk−1 → ¬Bk)...))]}

Now, (4) is T4g(n = k − 1) and it is clear that the procedure can be iterated.
Therefore, A3, T4g and T7 do axiomatize To

c (note that T8 is immediate
from A3 and the identity axiom A → A of To

+).
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3. Semantics for To
c

A TW+ model (see, e.g., [2]) is a quadruple 〈K, O, R,�〉, where K is a
nonempty set, O a subset of K and R a ternary relation defined on K
subject to the following definitions and postulates for all a, b, c, d ∈ K:

d1. a ≤ b =df (∃x ∈ O) Rxab

d2. R2abcd =df (∃x ∈ K) [Rabx & Rxcd ]

p1. a ≤ a

p2. (a ≤ b & Rbcd) ⇒ Racd

p3. R2abcd ⇒ (∃x ∈ K) [Rbcx & Raxd ]

p4. R2abcd ⇒ (∃x ∈ K) [Racx & Rbxd ]

� is a valuation relation from K to the sentences of the positive language
satisfying the following conditions for all propositional variables p, wffs A,
B and a, b, c ∈ K:

(i) (a � p & a ≤ b) ⇒ b � p

(ii) a � A ∨ B iff a � A or a � B

(iii) a � A ∧ B iff a � A and a � B

(iv) a � A → B iff for all b, c ∈ K (Rabc & b � A) ⇒ c � B

A formula is valid (�T W+
A) iff a � A for all a ∈ O in all models.

A To
+ model (see [7]) is just like a TW+ model but with the addition of

the postulate

P1. R2abcd ⇒ R3abbcd

(R3abcde =df (∃x, y ∈ K) (Rabx & Rxcy & Ryde) )

Then, a To
c model is a quintuple 〈O, K, S, R,�〉, where 〈O, K, R,�〉 is a To

+

model and S a subset of K such that S ∩ O 6= ∅. The following clause and
the two following postulates are also added:

(v¬). a � ¬A iff for all b, c ∈ K, (Rabc & c ∈ S) ⇒ b 2 A

PA2.
(

R2abcd & d ∈ S
)

⇒ (∃x ∈ S) R2acbx

PA3.
(

R2abcd & d ∈ S
)

⇒ (∃x ∈ S) R2bcax

Definition 3. � A (A is To
+ valid) iff a � A for all a ∈ O in all models.
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So, a first and general difference between To
+ models and To

c models
is the selection of a second subset S of the set K. As it is known, O is
intuitively the set of all prime regular theories (see §4 below). Now, S
would be the set of all prime consistent theories, an inconsistent theory
being that containing the negation of a theorem. The condition S ∩ O 6= ∅
guarantees the existence of at least a regular and consistent theory. On the
other hand and concerning clause (v¬), as it was already remarked in the
introduction, we conceive this negation as equivalent to the implication of
a falsity constant ⊥ (¬A =df A → ⊥). Therefore, this constant ⊥ can be
explained by simply stating that theories containing ⊥ are inconsistent, do
not belong to S. Then, clause (v¬) can be elucidated as follows. It is known
that in ternary relational semantics conditional formulas are semantically
understood according to the clause

(v → ). a � A → B iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � B

So, the clause for ¬A (A → ⊥) is

(v¬′). a � A → ⊥ iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � ⊥

Now, as remarked above, let a point a be in S iff a 2 ⊥. It is clear that (v¬)
and (v¬′) are equivalent. Finally, regarding the semantical postulates, PA2
and PA3 are the corresponding postulates for A2 and A3.

Next, we prove semantic consistency (soundness) of To
c . First, we note

that the two following lemmas are proved like in the positive semantics, in
a similar way:

Lemma 2. For any wff A and points a, b, in K, (a ≤ b & b � A) ⇒ a � A.

Lemma 3. For any wff A, B, � A → B iff for all a in K, a � A ⇒ a � B.

Theorem 1 (semantic consistency). If ⊢ A, then � A.

