Andrew Schumann

A LATTICE FOR THE LANGUAGE OF ARISTOTLE'S SYLLOGISTIC AND A LATTICE FOR THE LANGUAGE OF VASIL'ÉV'S SYLLOGISTIC

Abstract

In this paper an algebraic system of the new type is proposed (namely, a vectorial lattice). This algebraic system is a lattice for the language of Aristotle's syllogistic and as well as a lattice for the language of Vasilév's syllogistic. A lattice for the language of Aristotle's syllogistic is called a vectorial lattice on \cap-semilattice and a lattice for the language of Vasilév's syllogistic is called a vectorial lattice on closure \cap-semilattice. These constructions are introduced for the first time.

Keywords: Aristotle's syllogistic, Vasilév's syllogistic, vectorial lattice on \cap semilattice, vectorial lattice on closure \cap-semilattice, quartum non datur.

Set up the problem of construction a lattice for the language of Aristotle's syllogistic and as well as a lattice for the language of Vasilév's syllogistic.

The Aristotle syllogistic (see [15], [1], [7], [8], [14]) is based on propositional logic.

Definition 1. The alphabet of propositional logic is the ordered system $\mathcal{A}=\left\langle V, L_{1}, L_{2}, K\right\rangle$, where

1. V is the set of propositional variables p, q, r, \ldots;
2. L_{1} is the set of unary propositional connectives consisting of one element \neg called the symbol of negation;
3. L_{2} is the set of binary propositional connectives consisting of three elements: $\wedge, \vee, \Rightarrow$ called the symbols of conjunction, disjunction, and implication respectively;
4. K is the set of auxiliary symbols containing two parenthesis: (,).
V, L_{1}, L_{2}, K are disjoint sets. The set V is denumerable, and the union of sets L_{1} and L_{2} isn't empty.

Definition 2. The language of propositional logic is the ordered system $\mathcal{L}=\langle\mathcal{A}, \mathcal{F}\rangle$, where

1. \mathcal{A} is the alphabet of propositional logic;
2. \mathcal{F} is the set of all formulas that are formed by means of symbols in \mathcal{A}.

Notice that elements of \mathcal{F} are defined by induction:
(a) every propositional variable p, q, r, \ldots is a formula of propositional logic;
(b) if α, β are formulas, then expressions $\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta$ are formulas of propositional logic;
(c) a finite sequence of symbols is called a formula of propositional logic if that sequence satisfies two above mentioned conditions.

Definition 3. The propositional logic (or propositional calculus) is the ordered system $\mathcal{S}=\langle\mathcal{A}, \mathcal{F}, \mathcal{C}\rangle$, where

1. \mathcal{A} is the alphabet of propositional logic;
2. \mathcal{F} is the set of all formulas formed by means of symbols in \mathcal{A};
3. \mathcal{C} is the inference operation that is the map of formulas in $\mathcal{F}_{0} \subseteq \mathcal{F}$ to formulas in $\mathcal{C}\left(\mathcal{F}_{0}\right)$, i.e., to the set of all corollaries from \mathcal{F}_{0}.

The inference rules of propositional logic are as follows:

1. the substitution rule, according to that we replace a propositional variable p_{j} of formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$, containing propositional variables p_{1}, \ldots, p_{n}, by a formula $\beta\left(q_{1}, \ldots, q_{k}\right)$, containing propositional variables q_{1}, \ldots, q_{k}, and we obtain a new formula $\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}, \ldots, p_{n}\right)$:

$$
\frac{\alpha\left(p_{1}, \ldots, p_{j}, \ldots, p_{n}\right)}{\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}, \ldots, p_{n}\right)}
$$

2. modus ponens, according to that if two formulas α and $\alpha \Rightarrow \beta$ hold, then we deduce a formula β :

$$
\frac{\alpha, \alpha \Rightarrow \beta}{\beta} .
$$

The inference operation is inductively defined as follows:
(i) for any set of formulas $\mathcal{F}_{0} \subseteq \mathcal{F}$ we get a set $\mathcal{C}(0)$ such that $\mathcal{C}(0) \subset \mathcal{C}\left(\mathcal{F}_{0}\right)$ and $\mathcal{C}(0)$ is called a set of tautologies for propositional logic;
(ii) if the set $\mathcal{C}\left(\mathcal{F}_{0}\right)$ contains a set $\mathcal{C}(\alpha)$, then $\mathcal{C}\left(\mathcal{F}_{0}\right)$ contains also a set $\mathcal{C}(\beta)$, where $\alpha, \beta \subset \mathcal{F}_{0}$ and $\alpha \subseteq \beta$ as $\mathcal{C}(\beta) \not \subset \mathcal{C}(\alpha)^{1} ;$
(iii) $\mathcal{C}\left(\mathcal{F}_{0}\right)$ is the minimal set that satisfies two above mentioned conditions.

The propositional logic has a lot of axiomatization depending on choice of the input set $\mathcal{C}(0)$. We shall use the set of axioms of Eukasiewicz's propositional calculus $\mathcal{S}_{P L}$ as the input set $\mathcal{C}(0)$ (see [7]):

$$
\begin{equation*}
(p \Rightarrow q) \Rightarrow((q \Rightarrow r) \Rightarrow(p \Rightarrow r)) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& (\neg p \Rightarrow p) \Rightarrow p, \tag{2}\\
& p \Rightarrow(\neg p \Rightarrow q) . \tag{3}
\end{align*}
$$

The implication and complement are given here as basic operations. Other operations are derivable, e.g., the conjunction and disjunction are defined as follows:

$$
\begin{gather*}
p \wedge q \rightleftharpoons \neg(p \Rightarrow \neg q), \tag{4}\\
p \vee q \rightleftharpoons \neg p \Rightarrow q . \tag{5}
\end{gather*}
$$

Combining axioms (1) - (3) and using inference rules, we obtain all other tautologies of the set $\mathcal{C}(0)$ for the system $\mathcal{S}_{P L}$.

Aristotle's syllogistic is an extension of propositional logic.
Definition 4. The alphabet of Aristotle's syllogistic is the ordered system $\mathcal{A}_{S A}=\left\langle V, Q, L_{1}, L_{2}, L_{3}, K\right\rangle$, where

1. V is the set of propositional variables p, q, r, \ldots;

[^0]2. Q is the set of syllogistic variables S, P, M, \ldots;
3. L_{1} is the set of unary propositional connectives consisting of one element \neg called the symbol of negation;
4. L_{2} is the set of binary propositional connectives containing three elements: $\wedge, \vee, \Rightarrow$ called the symbols of conjunction, disjunction, and implication respectively;
5. L_{3} is the set of binary syllogistic connectives containing four elements \mathbf{a}, \mathbf{e}, \mathbf{i}, o called the functors "every... is. . ", "no ... is. . ", "some ... is. . .", and "some... is not ..." respectively.
6. K is the set of auxiliary symbols containing two parenthesis: (,).

