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THE PARACONSISTENT LOGIC Z

A possible solution to Jaśkowski’s problem∗

Abstract. We present a paraconsistent logic, called Z, based on an intuitive

possible worlds semantics, in which the replacement theorem holds. We show

how to axiomatize this logic and prove the completeness theorem.

1. Jaśkowski’s problem and paraconsistent logic

It seems that nowadays the main open problem in the field of paraconsistent
logic is still : Does paraconsistent logic really exist?

This means: can we find a good paraconsistent logic? Of course one logic
may be good for Mr. Black and bad for Mr. White. In other words, there is
no formal definition of what is a good logic. Anyway all the known systems
presented thus far bear serious defects. At least there is no paraconsistent
logic which is recognized unanimously as a good paraconsistent logic.

The central problem of paraconsistent logic is to find a negation which
is a paraconsistent negation in the sense that a, ¬a 0 b, and which at the
same time is a paraconsistent negation in the sense that it has enough strong
properties to be called a negation (cf. Béziau 00). Furthemore, such kind
of paraconsistent negation, if it has not to be an artificial construct, a mere
abstract object of a formal meaningless game, must have an intuitive back-
ground.
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Jaśkowski in his 1948’s paper (Jaśkowski 48) already clearly stated the
problem of combining these three features, and this has been called Jaśkow-
ski’s problem, cf. e.g. Kotas/da Costa 77. It is not misleading to say that
Jaśkowski’s problem is the basic problem of paraconsistent logic.

Jaśkowski himself presented a system, called discussive logic, but it does
not seem to be a solution to his problem; for recent survey and discussion
about Jaśkowski’s logic see (da Costa/Doria 95) and (Urchs 95). Later
on further systems were presented, see e.g. da Costa 63, D’Ottaviano/da
Costa 70, Priest 79, which don’t either appear as solutions.

Here we present a paraconsistent logic Z which seems to be a possible
solution to Jaśkowski’s problem: this logic is paraconsistent, has a very
intuitive semantics, is axiomatizable and its negation is quite strong, in
particular the replacement theorem holds for it. Funny enough the logic Z
is closely connected to the modal logic S5 which is the basis of Jaśkowski’s
discussive logic.

2. Possible worlds semantics for Z

2.1. Intuitive explanation

Semantically speaking, the basic idea of paraconsistent negation is that a
proposition and its negation can both be true. In modern logic, even from
the viewpoint of classical logic, true does not mean necessary true in the real
world, but true in some possible worlds, or some models. Note therefore that
the idea of paraconsistent negation is not so strange and does not commit
one to believe in true contradictions.

The point is that for paraconsistent logic we have to consider paracon-
sistent worlds (or structures, or models), i.e. worlds in which a proposition
and its negation can both be true.

The basic idea of possible worlds semantics is to semantically define con-
nectives using packages of possible worlds with (Kripke) or without (Car-
nap) a relation of accessibility between them. Let us call here such a package
simply a cosmos. Validity and semantical consequences are defined by con-
sidering all the possible cosmoses of possible worlds.

In a given cosmos, we will say that ¬a, the paraconsistent negation of the
proposition a, is false in a possible world iff a is true in all possible worlds of
the cosmos. If we have a cosmos where there is a possible world W in which
a is true and a possible world V in which a is false, therefore there exists
a world in which ¬a is true, this can be the world W itself. In this case W
is a paraconsistent world.
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We don’t consider here relations of accessibility. This is the same as
to consider a universal accessibility relation (every world is accessible from
every world), as it is known from the case of S5. The logic Z has in fact
a close connection with S5: ¬a in Z means ∼2a in S5, where ∼ is the
classical negation. The logic Z is translatable in S5 and S5 contains Z in
the sense that Z is a reduct of S5 (in the sense of model theory).

It is of course possible to consider any other modal logic and to extract
a paraconsistent logic from it, defining in the same way the paraconsistent
negation as ∼2.