Proof. Given the semantic consistency of To
+ (see, e.g., [7]), in order to

prove that all To
c theorems are valid, we just have to prove that A2 and A3

are valid. Use PA2 and PA3, respectively.

We finish this section proving that if B is the negation of a theorem, B
is not valid, i.e.,

Proposition 3. If ⊢ A, then 2 ¬A.

Proof. Let b ∈ S ∩ O. By TW+ semantics, Rxbb for some x ∈ O. As A is
a theorem, b � A. Then, x 2 ¬A by clause (v¬).
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4. Completeness of To
c

Given the completenes of TW+ (see, e.g., [2]), we only have to prove that
clause (v¬) and postulates PA2 and PA3 hold canonically.

We begin by recalling some definitions. A theory is a set of formulas
closed under adjunction and provable entailment. A theory a is prime if
whenever A ∨ B ∈ a, then A ∈ a or B ∈ a. A theory is regular if it contains
all theorems. Finally, a theory is inconsistent iff it contains the negation
of a theorem. Now, we define the canonical model. Let KT be the set of
all theories and RT be defined on K as follows: for all formulas A, B and
theories a, b, c ∈ KT , RT abc iff (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Further, let
KC be the set of all prime theories, OC the set of all regular prime theories,
SC the set of all prime consistent theories and RC the restriction of RT to
KC . Finally, let �C be defined as follows: for any wff A and a ∈ KC , a �

C A
iff A ∈ a.Then, the canonical model is the structure 〈KC , OC , SC , RC ,�C〉.

We prove

Proposition 4. Clause (v¬) holds canonically.

Proof. i. If ¬A ∈ a, then (RCabc & c ∈ SC) ⇒ A /∈ b:
Suppose ¬A ∈ a, RCabc, c ∈ SC and, by reductio, A ∈ b. By T7,

A → ¬ (A → A) ∈ a. So, ¬ (A → A) ∈ c by RCabc and A ∈ b. But then c
would be inconsistent.

ii. If ¬A /∈ a, then there are b ∈ KC , c ∈ SC such that RCabc and A ∈ b:
First, let us suppose that ¬A /∈ a. By defining the theories x = {B :

⊢ A → B} and y = {B : C → B ∈ a and C ∈ x}, it is easy to show that
RT axy and A ∈ x (⊢ A → A). Next, we prove that y is consistent. If y
is not consistent, then ¬B ∈ y where B is a To

c- theorem. By definitions,
C → ¬B ∈ a, C ∈ x, ⊢ A → C for some wff C. By suffixing (TW+),
⊢ (C → ¬B) → (A → ¬C). Then, A → ¬B ∈ a. Now, ⊢ (A → ¬B) → ¬A
by A3 because B is a theorem. In consequence, ¬A ∈ a which contradicts
the hypothesis. Therefore, y is consistent. Finally, x and y are extended to
prime theories b, c such that RCabc and A ∈ b.

Now, let us prove that the postulates are canonically valid.

Proposition 5. PA2 and PA3 hold canonically.

We start by proving that PA2 is canonically valid, i.e.,

RC2abcd & d ∈ SC ⇒
(

∃x ∈ SC
)

RC2acbx
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It is clear that canonical PA2 is immediately derivable from the following
lemma:

Lemma 4. Let a, b, c ∈ KT , d be a consistent member in KT and RT 2abcd.
Then, there is some x ∈ SC such that RT 2acbx.

Proof. Suppose for some x ∈ KT , RT abx, RT xcd, d being a consistent
member in KT . Define the theories y = {B : A → B ∈ a and A ∈ c},
z = {B : A → B ∈ y and A ∈ b} such that RT acy and RT ybz. Next, we
prove that z is consistent. Suppose it is not. Then, ¬A ∈ z for some theorem
A. By definitions, C → (B → ¬A) ∈ a, B ∈ b, C ∈ c for some wff B, C. By
T5, B → (C → ¬A) ∈ a. Then, C → ¬A ∈ x by RT abx and B ∈ b. Finally,
¬A ∈ d by RT xcd and C ∈ c. But then d would be inconsistent. Now, z is
extended to a prime consistent theory x such that RT acy and RT ybx.