Here $V, Q, L_{1}, L_{2}, L_{3}$ are disjoint sets. The sets V and Q are denumerable. The union of sets L_{1}, L_{2}, and L_{3} isn't empty.

Definition 5. The language of Aristotle's syllogistic is the ordered system $\mathcal{L}_{S A}=\left\langle\mathcal{A}_{S A}, \mathcal{F}_{S A}\right\rangle$, where

1. $\mathcal{A}_{S A}$ is the alphabet of Aristotle's syllogistic;
2. $\mathcal{F}_{S A}$ is the set of all formulas formed by means of symbols in $\mathcal{A}_{S A}$; this set $\mathcal{F}_{S A}$ contains all formulas defined by the rules (a), (b), and (c) of definition 2 and by the following rules:
(d) if S and P are syllogistic variables, then expressions $S \mathbf{a} P^{2}, S \mathbf{e} P^{3}$, $S \mathbf{i} P^{4}, S \mathbf{o} P^{5}$ are formulas of Aristotle's syllogistic ${ }^{6}$.
$\left(\mathrm{d}^{\prime}\right)$ if α and β are formulas of Aristotle's syllogistic, then expressions $\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta$ are also formulas of Aristotle's syllogistic;
[^1]Thus, an expression that is derivable by rules of definition 5 is called a formula of Aristotle's syllogistic. Formulas that are defined by rules (d) and (d') of definition 5 is called formulas of Aristotle's syllogistic in the restricted sense.

Definition 6. Aristotle's syllogistic is the ordered system $\mathcal{S}_{S A}=\left\langle\mathcal{A}_{S A}\right.$, $\left.\mathcal{F}_{S A}, \mathcal{C}\right\rangle$, where

1. $\mathcal{A}_{S A}$ is the alphabet of Aristotle's syllogistic;
2. $\mathcal{F}_{S A}$ is the set of all formulas formed by means of symbols in $\mathcal{A}_{S A}$;
3. \mathcal{C} is the inference operation in $\mathcal{F}_{S A}$.

The inference rules of Aristotle's syllogistic are as follows:

1. the substitution rule, we replace a propositional variable p_{j} of formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$, containing propositional variables p_{1}, \ldots, p_{n}, by a formula $\beta\left(q_{1}, \ldots, q_{k}\right)$, containing propositional variables q_{1}, \ldots, q_{k} (according as by a formula $\beta\left(S_{l}, P_{m}\right)$, containing syllogistic variables $\left.S_{l}, P_{m}\right)$, and we obtain a new propositional formula $\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}\right.$, \ldots, p_{n}) (according as a new syllogistic formula $\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(S_{l}, P_{m}\right)\right.$, $\left.p_{j+1}, \ldots, p_{n}\right)$):

$$
\frac{\alpha\left(p_{1}, \ldots, p_{j}, \ldots, p_{n}\right)}{\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}, \ldots, p_{n}\right)}
$$

or

$$
\frac{\alpha\left(p_{1}, \ldots, p_{j}, \ldots, p_{n}\right)}{\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(S_{l}, P_{m}\right), p_{j+1}, \ldots, p_{n}\right)},
$$

In the same way, from any syllogistic formula $\alpha\left(S_{j}, P_{i}\right)$ follows a new formula $\alpha^{\prime}\left(S_{k}, P_{i}\right)$ or $\alpha^{\prime}\left(S_{j}, P_{l}\right)$ if we replace a syllogistic variable S_{j} by a syllogistic variable S_{k} or P_{i} by P_{l} :

$$
\frac{\alpha\left(S_{j}, P_{i}\right)}{\alpha^{\prime}\left(S_{k}, P_{i}\right)}
$$

or

$$
\frac{\alpha\left(S_{j}, P_{i}\right)}{\alpha^{\prime}\left(S_{j}, P_{l}\right)}
$$

2. modus ponens, according to that if two formulas of Aristotle's syllogistic α and $\alpha \Rightarrow \beta$ hold, then we deduce a formula β :

$$
\frac{\alpha, \alpha \Rightarrow \beta}{\beta} .
$$

The axioms of Aristotle's syllogistic consist of axioms of propositional logic (e.g., axioms (1), (2), (3) of the propositional system $\mathcal{S}_{P L}$), and of the following expressions:

$$
\begin{equation*}
S \mathbf{a} S \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
S \mathbf{i} S, \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
(M \mathbf{a} P \wedge S \mathbf{a} M) \Rightarrow S \mathbf{a} P, \text { i.e., Barbara, } \tag{8}\\
(M \mathbf{a} P \wedge M \mathbf{i} S) \Rightarrow S \mathbf{i} P, \text { i.e., Datisi. }
\end{gather*}
$$

The given axiomatic system was created by Łukasiewicz (see [7]). Here the functors \mathbf{a} and \mathbf{i} are basic and two other are defined as follows:

$$
\begin{align*}
& S \mathbf{e} P \rightleftharpoons \neg(S \mathbf{i} P), \tag{10}\\
& S \mathbf{o} P \rightleftharpoons \neg(S \mathbf{a} P) . \tag{11}
\end{align*}
$$

Using axioms (1), (2), (3), (6), (7), (8), (9), and definitions (4), (5), (10), (11), we obtain all tautologies of Aristotle's syllogistic.

Definition 7. The function I regarded as the map of formulas of propositional $\operatorname{logic} \mathcal{F}_{0} \subseteq \mathcal{F}$ to the set $\{T, \perp\}$ of truth values, where T is "true" and \perp is "false", is defined as follows:

$$
p^{I}=\left\{\begin{array}{l}
\top, \\
\perp,
\end{array}\right.
$$

where p is a propositional variable;

$$
(\neg \alpha)^{I}= \begin{cases}\top & \text { if }(\alpha)^{I}=\perp, \\ \perp & \text { if }(\alpha)^{I}=\top,\end{cases}
$$

where α is a formula of propositional logic;

$$
\begin{gathered}
(\alpha \wedge \beta)^{I}= \begin{cases}\top & \text { if }(\alpha)^{I}=(\beta)^{I}=\top \\
\perp & \text { otherwise }\end{cases} \\
(\alpha \vee \beta)^{I}= \begin{cases}\top & \text { if }(\alpha)^{I}=\top \text { or }(\beta)^{I}=\top \\
\perp & \text { otherwise },\end{cases} \\
(\alpha \Rightarrow \beta)^{I}= \begin{cases}\perp & \text { if }(\alpha)^{I}=\top \text { and }(\beta)^{I}=\perp \\
\top & \text { otherwise }\end{cases}
\end{gathered}
$$

Note that metavariables α and β range over all formulas of propositional logic.