Another possibility would be to say that ¬a is false in a possible world
of a given cosmos iff a is true in most of the worlds of this cosmos, using a
definition of most of given for example in (Carnielli/Veloso 97).

What about the relation between the semantics of Z and Kripke se-
mantics for intuitionistic logic? The condition for negation is dual of the
condition of Z, but in the intuitionistic case a specific accessibility relation
is needed: ¬a is true in a given world iff a is false in all possible accessible
worlds. Moreover in the intuitionistic case, the accessibility relation is also
used in order to define implication. This is not the case of Z, where the
implication is classical.

But it is clear that the possible worlds semantics dual of Kripke semantics
for intuitionistic logic leads to a paraconsistent logic. One question is to
know if this paraconsistent logic is similar to the paraconsistent logics dual
of intuitionistic logic from an algebraic viewpoint (Sette/Alves/Queiroz 95)
or sequent calculus viewpoint (Urbas 96).

2.2. Mathematical definition

We consider a standard set of zero-order formulas ForZ built with three
binary connectives ∧, ∨, →, and one unary connective ¬.

To simplify the definition we consider here bivaluations, i.e., functions
from ForZ to {0, 1}, rather than possible worlds. Therefore a cosmos is here
a set of bivaluations.

Definition 2.1. A Z-cosmos is any non-empty set C of bivaluations defined
by: α ∈ C iff it obeys the classical conditions for conjunction (∧), disjunction
(∨), implication (→) and moreover obeys the following condition for the
connective ¬ intended to be a paraconsistent negation:

(¬f) α(¬a) = 0 iff ∀β∈C β(a) = 1.
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Remark 1. If we replace the condition (¬f) by the following condition (¬t),
then we get the same notion of Z-cosmos:

(¬t) α(¬a) = 1 iff ∃β∈C β(a) = 0.

Remark 2. Given any bivaluation α of any Z-cosmos we have:

If α(a) = 0 then α(¬a) = 1,(¬r)

If α(¬a) = 0 then α(a) = 1,(¬rr)

If α(¬a) = 0 then ∀β∈C β(¬a) = 0.(¬ft)

Definition 2.2. A formula a is valid in a cosmos C iff its value is one for
all bivaluations of C, i.e., ∀α∈C α(a) = 1.

Definition 2.3. A formula a is Z-valid (notation �Z a) iff it is valid in all
Z-cosmoses.

Definition 2.4. A formula a is a consequence of a theory T in a Z-cosmosC iff for any bivaluation α of C if α(b) = 1, for all formulas b of T , then
α(a) = 1.

Definition 2.5. A formula a is a Z-consequence of a theory T (notation
T �Z a) iff a is a consequence of T in all Z-cosmoses.

Definition 2.6. We consider the following translation function ∗ from the
set of formulas of Z into the set of formulas of S5; 〈ForS5; ∧, ∨, →, ∼,2〉
(∼ is the classical negation).

a∗ = a if a is atomic,

(a ◦ b)∗ = a∗ ◦ b∗ ◦ ∈ {∧, ∨, →} ,

(¬a)∗ = ∼2a∗ .

Theorem 2.1. T �Z a iff T ∗
�S5 a∗

Corollary 2.1. The logic Z is strictly paraconsistent. That is to say given
any schema b which is not tautological (cf. Urbas 1990), we have:

a, ¬a 2Z b

Fact 2.1. (i) All substitutions of theses of →-∧-∨-fragment of classical
sentential calculus are Z-valid.