Next, we prove that PA3 is canonically valid, i.e.,

RC2abcd & d ∈ SC ⇒
(

∃x ∈ SC
)

RC2bcax

This postulate follows from the lemma below

Lemma 5. Let a, b, c ∈ KT , d be a consistent member in KT and RT 2abcd.
Then, there is some x ∈ SC such that RT 2bcax.

Proof. Similar to that of Lemma 4. Use T4g(n = 1) .

Now, given the completeness of To
+ (see [7]) and Propositions 4 and 5,

we have

Theorem 2 (completeness of T o
c ). If � A, then ⊢ A.

We finish this section with the following proposition:

Proposition 6. The corresponding postulates for T1–T8 are:

PT1. Rabc & c ∈ S ⇒ (∃x ∈ S) Rbax

PT2. R2abcd ⇒ (∃x ∈ K) (Racx & Rbxd)

PT3. R2abcd ⇒ (∃x ∈ K) (Rbcx & Raxd)

PT4. R2abcd & d ∈ S ⇒ (∃x ∈ S) R2bacx

PT5. R3abcde & e ∈ S ⇒ (∃x ∈ S) R3acbdx

PT6. R3abcde & e ∈ S ⇒ (∃x ∈ S) R3bcadx
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PT7. R2abcd & d ∈ S ⇒ (∃x ∈ K) (∃y ∈ S) (Rcbx & Raxy)

PT8. Rabc & c ∈ S ⇒ (∃x ∈ O) (∃y ∈ S) Rcxy

In PT5 and PT6, R3abcde =df (∃x, y ∈ K) (Rabx & Rxcy & Ryde).

Proof. We indicate which negation theorem suffices in each case to prove
that the corresponding postulate holds canonically. Then, similarly, the
proof proceeds as in Lemma 1 and Lemma 2. (1) PT1: T4; (2) PT2: the
suffixing axiom of TW+; (3) PT3: the prefixing axiom of TW+; (4) PT4:
T4g(n = 1); (5) PT5: T5g(n = 2); (6) PT6: T6g(n = 2); (7) PT7: T5; (8)
PT8: A2.

The suffixing (suf) and prefixing (pref) axioms are

(A → B) → [(B → C) → (A → C)]

and

(B → C) → [(A → B) → (A → C)]

respectively. The corresponding postulates are PT2 for suf. and PT3 for
pref. They suffice for T2 and T3 because given the definition of the con-
structive negation, T2 (T3) is actually an instance of suf. (pref.).

For instance, let us prove that PT5 holds canonically. It derives from
the following lemma:

Lemma 6. Let a, b, c, d ∈ KT , e being a consistent member in KT and
RT 3abcde. Then, there is some x ∈ SC such that RT 3acbdx.

Proof. Suppose R3abcde (i.e., Rabu, Rucw, Rwde for some u, w ∈ KT )
and e ∈ S. Define the theories x, y, z such that Racx, Rxby and Rydz.
We have to prove that z is consistent. Suppose it is not. Then, D →
[C → (B → ¬A)] ∈ a, B ∈ d, C ∈ b, D ∈ c for some wff C, B, D and
theorem A. By T5g(n = 2), C → [D → (B → ¬A)] ∈ a. By Rabu, D →
(B → ¬A) ∈ u. By Rucw, B → ¬A ∈ w. By Rwde, ¬A ∈ e.But then e
would be inconsistent.

To finish this section we remark that jointly taken, Propositions 1, 2
and 6 provide a number of equivalent (and corresponding to each other)
syntactical and semantic axiomatizations of Tc. But we will not pursue this
topic here any further.
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5. The logics Eo
+

, Ro
+

, RMOo
+

, S4o
+

, Io
+

and LCo
+

Consider the following axioms and rules of inference:

A4. A → [[A → (B → C)] → (B → C)]

A5. A → (A → A)

A6. A → (B → A)

A7. (A → B) ∨ (B → A)

CAP assertion (CAP asser.): If ⊢ A, then ⊢ [A → (B → C)] → (B → C)

K rule (K): If ⊢ A, then ⊢ B → A

The positive logics are:

Eo
+: To

+ plus CAP asser.