Let $\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ be any infinite set with a minimal member ϑ_{0} and with one operation 'inf' (infimum) defined on all members of this set.

Definition 8. Suppose the set \mathcal{F}_{0} contains all superpositions of conjunction, disjunction, implication, negation of formulas of the form $S \mathbf{a} P, S \mathbf{e} P, S \mathbf{i} P$, $S \mathbf{o} P$ and the set \mathcal{F}_{1} contains all formulas of the form $S \mathbf{a} P, S \mathbf{e} P, S \mathbf{i} P, S \mathbf{o} P$. Then the function I regarded as the map of syllogistic formulas $\mathcal{F}_{0} \subseteq \mathcal{F}_{S A}$ to the set $\{\top, \perp\}$ of truth values is defined by rules of definition 7. This function I regarded as the map of syllogistic formulas $\mathcal{F}_{1} \subseteq \mathcal{F}_{S A}$ to the set $\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ of syllogistic truth values and to the set $\{\top, \perp\}$ of propositional truth values is defined by the following rules:

$$
S^{I}=\left\{\begin{array}{l}
\vartheta_{0}, \\
\vartheta_{n}>\vartheta_{0}
\end{array}\right.
$$

where by $(S)^{I}$ we denote a nominal constant that we substitute for the variable S^{7}.

$$
\begin{aligned}
& (S \mathbf{a} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)=\vartheta_{m} \\
\perp & \text { otherwise },\end{cases} \\
& (S \mathbf{e} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)=\vartheta_{0} \\
\perp & \text { otherwise },\end{cases} \\
& (S \mathbf{i} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)>\vartheta_{0} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

[^2]\[

(S \mathbf{o} P)^{I}= $$
\begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)<\vartheta_{m}, \\ \perp & \text { otherwise },\end{cases}
$$
\]

Since we can define truth values of arbitrary formulas, we have semantics for this language. Usually a lattice is considered as semantics for a formalized language.

Definition 9. A lattice for a formalized language \mathcal{L} is an ordered system $\mathfrak{A}=\langle A, \Omega\rangle$, where

1. A is the set of arbitrary elements;
2. Ω is the set of n-ary relationes ω_{A} over elements of A, and every n-ary relation ω_{A} in Ω corresponds to an n-ary formula ω in \mathcal{L}.

Definition 10. The lattice for the language of propositional logic is a Boolean algebra, i.e., the ordered system $\mathfrak{B}=\langle B ; \cap, \cup, \neg, 1,0\rangle$.

It is known that to each logical relation (to each formula) of propositional logic we can assign a relation of Boolean algebra. It is easily shown by induction on length of formula that an intersection is assigned to a conjunction, a union is assigned to a disjunction, a pseudo-complement relative to an element is assigned to an implication, and a complement is assigned to a negation.

The following definition is needed for the sequel.
Definition 11. The lattice for the language of Aristotle's syllogistic is a vectorial lattice on the \cap-semilattice. Let $\mathfrak{B}=\langle B ; \cap, \cup, \neg, 1,0\rangle$ be a Boolean algebra and let $\mathfrak{B}_{\cap}=\left\langle B_{\cap} ; \cap, \mathbf{0}\right\rangle$ be a \cap-semilattice, i.e., the ordered system \mathfrak{B}_{\cap} such that there exist only one binary operation \cap and only one constant 0. Further, let λ_{k} and $\mu_{k}{ }^{8}$ be unary operations defined on the set B for any element k of the \cap-semilattice \mathfrak{B}_{\cap}. Then the vectorial lattice on the \cap-semilattice is the ordered system $\mathfrak{V}_{\mathfrak{B}}=\left\langle B ; \cap, \cup, \neg, 1,0 ;\left\{\lambda_{k}: k \in\right.\right.$ $\left.\left.B_{\cap}\right\},\left\{\mu_{k}: k \in B_{\cap}\right\}\right\rangle$, where $\left\{\lambda_{k}: k \in B_{\cap}\right\}$ (according as $\left\{\mu_{k}: k \in B_{\cap}\right\}$) is the set of all λ_{k} (according as the set of all μ_{k}) such that k belongs to B_{\cap}. Every element of the set B is called a vector, every element of the set B_{\cap} is called a scalar.

[^3]The operations λ_{k} and μ_{k} are defined by induction:

$$
\begin{gather*}
\forall a \in B \forall b \in B \forall k \in B_{\cap}\left(\lambda_{k}(a \cap b)=\lambda_{k}(a) \cap b=\lambda_{k}(b) \cap a\right) ; \tag{12}\\
\forall a \in B \forall b \in B \forall k \in B_{\cap}\left(\lambda_{k}(a \cup b)=\lambda_{k}(a) \cup \lambda_{k}(b)\right) ; \\
\forall k \in B_{\cap}\left(\lambda_{k}(0)=0\right) ;
\end{gather*}
$$

(15) $\quad \forall k \in B_{\cap} \forall l \in B_{\cap}\left(\lambda_{k}(l)=0\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n=n\right)$;
(16) $\quad \forall k \in B_{\cap} \forall l \in B_{\cap}\left(\lambda_{k}(l)=0\right.$ if $k=m_{0} \cap n=n$ and $\left.l=m_{1} \cap n<n\right)$;
(17) $\quad \forall k \in B_{\cap} \forall l \in B_{\cap}\left(\lambda_{k}(l)=0\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n>\mathbf{0}\right)$;

$$
\begin{gather*}
\forall a \in B \forall b \in B \forall k \in B_{\cap}\left(\mu_{k}(a \cup b)=\mu_{k}(a) \cup b=\mu_{k}(b) \cup a\right) ; \tag{19}\\
\forall k \in B_{\cap}\left(\mu_{k}(1)=1\right) ;
\end{gather*}
$$

(21) $\quad \forall k \in B_{\cap} \forall l \in B_{\cap}\left(\mu_{k}(l)=1\right.$ if $k=m_{0} \cap n>\mathbf{0}$ and $\left.l=m_{1} \cap n<n\right)$;
(22) $\quad \forall k \in B_{\cap} \forall l \in B_{\cap}\left(\mu_{k}(l)=1\right.$ if $k=m_{0} \cap n=n$ and $\left.l=m_{1} \cap n<n\right)$;
(23) $\forall k \in B_{\cap} \forall l \in B_{\cap}\left(\mu_{k}(l)=1\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n>\mathbf{0}\right)$.