The paraconsistent logic Z 103

(ii) The following formulas are Z-valid:

a ∨ ¬a(1)

¬(a ∧ ¬a)(2)

(a → ¬a) → ¬a(3)

(¬a → a) → a(4)

¬¬a → a(5)

(a → b) → ¬a ∨ b(6)

¬(a ∨ b) → ¬a ∧ ¬b(7)

¬(a ∧ b) → ¬a ∨ ¬b(8)

¬(¬a ∨ ¬b) → a ∧ b(9)

¬(¬a ∧ ¬b) → a ∨ b(10)

¬(a ∨ ¬b) → ¬a ∧ b(11)

¬(a ∧ ¬b) → ¬a ∨ b(12)

¬(¬a ∨ b) → a ∧ ¬b(13)

¬(¬a ∧ b) → a ∨ ¬b(14)

(a ∧ ¬b) ∧ ¬(a ∧ ¬b) → (a ∧ ¬a)(15)

¬(a1 ∧ · · · ∧ an) → (¬a1 ∨ · · · ∨ ¬an)(16)

Proof. (i) From definitions 2.1–2.3.
(ii) We prove directly only sample examples. The reader expert in modal

logic can check indirectly the results via the translation of Z into S5.
(1): Suppose that we have a bivaluation α in a Z-cosmos C such that

α(¬(a ∧ ¬a)) = 0. Then by (¬f), for all β ∈ C: β(a ∧ ¬a) = 1, i.e., β(a) = 1
and β(¬a) = 1. But if β(¬a) = 1 by (¬t), there exists γ ∈ C such that
γ(a) = 0, which is absurd.

(4): Suppose that we have a bivaluation α in a Z-cosmos C such that
α(a) = 0. By (¬rr), α(¬a) = 1, therefore α(¬a → a) = 0.

(5): Suppose that we have a bivaluation α in a Z-cosmos C such that
α(¬¬a) = 1, then by (¬t), there exists β ∈ C such that β(¬a) = 0. By (¬f),
α(a) = 1.

(6): Suppose that we have a bivaluation α in a Z-cosmos C such that
α(¬a ∨ b) = 0, then α(¬a) = 0 and α(b) = 0. By (¬rr), α(a) = 1, therefore
α(a → b) = 0.

(15): Suppose that α(a ∧ ¬b) = 1 = α(¬(a ∧ ¬b)). If α(a ∧ ¬b) = 1,
then α(a) = 1 and α(¬b) = 1. Suppose that α(¬a) = 0, i.e., by (¬f),
∀β∈C β(a) = 1.
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If α(¬(a ∧ b)) = 1, then there exists γ ∈ C such that γ(a ∧ ¬b) = 0,
i.e., γ(a) = 0 or γ(¬b) = 0. The only possibility is γ(¬b) = 0. So, by (¬ft),
∀β∈C β(¬b) = 0, and in particular, α(¬b) = 0, which is absurd.

(16): Suppose there is a a bivaluation α of a Z-cosmos C such that
α(¬(a1∧· · ·∧an)) = 1 and α(¬a1∨· · ·∨¬an) = 0. By (¬t), there exists β ∈ C
such that β(a1 ∧ · · · ∧ an) = 0, i.e., β(aj) = 0 for some j (1 ≤ j ≤ n). On
the other hand α(¬ai) = 0 for every i (1 ≤ i ≤ n), in particular α(¬aj) = 0.
Hence by (¬f), for all γ ∈ C: γ(aj) = 1, which is absurd.

Fact 2.2. (i) If �Z a → b and �Z a, then �Z b.
(ii) If �Z a → b then �Z ¬(a ∧ ¬b).

Proof. (i) From definitions 2.1–2.3.
(ii) Suppose that 2Z ¬(a ∧ ¬b). Therefore there are a Z-cosmos C and

β ∈ C such that β(¬(a∧¬b) = 0. Then by (¬f), for all γ ∈ C: γ(a∧¬b) = 1,
i.e., γ(a) = 1 and γ(¬b) = 1. So, by (¬t), there is α ∈ C such that
α(b) = 0. Because for all γ ∈ C, γ(a) = 1, then α(a) = 1. Therefore we
have α(a → b) = 0. So 2Z a → b.

Lemma 2.1. If the values of two formulas are the same for every bivaluations
of a given Z-cosmos, then the values of their negations are the same for every
bivaluations of this Z-cosmos.