Ro
+: To

+ plus A4

RMOo
+: Ro

+ plus A5

S4o
+: Eo

+ plus K

Io
+: To

+ plus A6

LCo
+: Io

+ plus A7

If in all foregoing formulations we change (whenever present) A1, CAP
asser. and A4 for (respectively) contraction

[A → (A → B)] → (A → B)

the assertion rule

if ⊢ A, then ⊢ (A → B) → B

and assertion

A → [(A → B) → B]

we get formulations of the positive logics T+, E+, R+, RMO+, S4+, I+ and
LC+, respectively. So, Eo

+, Ro
+, RMOo

+, S4o
+, Io

+ and LCo
+ are restrictions with

the CAP of the precedently mentioned logics (see [1], [7]).

The deductive relations these logics maintain with each other (which are
exactly those maintained by their unrestricted counterparts) are summarized
in the following diagram where the arrow stands for set inclusion:
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LCo
+

Io
+

RMOo
+ S4o

+

Ro
+

Eo
+

To
+

Now, we define the semantics. Consider the following postulates:

PCAPasser. Rabc ⇒ (∃x ∈ O) R2axbc

PA4. R2abcd ⇒ R2bacd

PA5. Rabc ⇒ a ≤ c or b ≤ c

PK. (∃x ∈ O) x ≤ a

PA6. Rabc ⇒ a ≤ c

PA7. (Rabc & Rade) ⇒ b ≤ e or d ≤ c

Then Eo
+ models, Ro

+ models, RMOo
+ models, S4o

+ models, Io
+ models and

LCo
+ models are defined by adding to To

+ models PCAPasser., PA4, PA5,
PK, PA6, PA7, respectively. A formula A is valid iff a � A for all a ∈ O
in all models. It is easy to prove along the lines of [7] that (for each one of
these logics) A is valid iff A is a theorem.

6. The logics Eo
c , Ro

c, RMOo
c, S4o

c, Io
c and LCo

c

We add the constructive negation of §1 to each one of the positive logics in
the preceding paragraph. In this way, we define the logics Eo

c , Ro
c , RMOo

c ,
S4o

c , Io
c and LCo

c. Finally, we define the semantics. Eo
c models, Ro

c models,
RMOo

c models, S4o
c models, Io

c and LCo
c models are just like To

c models save
for the addition of the postulates PCAPasser., PA4, PA5, PK, PA6 and
PA7, respectively.
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It is obvious that completeness immediately follows from the complete-
ness of To

c and that of the positive logics.
We finish this paragraph with a note. In order to prove the canonical

adequacy of the postulates PK, PA6 and PA7, the theories in the canonical
model must be non-null. Now, let L be any logic with the K rule. Then, it is
easy to prove that if a L-theory is non-null, then it is regular. Therefore, the
theories in the canonical models for S4o

c , Io
c and LCo

c are regular, whence the
sets KC and OC are equivalent. So, it would have been more simple to define
S4o

c (Io
c , LCo

c) models dispensing with the set O and, accordingly, defining
validity in respect of the set K. We have disregarded this possibility to keep
the exposition general (it is easy to adapt the arguments in this paper to
the case of non-null theories. See,.e.g., [11] or [12]).

7. Proof that all the logics defined have the CAP

Consider the following set of matrices where the only designated value is 2:

→ 0 1 2 ¬
0 2 0 2 2
1 2 2 2 2
2 0 0 2 2

∧ 0 1 2

0 0 1 0
1 1 1 1
2 0 1 2

∨ 0 1 2

0 0 0 2
1 0 1 2
2 2 2 2

This set verifies LCo
+. Now let (A → B) → C be any wff in which neither

→ nor ¬ appears in C. Assign all the variables in C the value 1. Then, the
value of (A → B) → C is 0. Consequently, LCo

+ (and any logic included in
it) has the CAP.
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