In all expressions $m_{0} \cap m_{1}=\mathbf{0}$.
We say that an element $\lambda_{k}(a)$ of vectorial lattice $\mathfrak{V}_{\mathfrak{B}}$ (according as an element $\mu_{k}(a)$ of vectorial lattice $\left.\mathfrak{V}_{\mathfrak{B}}\right)$ is an intersection of elements k and a (according as a union of elements k and a) and write $k \cap a$ (according as $k \cup a)$; notice that $(k \cap a) \in B$ and $(k \cup a) \in B$. Taking into account this interpretation of operations $\lambda_{k}(a), \mu_{k}(a)$, we have:

$$
\forall a \in B \forall b \in B \forall k \in B_{\cap}(k \cap(a \cap b)=(k \cap a) \cap b=(k \cap b) \cap a),
$$

i.e., the associativity and commutativity of λ_{k} for an intersection of vectors a and b;

$$
\forall a \in B \forall b \in B \forall k \in B_{\cap}(k \cap(a \cup b)=(k \cap a) \cup(k \cap b)),
$$

i.e., the distributivity of λ_{k} for a union of vectors a and b;

$$
\forall k \in B_{\cap}(k \cap 0=0) ;
$$

$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cap l=0\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n=n\right) ;$
$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cap l=0\right.$ if $k=m_{0} \cap n=n$ and $\left.l=m_{1} \cap n<n\right)$;
$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cap l=0\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n>\mathbf{0}\right) ;$

$$
\forall a \in B \forall b \in B \forall k \in B_{\cap}(k \cup(a \cap b)=(k \cup a) \cap(k \cup b)),
$$

i.e., the distributivity of μ_{k} for an intersection of vectors a and b;

$$
\forall a \in B \forall b \in B \forall k \in B_{\cap}(k \cup(a \cup b)=(k \cup a) \cup b=(k \cup b) \cup a),
$$

i.e., the associativity and commutativity of μ_{k} for a union of vectors a and b;

$$
\forall k \in B_{\cap}(k \cup 1=1) ;
$$

$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cup l=1\right.$ if $k=m_{0} \cap n>\mathbf{0}$ and $\left.l=m_{1} \cap n<n\right) ;$
$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cup l=1\right.$ if $k=m_{0} \cap n=n$ and $\left.l=m_{1} \cap n<n\right)$;
$\forall k \in B_{\cap} \forall l \in B_{\cap}\left(k \cup l=1\right.$ if $k=m_{0} \cap n=\mathbf{0}$ and $\left.l=m_{1} \cap n>\mathbf{0}\right)$.
In all expressions $m_{0} \cap m_{1}=\mathbf{0}$.
The \cap-semilattice \mathfrak{B}_{\cap} is partially ordered. In other words, elements of the set B_{\cap} satisfy the following axioms:

$$
\begin{align*}
& \forall a \in B_{\cap} a \leqslant a \text {, i.e., the antireflexiveness condition, } \tag{24}\\
& \forall a \in B_{\cap} \forall b \in B_{\cap} \forall c \in B_{\cap}(a \leqslant b \wedge b \leqslant c \Rightarrow a \leqslant c), \tag{25}\\
& \quad \text { i.e., the transitivity condition, } \\
& \forall a \in B_{\cap} \forall b \in B_{\cap}(a \leqslant b \wedge b \leqslant a \Rightarrow a=b), \\
& \text { i.e., the antisymmetry condition. } \tag{26}
\end{align*}
$$

The unique binary operation $a \cap b$ is defined in the \cap-semilattice so:

$$
\forall a \in B_{\cap} \forall b \in B_{\cap}(a \leqslant b \Leftrightarrow a \cap b=a) .
$$

The axioms of the \cap-semilattice are as follows:

$$
\begin{equation*}
\forall a \in B_{\cap}(a \cap a=a) \text {, i.e., the reflexivity condition, } \tag{27}
\end{equation*}
$$

(28) $\forall a \in B_{\cap} \forall b \in B_{\cap}(a \cap b=b \cap a)$, i.e., the commutativity condition,

$$
\begin{gather*}
\forall a \in B \cap \forall b \in B \cap \forall c \in B_{\cap}(a \cap(b \cap c)=(a \cap b) \cap c), \tag{29}\\
\text { i.e., the associativity condition, }
\end{gather*}
$$

$$
\begin{equation*}
\forall a \in B_{\cap}(a \cap \mathbf{0}=\mathbf{0}) \text {, i.e., the } \mathbf{0} \text {-boundedness condition. } \tag{30}
\end{equation*}
$$

There is also the strict order in the \cap-semilattice :

$$
\forall a \in B_{\cap} \forall b \in B_{\cap}(a<b \Leftrightarrow a \leqslant b \wedge a \neq b)
$$

It is easy shown that we can assign a relation of the vectorial lattice on the \cap-semilattice to each relation (formula) of Aristotle's syllogistic. It can be checked by induction on a length of formula:

1. a complement of a vector α is assigned to a negation $\neg \alpha$;
2. an intersection of vectors α and β is assigned to a conjunction $\alpha \wedge \beta$, a union of vectors α and β is assigned to a disjunction $\alpha \vee \beta$, a pseudocomplement of a vector α relative to a vector β is assigned to an implication $\alpha \Rightarrow \beta$;
3. an intersection of scalars $S \cap P=S$ is assigned to a universal affirmative proposition $S \mathbf{a} P$, an intersection of scalars $S \cap P=\mathbf{0}$ is assigned to a universal negative proposition $S \mathbf{e} P$, an intersection of scalars $S \cap P>\mathbf{0}$ is assigned to a particular affirmative proposition $S \mathbf{i} P$, an intersection of scalars $S \cap P<S$ is assigned to a particular negative proposition $S o P$. If S, P_{0} are fixed for syllogistic propositions $S \mathbf{a} P_{0}, S \mathbf{e} P_{0}, S \mathbf{i} P_{0}, S \mathbf{o} P_{0}$, then
(a) in the case $S \mathbf{a} P_{0}$ is true, we have