Proof. Suppose for all α ∈ C, α(a) = α(b) and there exists α′ ∈ C such
that α′(¬a) 6= α′(¬b). Suppose α′(¬a) = 1 and α′(¬b) = 0. Then, by (¬t),
there exists β ∈ C such that β(a) = 0 and, by (¬f), for all γ ∈ C, γ(b) = 1,
in particular β(b) = 1, this contradicts the hypothesis.

Corollary 2.2. The bi-implication ↔ standardly defined with → and ∧ is
a congruence relation for Z, i.e., the replacement theorem holds for ↔ in Z.

3. Axiomatization of Z

3.1. The Hilbertian system HZ

Definition 3.1. The system HZ contains the usual axioms for positive
classical logic (→-∧-∨-fragment of classical sentential calculus), i.e., for all
a, b, c ∈ ForZ:

a → (b → a)(AP1)

(a → (b → c)) → ((a → b) → (a → c))(AP2)

((a → b) → a) → a(AP3)
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a ∧ b → a(AP4)

a ∧ b → b(AP5)

a → (b → (a ∧ b))(AP6)

a → a ∨ b(AP7)

b → a ∨ b(AP8)

(a → c) → ((b → c) → (a ∨ b → c))(AP9)

and the following axioms for all a, b ∈ ForZ:

a ∨ ¬a(AZ1)

(a ∧ ¬b) ∧ ¬(a ∧ ¬b) → (a ∧ ¬a)(AZ2)

¬(a ∧ b) → (¬a ∨ ¬b)(AZ3)

¬¬a → a(AZ4)

The system HZ contains the rules:

a → b a

b
(MP)

a → b

¬(a ∧ ¬b)
(RZ)

Definition 3.2. A formula a is provable in HZ (notation ⊢Z a) iff there
exists a finite sequence of formulas b1, . . . , bn such that bn = a and bi

(1 ≤ i ≤ n) is an axiom of HZ or is the conclusion of a rule whose premises
are among b1, . . . , bm (m < i).

Lemma 3.1. For any n ∈ ω the following formula is provable in HZ:

(AZ3n) ¬(a1 ∧ · · · ∧ an) → (¬a1 ∨ · · · ∨ ¬an)

Proof. Induction on the number n. As inductive hypotesis, let us assume
that the following formula is provable in HZ:

(∗) ¬(a1 ∧ · · · ∧ an−1) → (¬a1 ∨ · · · ∨ ¬an−1)

By (AZ3) we have that the following thesis of HZ:

(∗∗) ¬((a1 ∧ · · · ∧ an−1) ∧ an) → (¬(a1 ∧ · · · ∧ an−1) ∨ ¬an)
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For all a, b, c, d ∈ ForZ the following formula is provable from (AP1)–(AP9):

(∗∗∗) (a → b ∨ c) → ((b → d) → (a → d ∨ c))

We put: a = ¬((a1 ∧ · · · ∧ an−1) ∧ an), b = ¬(a1 ∧ · · · ∧ an−1), c = ¬an and
d = (¬(a1 ∧ · · · ∧ an−1). We have (AZ3n), by (MP) and (∗)–(∗∗∗).

Definition 3.3. A formula a is deducible in HZ from a theory T (notation
T ⊢Z a) iff there are n ≥ 0, b1, . . . , bn ∈ T such that ⊢Z b1 ∧ · · · ∧ bn → a.2

3.2. Soundness and completeness

Theorem 3.1 (Soundness). If T ⊢Z a then T �Z a.

Proof. By facts 2.1 and 2.2.

Definition 3.4. A maximal theory M of HZ is a theory which is non-
trivial (i.e. there exists a such that M 0Z a) and has no non-trivial proper
extensions.

Lemma 3.2 (Lindenbaum Lemma). If T 0Z a, there exists a maximal theory
M which is an extension of T , such that M 0Z a.