$$
S \cap P_{0}=S \text { for } S \mathbf{a} P_{0},
$$

$S \cap P_{1}=\mathbf{0}$ for $S \mathbf{e} P_{0}$,
$S \cap P_{0}>\mathbf{0}$ for $S \mathbf{i} P_{0}$,
$S \cap P_{1}<S$ for $S \mathbf{o} P_{0}$,
where P_{0} and P_{1} are mutually disjoint, e.g., the proposition "every man (S) is mortal $\left(P_{0}\right)$ " is true and the proposition "no man (S) is mortal $\left(P_{1}\right)$ " is false, therefore $S \cap P_{0}=S$ and $S \cap P_{1}=\mathbf{0}$,
(b) in the case $S \mathbf{e} P_{0}$ is true, we have
$S \cap P_{1}=S$ for $S \mathbf{e} P_{0}$,
$S \cap P_{0}=\mathbf{0}$ for $S \mathbf{a} P_{0}$,
$S \cap P_{1}>\mathbf{0}$ for $S \mathbf{o} P_{0}$,
$S \cap P_{0}<S$ for $S \mathbf{i} P_{0}$,
where P_{0} and P_{1} are mutually disjoint, e.g., the proposition "every man (S) is dolphin $\left(P_{0}\right)$ " is false and the proposition "no man (S) is dolphin $\left(P_{1}\right)$ " is true, therefore $S \cap P_{0}=\mathbf{0}$ and $S \cap P_{1}=S$,
(c) in the case $S \mathbf{i} P_{0}$ is true, we have
$S \cap P_{0}>\mathbf{0}$ for $S \mathbf{i} P_{0}$,
$S \cap P_{1}<S$ for $S \mathbf{o} P_{0}$,
where P_{0} and P_{1} are mutually disjoint,
(d) in the case $S \mathbf{o} P_{0}$ is true, we have
$S \cap P_{1}>\mathbf{0}$ for $S \mathbf{o} P_{0}$,
$S \cap P_{0}<S$ for $S \mathbf{i} P_{0}$,
where P_{0} and P_{1} are mutually disjoint.
As an example we prove general validity of the mood (modus) Barbara in the \cap-semilattice.

Example 1. This mood has the following notation in the language of the \cap-semilattice:

$$
\text { if } M \cap P=M \text { and } S \cap M=S \text {, then } S \cap P=S \text {. }
$$

Substitute an expression $S \cap M$ for S in $S \cap P$. We have $(S \cap M) \cap P$. By associativity, we obtain $S \cap(M \cap P)$. But it is known that $M \cap P=M$. Hence, we deduce S.
Example 2. This mood has the following notation in the language of the vectorial lattice on the \cap-semilattice:

$$
((M \cap P=M) \cap(S \cap M=S)) \Rightarrow(S \cap P=S) .
$$

By substitution, we obtain

$$
(M \cap S) \Rightarrow S=\neg(M \cap S) \cup S=\neg M \cup \neg S \cup S=\neg M \cup 1=1 .
$$

Note that we have the binary contradictory (contrary) relation in Aristotle's syllogistic. Therefore we can deduce here the law 'tertium non datur' (the law of excluded middle). Now consider a new system of syllogistic in that there is the ternary contradictory relation. Here we can deduce the law "quartum non datur". This system is called Vasilév's syllogistic (see [20], [21], [2], [6]). It is more simple deductive system, than Aristotle's syllogistic. Recall that N. A. Vasilév is well-know Russian logician. 1880-1940 were years of his life. He wrote scientific works in 1910-1914. Then he stopped logical investigations because of serious alienation.

Definition 12. The alphabet of Vasilév's syllogistic is the ordered system $\mathcal{A}_{S V}=\left\langle V, Q, L_{1}, L_{2}, L_{3}^{\sim}, K\right\rangle$, where

1. V is the set of proposition variables p, q, r, \ldots;
2. Q is the set of syllogistic variables $S, P, M \ldots$;
3. L_{1} is the set of unary propositional connectives consisting of one element \neg called the symbol of negation;
4. L_{2} is the set of binary propositional connectives containing three elements: $\wedge, \vee, \Rightarrow$ called the symbols of conjunction, disjunction, and implication respectively;
5. L_{3}^{\sim} is the set of binary syllogistic connectives containing three elements a, e, m called the functors "every. . . is. . . ", "no . . . is. . . ", and "some, but not every... is ... "9 respectively.
6. K is the set of auxiliary symbols containing two parenthesis: $($,$) .$

Here $V, Q, L_{1}, L_{2}, L_{3}^{\sim}$ are disjoint sets. The sets V and Q are denumerable. The union of sets L_{1}, L_{2}, and $L_{3}^{\widetilde{3}}$ isn't empty.

Definition 13. The language of Vasilév's syllogistic is the ordered system $\mathcal{L}_{S V}=\left\langle\mathcal{A}_{S V}, \mathcal{F}_{S V}\right\rangle$, where

1. $\mathcal{A}_{S V}$ is the alphabet of Vasilév's syllogistic;

[^4]2. $\mathcal{F}_{S V}$ is the set of all formulas formed by means of symbols in $\mathcal{A}_{S V}$; this set $\mathcal{F}_{S V}$ contains all formulas defined by the rules (a), (b), and (c) of definition 2 and by the following rules:
(d) if S and P are syllogistic variables, then expressions $S \mathbf{a} P^{10}$, $S \mathbf{e} P^{11}, S \mathbf{m} P^{12}$ are formulas of Vasilév's syllogistic.
(d^{\prime}) if α and β are formulas of Vasilév's syllogistic, then expressions $\neg \alpha$, $\alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta$ are also formulas of Vasilév's syllogistic;

Also, an expression that is derivable by rules of definition 13 is called a formula of Vasilév's syllogistic. Formulas that are defined by rules (d) and $\left(\mathrm{d}^{\prime}\right)$ of definition 13 is called formulas of Vasilév's syllogistic in the restricted sense.

Definition 14. Vasilév's syllogistic is the ordered system $\mathcal{S}_{S V}=\left\langle\mathcal{A}_{S V}\right.$, $\left.\mathcal{F}_{S V}, \mathcal{C}\right\rangle$, where

1. $\mathcal{A}_{S V}$ is the alphabet of Vasilév's syllogistic;
2. $\mathcal{F}_{S V}$ is the set of all formulas formed by means of symbols in $\mathcal{A}_{S V}$;
3. \mathcal{C} is the inference operation in $\mathcal{F}_{S V}$.

The inference rules of Vasilév's syllogistic are as follows:

1. the substitution rule, we replace a propositional variable p_{j} of formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$, containing propositional variables p_{1}, \ldots, p_{n}, by a formula $\beta\left(q_{1}, \ldots, q_{k}\right)$, containing propositional variables q_{1}, \ldots, q_{k} (according as by a formula $\beta\left(S_{l}, P_{m}\right)$, containing syllogistic variables $\left.S_{l}, P_{m}\right)$, and we obtain a new propositional formula $\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}\right.$, $\left.\ldots, p_{n}\right)$ (according as a new syllogistic formula $\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(S_{l}, P_{m}\right)\right.$, $\left.\left.p_{j+1}, \ldots, p_{n}\right)\right):$

$$
\frac{\alpha\left(p_{1}, \ldots, p_{j}, \ldots, p_{n}\right)}{\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(q_{1}, \ldots, q_{k}\right), p_{j+1}, \ldots, p_{n}\right)}
$$

[^5]or
$$
\frac{\alpha\left(p_{1}, \ldots, p_{j}, \ldots, p_{n}\right)}{\alpha^{\prime}\left(p_{1}, \ldots, p_{j-1}, \beta\left(S_{l}, P_{m}\right), p_{j+1}, \ldots, p_{n}\right)},
$$

For the same reason, from any syllogistic formula $\alpha\left(S_{j}, P_{i}\right)$ follows a new formula $\alpha^{\prime}\left(S_{k}, P_{i}\right)$ or $\alpha^{\prime}\left(S_{j}, P_{l}\right)$ if we replace a syllogistic variable S_{j} by a syllogistic variable S_{k} or P_{i} by P_{l} :

$$
\frac{\alpha\left(S_{j}, P_{i}\right)}{\alpha^{\prime}\left(S_{k}, P_{i}\right)}
$$

or

$$
\frac{\alpha\left(S_{j}, P_{i}\right)}{\alpha^{\prime}\left(S_{j}, P_{l}\right)} ;
$$

2. modus ponens, according to that if two formulas of Vasilév's syllogistic α and $\alpha \Rightarrow \beta$ hold, then we deduce a formula β :

$$
\frac{\alpha, \alpha \Rightarrow \beta}{\beta}
$$

The axioms of Vasilév's syllogistic consist of the axioms of propositional logic (e.g., of (1), (2), (3), (4), (5)), and of the following expressions that I proposed:
$S \mathrm{a} S$,
$(M \mathbf{m} P \wedge M \mathbf{a} S) \Rightarrow S \mathrm{~m} P$, i.e., Disamis-Bocardo, $(M \mathbf{e} P \wedge S \mathbf{a} M) \Rightarrow S \mathbf{e} P$, i.e., Celarent, $S \mathbf{e} P \Rightarrow P \mathbf{e} S$, $S \mathbf{a} P \Rightarrow \neg(S \mathbf{e} P)$, $S \mathbf{a} P \Rightarrow \neg(S \mathbf{m} P)$,
$S \mathbf{m} P \Rightarrow \neg(S \mathbf{e} P)$.

$$
\begin{equation*}
(\neg(S \mathbf{a} P) \wedge \neg(S \mathbf{e} P)) \Rightarrow S \mathbf{m} P \tag{3}
\end{equation*}
$$

Using these axioms, we obtain the following tautologies:

$$
\begin{equation*}
S \mathbf{a} P \vee S \mathbf{e} P \vee S \mathbf{m} P \tag{40}
\end{equation*}
$$

i.e., the law 'quartum non datur',

$$
\begin{align*}
& \neg(S \mathbf{a} P \wedge S \mathbf{e} P), \tag{41}\\
& \neg(S \mathbf{a} P \wedge S \mathbf{m} P), \tag{42}\\
& \neg(S \mathbf{e} P \wedge S \mathbf{m} P), \tag{43}
\end{align*}
$$

i.e., the laws of contradiction.

Let $\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ be any infinite set with a minimal member ϑ_{0} and with one operation 'inf' (infimum) defined on all members of this set.

Definition 15. Suppose the set \mathcal{F}_{0} contains all superpositions of conjunction, disjunction, implication, negation of formulas of the form $S \mathbf{a} P, S \mathbf{e} P$, $S \mathbf{m} P$ and the set \mathcal{F}_{1} contains all formulas of the form $S \mathbf{a} P, S \mathbf{e} P, S \mathbf{m} P$. Then the function I regarded as the map of syllogistic formulas $\mathcal{F}_{0} \subseteq \mathcal{F}_{S A}$ to the set $\{\top, \perp\}$ of truth values is defined by rules of definition 7. This function I regarded as the map of syllogistic formulas $\mathcal{F}_{1} \subseteq \mathcal{F}_{S A}$ to the set $\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ of syllogistic truth values and to the set $\{\top, \perp\}$ of propositional truth values is defined by the following rules:

$$
S^{I}=\left\{\begin{array}{l}
\vartheta_{0}, \\
\vartheta_{n}>\vartheta_{0}
\end{array}\right.
$$

where by $(S)^{I} \in\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ we denote a nominal constant that we replace by the variable S.

$$
\begin{aligned}
& (S \mathbf{a} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)=\vartheta_{m} \\
\perp & \text { otherwise }\end{cases} \\
& (S \mathbf{e} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \text { and } \inf \left(\vartheta_{m}, \vartheta_{n}\right)=\vartheta_{0} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
(S \mathbf{m} P)^{I}= \begin{cases}\top & \text { if }(S)^{I}=\vartheta_{m},(P)^{I}=\vartheta_{n}, \inf \left(\vartheta_{m}, \vartheta_{n}\right)>\vartheta_{0} \\ \perp & \text { otherwise, }\end{cases}
$$

Definition 16. The \cap-semilattice $\mathfrak{B}_{\cap}=\left\langle B_{\cap} ; \cap, \mathbf{0}\right\rangle$ is linear if we have the new axiom:

$$
\forall a \in B_{\cap} \forall b \in B_{\cap}(a>b \vee b>a)
$$

Only universal affirmative propositions $S \mathbf{a} P$ hold in the linear \cap-semilattice.

Definition 17. The \cap-semilattice $\mathfrak{B}_{\cap}=\left\langle B_{\cap} ; \cap, \mathbf{0}\right\rangle$ is semilinear if the following proposition holds:

$$
\forall a \in B_{\cap} \forall b \in B_{\cap}((a>b) \vee(b>a) \vee(a \cap b=\mathbf{0})) .
$$

Only universal affirmative propositions $S \mathbf{a} P$ and universal negative propositions $S \mathbf{e} P$ hold in the semilinear \cap-semilattice.

Let us remember that a set S is called closed if $S=\mathbf{C} S$, where \mathbf{C} is a closure operator:

$$
\begin{gather*}
\mathbf{C}(S \cup P)=\mathbf{C} S \cup \mathbf{C} P ; \tag{44}\\
S \subset \mathbf{C} S ; \tag{45}\\
\mathbf{C C} S=\mathbf{C} S ; \tag{46}\\
\mathbf{C} 0=0 . \tag{47}
\end{gather*}
$$