Proof. As it is known (Lindenbaum-Asser Theorem), for any relation ⊢Z-
verifying monotonicity and finiteness, the following results holds: if T 0Z a,
then there exists an extension R of T such that R 0Z a and for every b /∈ R,
R, b 0Z a (such a theory R is said to be relatively maximal). We have proved
that in a logic with a classical implication every relatively maximal theory
is a maximal theory (see Béziau 95, Béziau 98). Therefore, as the relation
⊢Z is monotonic and finite and as → is a classical implication in HZ, the
above Lindenbaum Lemma holds for HZ.

Corollary 3.1. T ⊢Z a iff a ∈ M for every maximal theory M which is an
extension of T . (In particular ⊢Z a iff a ∈ M for every maximal theory M .)

Lemma 3.3. If M is a maximal theory then we have:

(i) a ∈ M iff M ⊢Z a.

(ii) If a /∈ M , then ¬a ∈ M .

2As usually, the case n = 0 means that ⊢Z a
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(iii) If ¬a /∈ M , then a ∈ M .

(iv) a ∨ b ∈ M iff a ∈ M or b ∈ M .

(v) a ∧ b ∈ M iff a ∈ M and b ∈ M .

(vi) If a → b ∈ M and a ∈ M , then b ∈ M .

(vii) If a /∈ M , then ¬¬a /∈ M .

Definition 3.5. Given a theory T , the theory #T = {b : ¬b /∈ T } is called
the center of T . If #T 6= ∅, we say that T has a center, in the other case
that T has no center.

Theorem 3.2. Every maximal theory has a center.

Proof. Let be M a maximal theory and a such that M 0Z a, then a /∈ M ,
then ¬¬a /∈ M , therefore, ¬a ∈ #M .

Definition 3.6. Given a theory T , a theory C which contains the center of
T is called a companion of T .

Theorem 3.3. If a maximal theory U contains the center of a maximal
theory M , then the center of U contains the center of M .

Proof. Suppose that #M ⊆ U , a ∈ #M . If a /∈ #U , then ¬a ∈ U . As u
is maximal, u has a center. Let b ∈ #U , b ∧ ¬a ∈ U . As a ∈ #M , ¬a /∈ M ,
therefore b ∧ ¬a /∈ M , thus ¬¬(b ∧ ¬a) /∈ M , and we have ¬(b ∧ ¬a) ∈ #M .
As #M ⊆ U , then ¬(b ∧ ¬a) ∈ U . We have (b ∧ ¬a) ∧ ¬(b ∧ ¬a) ∈ U . Using
axiom (AZ2), we get b ∧ ¬b ∈ U , but this is absurd, because as b ∈ #U ,
¬b /∈ U .

Corollary 3.2. The relation of companionship between maximal theories
is transitive.

Theorem 3.4. The relation of companionship between maximal theories is
reflexive.

Proof. Given a maximal theory M , we have to show that M is a companion
of itself, i.e. {a : ¬a /∈ M} ⊆ M .

If ¬a /∈ M , then a ∈ M (by the effect of the excluded middle).

Theorem 3.5. The relation of companionship between maximal theories is
symmetric.
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Proof. We have to show that given two maximal theories M and U . If
{a : ¬a /∈ M} ⊆ U then {a : ¬a /∈ U} ⊆ M . Suppose a /∈ M , then by (6),
¬¬a /∈ M , so ¬a ∈ U .

Lemma 3.4. Given a maximal theory T and a formula a: if a ∈ M for every
maximal companion M of T , then ¬a /∈ T .

Proof. If a ∈ M for every maximal theory which contains the set B = {b :
¬b /∈ T }, therefore by Corollary 3.1:

B ⊢Z a .

Then there are formulas b1, . . . , bn of B such that:

⊢Z b1 ∧ · · · ∧ bn → a .

By the rule (RZ), we have:

⊢Z ¬(b1 ∧ · · · ∧ bn ∧ ¬a).

Therefore, as T is maximal, by Corollary 3.1 we have:

¬(b1 ∧ · · · ∧ bn ∧ ¬a) ∈ T .

By definition ¬bi /∈ T , (1 ≤ i ≤ n), therefore using (AZ1), it is easy to see
that bi ∈ T .