By S^{+}denote a closed set S. Notice that $S^{+} \cap \neg S^{+} \neq \emptyset$.
Definition 18. The \cap-semilattice $\mathfrak{B}=\langle B ; \cap, \mathbf{0}\rangle$ is called the closure \cap semilattice $\mathfrak{B}^{+}=\left\langle B^{+} ; \cap, \mathbf{0}^{+}\right\rangle$if all members of B are closed, i.e., we have the following axioms:

$$
\begin{gather*}
\forall a^{+} \in B^{+}\left(a^{+} \cap a^{+}=a^{+}\right), \tag{48}\\
\forall a^{+} \in B^{+} \forall b^{+} \in B^{+}\left(a^{+} \cap b^{+}=b^{+} \cap a^{+}\right), \tag{49}\\
\forall a^{+} \in B^{+} \forall b^{+} \in B^{+} \forall c^{+} \in B^{+}\left(a^{+} \cap\left(b^{+} \cap c^{+}\right)=\left(a^{+} \cap b^{+}\right) \cap c^{+}\right), \tag{50}\\
\forall a^{+} \in B^{+}\left(a^{+} \cap \mathbf{0}^{+}=\mathbf{0}^{+}\right), \tag{51}\\
\forall a^{+} \in B^{+} \forall b^{+} \in B^{+}\left(\left(a^{+}>b^{+}\right) \vee\left(b^{+}>a^{+}\right) \vee\left(a^{+} \cap b^{+} \geqslant \mathbf{0}^{+}\right)\right), \tag{52}\\
\forall a \in B \forall b \in B((a \cap b=\mathbf{0} \wedge \neg(a=\mathbf{0} \vee b=\mathbf{0})) \Rightarrow \\
\left.\forall a^{+} \in B^{+} \forall b^{+} \in B^{+}\left(a^{+} \cap b^{+} \geqslant \mathbf{0}^{+}\right)\right), \tag{53}
\end{gather*}
$$

where $a^{+}=\mathbf{C} a$ and $b^{+}=\mathbf{C} b$.

Definition 19. The lattice for the language of Vasilév's syllogistic is a vectorial lattice on the closure \cap-semilattice. Let $\mathfrak{B}=\langle B ; \cap, \cup, \neg, 1,0\rangle$ be a Boolean algebra and let $\mathfrak{B}^{+}=\left\langle B^{+} ; \cap, \mathbf{0}^{+}\right\rangle$be a closure \cap-semilattice. Suppose λ_{k}^{+}and μ_{k}^{+}are unary operations defined on the set B for any element k^{+} of the closure \cap-semilattice \mathfrak{B}^{+}. The ordered system $\mathfrak{V}_{\mathfrak{B}}=\langle B ; \cap, \cup, \neg, 1,0$; $\left.\left\{\lambda_{k}^{+}: k^{+} \in B^{+}\right\},\left\{\mu_{k}^{+}: k^{+} \in B^{+}\right\}\right\rangle$is called the vectorial lattice on the closure \cap-semilattice, where $\left\{\lambda_{k}^{+}: k^{+} \in B^{+}\right\}$(according as $\left\{\mu_{k}^{+}: k^{+} \in B^{+}\right\}$) is the set of all λ_{k}^{+}(according as the set of all μ_{k}^{+}) such that k^{+}belongs to B^{+}. Every element of the set B is called a vector, every element of the set B^{+}is called a scalar.

The operations λ_{k}^{+}and μ_{k}^{+}are defined by induction:

$$
\begin{align*}
& \forall a \in B \forall b \in B \forall k^{+} \in B^{+}\left(\lambda_{k}^{+}(a \cap b)=\lambda_{k}^{+}(a) \cap b=\lambda_{k}^{+}(b) \cap a\right) ; \tag{54}\\
& \forall a \in B \forall b \in B \forall k^{+} \in B^{+}\left(\lambda_{k}^{+}(a \cup b)=\lambda_{k}^{+}(a) \cup \lambda_{k}^{+}(b)\right) ; \tag{55}\\
& \forall k^{+} \in B^{+}\left(\lambda_{k}^{+}(0)=0\right) ; \tag{56}\\
& \forall k^{+} \in B^{+} \forall l^{+} \in B^{+}\left(\lambda_{k}^{+}\left(l^{+}\right)=0 \text { if } k^{+}=i_{0}^{+} \cap j^{+}=j^{+},\right. \\
& l^{+}=\left(\left(i_{0}^{+} \cap i_{1}^{+}\right) \cap j^{+}\right)>\mathbf{0}^{+}, \text {and } l^{+}=\left(\left(i_{0}^{+} \cap i_{1}^{+}\right) \cap j^{+}\right)<j^{+} ; \tag{57}\\
& \forall k^{+} \in B^{+} \forall l^{+} \in B^{+}\left(\lambda_{k}^{+}\left(l^{+}\right)=0 \text { if } k^{+}=i_{0}^{+} \cap j^{+}=j^{+}\right. \text {and } \\
& \left.l^{+}=i_{1}^{+} \cap j^{+}=\mathbf{0}^{+}\right) ; \tag{58}\\
& \forall k^{+} \in B^{+} \forall l^{+} \in B^{+}\left(\lambda_{k}^{+}\left(l^{+}\right)=0 \text { if } k^{+}=\left(\left(i_{0}^{+} \cap i_{1}^{+}\right) \cap j^{+}\right)<j^{+},\right. \\
& \left.k^{+}=\left(\left(i_{0}^{+} \cap i_{1}^{+}\right) \cap j^{+}\right)>\mathbf{0}^{+}, \text {and } l^{+}=i_{1}^{+} \cap j^{+}=\mathbf{0}^{+}\right) ; \\
& \forall a \in B \forall b \in B \forall k^{+} \in B^{+}\left(\mu_{k}^{+}(a \cap b)=\mu_{k}^{+}(a) \cap \mu_{k}^{+}(b)\right) ; \\
& \forall a \in B \forall b \in B \forall k^{+} \in B^{+}\left(\mu_{k}^{+}(a \cup b)=\mu_{k}^{+}(a) \cup b=\mu_{k}^{+}(b) \cup a\right) ; \\
& \forall k^{+} \in B^{+}\left(\mu_{k}^{+}(1)=1\right) ; \\
& \text { in } k^{+}=i_{0}^{+} \cap j^{+}=j^{+}, \mathbf{0}^{+}<l^{+}=\left(\left(i_{0}^{+} \cap i_{1}^{+}\right) \cap j^{+}\right)<j^{+} \\
& \text {and } \left.n^{+}=i_{1}^{+} \cap j^{+}=\mathbf{0}^{+}\right) .
\end{align*}
$$

In all expressions i_{0}, i_{1} are mutually disjoint for the given i_{0}^{+}, i_{1}^{+}such that $i_{0}^{+} \cap i_{1}^{+} \neq \mathbf{0}^{+}$.