Now suppose that ¬a ∈ T , then b1 ∧ · · · ∧ bn ∧ ¬a ∈ T .

b1 ∧ · · · ∧ bn ∧ ¬a ∧ ¬(b1 ∧ · · · ∧ bn ∧ ¬a) ∈ T .

Therefore by (AZ2):

b1 ∧ · · · ∧ bn ∧ ¬(b1 ∧ · · · ∧ bn) ∈ T , .

Thus

¬(b1 ∧ · · · ∧ bn) ∈ T .

Using (AZ3n) we get

¬b1 ∨ · · · ∨ ¬bn ∈ T .

Therefore there is a i (1 ≤ i ≤ n) such that ¬bi ∈ T , which is absurd. Hence
¬a /∈ T .
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Definition 3.7. The canonical structure is the set of all bivaluations which
are characteristic functions of maximal theories of HZ (given such a bival-
uation α, we write Mα the corresponding theory).

Moreover there is a binary relation (relation of accessibility) between
bivaluations which is defined by:

α R β iff Mα is a companion of Mβ.

Theorem 3.6. In the canonical structure, we have:

α(¬a) = 0 iff for every β such that α R β, then β(a) = 1.

Proof. This is a corollary of Lemma 3.4.

Theorem 3.7. The accessibility relation of the canonical structure is an
equivalence relation.

Proof. We have seen that the companionship relation between maximal
theories is reflexive, symmetric and transitive.

Corollary 3.3. If a is not a consequence of T in the canonical structure,
then T 2Z a.

Proof. This corollary results from the two above theorems and the fact
that the notion of semantical consequence defined with structures with an
accessibility relation which is an equivalence is the same as the one defined
by structures, like Z-cosmoses, with a universal relation of accessibility, i.e.
no relation of accessibility.

Theorem 3.8 (Completeness). If T �Z a then T ⊢Z a.

Proof. Suppose that T 0Z a, then by Lemma 3.2 there exists a maximal
extension M of T such that a /∈ M . Let µ be the characteristic function
of M , then in the canonical structure, we have µ(M) = 1 and µ(a) = 0.
Therefore a is not a consequence of M in the canonical structure. Using
Corollary 3.3, we conclude that T 2Z a.
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Postscript

This paper was written in December 1997 and presented at the Jaśkowski
Memorial Symposium in Toruń, July 1998. The present version is nearly
identical to the original one, with some minor improvements. I would like
to thank MM. Nasieniewski and Pietruszczak for helping me to improve the
paper and editing it. Details about how I got the idea of the logic Z and
the subsequent evolution of my work which led me to a reformulation of the
square of opposition into a three-dimensional object can be found in my pa-
per “Adventures in the paraconsistent jungle” (to appear in the forthcoming
Handbook of negation and paraconsistency, Elsevier, 2006). I realized later
on that the logic Z presented here is equivalent to the logic S5; see my pa-
per: “S5 is a paraconsistent logic and so is first-order classical logic” (Logica
Studies 9, 2002). But despite of this fact the interest of the paper remains
intact and is in some sense even greater, since the axiomatic system for Z
is an axiomatization of S5 using as only primitive connectives, conjunction,
disjunction, implication and the paraconsistent negation which corresponds
to the classical negation of necessity of S5. The main result of the paper
is a completeness proof for this axiomatic system, inspired by, but different
from, the standard proofs of completeness in modal logic. Moreover in this
paper I used a presentation of possible world semantics with bivaluations
instead of possible worlds. I have emphasized in a series of talks and pa-
pers the philosophical and logical import of this technique: “Many-valued
and Kripke Semantics” in The age of alternative logics, J. van Benthem et
al. (eds), Springer, 2006, “Possible worlds: a fashionable nonsense?” (with
Darko Sarenac), talk presented at UC Berkeley, October 2001, “Kripke struc-
tures without possible worlds”, talk presented at “Semantics and meaning:
workshop with Saul Kripke”, Campinas, July, 2005.
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