It is easy shown that we can assign a relation of the vectorial lattice on the closure \cap-semilattice to each relation (formula) of Vasilév's syllogistic. It can be checked by induction on a length of formula:

1. a complement of a vector α is assigned to a negation $\neg \alpha$;
2. an intersection of vectors α and β is assigned to a conjunction $\alpha \wedge \beta$, a union of vectors α and β is assigned to a disjunction $\alpha \vee \beta$, a pseudocomplement of a vector α relative to a vector β is assigned to an implication $\alpha \Rightarrow \beta$;
3. an intersection of scalars $S^{+} \cap P^{+}=S^{+}$is assigned to a universal affirmative proposition $S \mathbf{a} P$, an intersection of scalars $S^{+} \cap P^{+}=\mathbf{0}^{+}$is assigned to a universal negative proposition $S \mathbf{e} P$, an intersection of scalars $\mathbf{0}^{+}<S^{+} \cap P^{+}<S^{+}$is assigned to a particular affirmative negative proposition $S \mathbf{m} P$. If S, P_{0} are fixed for syllogistic propositions $S \mathbf{a} P_{0}$, $S \mathbf{e} P_{0}, S \mathbf{m} P_{0}$, then
(a) in the case $S \mathbf{a} P_{0}$ is true, we have

$$
S^{+} \cap P_{0}^{+}=S^{+} \text {for } S \mathbf{a} P_{0},
$$

$$
S^{+} \cap P_{1}^{+}=\mathbf{0}^{+} \text {for } S \mathbf{e} P_{0}
$$

where P_{0}, P_{1} are mutually disjoint and $P_{0}^{+} \cap P_{1}^{+} \neq \mathbf{0}^{+}$,
(b) in the case $S \mathbf{e} P_{0}$ is true, we have
$S^{+} \cap P_{1}^{+}=S^{+}$for $S \mathbf{e} P_{0}$,
$S^{+} \cap P_{0}^{+}=\mathbf{0}^{+}$for $S \mathbf{a} P_{0}$,
where P_{0}, P_{1} are mutually disjoint and $P_{0}^{+} \cap P_{1}^{+} \neq \mathbf{0}^{+}$,
(c) in the case $S \mathrm{~m} P_{0}$ is true, we have
$S^{+}>S^{+} \cap\left(P_{0}^{+} \cap P_{1}^{+}\right)>\mathbf{0}^{+}$for $S \mathbf{m} P_{0}$,
where P_{0}, P_{1} are mutually disjoint and $P_{0}^{+} \cap P_{1}^{+} \neq \mathbf{0}^{+}$,
Also, the lattice of the language of Aristotle's syllogistic is the vectorial lattice on the \cap-semilattice. The lattice of the language of Vasilév's syllogistic is the vectorial lattice on the closure \cap-semilattice.

References

[1] Aristotle, Posterior Analytics, trans. with a Commentary by J. Barnes, 2nd ed., Clarendon Press, Oxford, 1975.
[2] Arruda A., "On the imaginary logic of N. A. Vasilév", in: A. I. Arruda, N. C. A. da Costa, R. Chuaqui, (eds.), Non-Classical Logic, Model Theory and Computability, North-Holland Publishing Company, Amsterdam, 1997, pages 3-24.
[3] Bocheński, Innocenty M., Ancient Formal Logic, North-Holland P. C., Amsterdam, 1951.
[4] Bocheński, Innocenty M., Formale Logik, Karl Alber, Freiburg-München, 1956.
[5] Bocheński, Innocenty M., A History of Formal Logic, trans. and ed. by I. Thomas, University of Notre Dame Press, Notre Dame (Indiana), 1961.
[6] George L. Kline, "N. A. Vasilév and the Development of Many-valued Logic", in: A. T. Tymieniecka, (ed.), Contributions to Logic and Methodology in Honour of J.M. Bocheński, North Holland, Amsterdam, 1965, pages 315-326.
[7] Łukasiewicz, J., Aristotle's Syllogistic From the Standpoint of Modern Formal Logic, 2nd edition, Clarendon Press, Oxford, 1957.
[8] Maier H., Die Syllogistik des Aristoteles, 3 Bde., Verlag der H. Lauppschen Buchhandlung, Tübingen, 1896-1900.
[9] Mill J. S., A System of Logic, Ratiocinative and Inductive. Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation, 2 vols., Parker, London, 1843.
[10] Pietruszczak, A., Metamereologia (Metamereology), Nicolaus Copernicus University Press, Toruń, 2000.
[11] Pietruszczak, A., "Stała Leśniewskiego w teoriach sylogistycznych: Semantyczne badania pewnych kwantyfikatorowych rachunków nazw", Acta Universitatis Nicolai Copernici, Logika III (1992), 45-76.
[12] Coniglione F., R. Poli, and J. Woleński, (eds.), Polish Scientific Philosophy: The Lvov-Warsaw School, Poznań Studies in the Philosophy of the Sciences and the Humanities 28, Rodopi, Amsterdam-Atlanta, GA, 1993.
[13] Rayside, D., and G. T. Campbell, "An Aristotelian Understanding of ObjectOriented Programming", in: D. Lea, (ed.), Proceedings of ACM/SIGPLAN Conference on Object-Oriented Systems, Languages and Applications (OOPSLA), Minneapolis (Minnesota), October 2000, pages 337-353.
[14] Rose, L. E., Aristotle's Syllogistic, Charles C. Thomas Publisher, 1968.
[15] Ross, W. D., (ed.), The Works of Aristotle, Volume 1: Logic, Oxford University Press, 1928.
[16] Schumann A., Logika. Osnovy kriticheskogo myshlenia, [Logic. Foundations of critical thinking]. EHU, Minsk, 2004.

A Lattice for the Language of Aristotle's Syllogistic...
[17] Schumann A., Sovremennaja logika: teoria i praktika, [Modern Logic: Theory and Practice], Econompress, Minsk, 2004.
[18] Schumann A., Filosofskaja logika [Philosophical Logic], Econompress, Minsk, 2001.
[19] Trzęsicki K., "Łukasiewicz on Philosophy and Determinism", in: [12], pages 251-297.
[20] Vasilév N. A., [On particular propositions, the triangle of oppositions, and the law of excluded fourth], Ucenie zapiski Kazan'skogo Universiteta, 1910.
[21] Vasilév N. A., [Imaginary non-Aristotelian Logic], Z Ministerstva Narodnogo Prosvescenia 1912.
[22] Woleński J., Logic and Philosophy in the Lvov-Warsaw School, Kluwer, Dordrecht-Boston-London, 1989.

Andrew Schumann
Belarusian State University
Department of Philosophy and Science Methodology, ul. K. Marx 31, 220030 Minsk
Belarus
andrew_schumann@mail.ru

[^0]: ${ }^{1}$ By definition, there exists a minimal element α with property $\mathcal{C}(\alpha)$ for any tuple $\langle\alpha, \beta\rangle \in \mathcal{F}_{0} \times \mathcal{F}_{0}$.

[^1]: ${ }^{2}$ The proposition "every S is P " has the following notation in predicate logic: $\forall x(x \in$ $S \Rightarrow x \in P)$ or $\neg \exists x(x \in S \wedge x \notin P)$.
 ${ }^{3}$ The proposition "no S is P " has the following notation in predicate logic: $\forall x(x \in S \Rightarrow$ $x \notin P)$ or $\neg \exists x(x \in S \wedge x \in P)$.
 ${ }^{4}$ The proposition "some S is P " has the following notation in predicate logic: $\exists x(x \in$ $S \wedge x \in P)$.
 ${ }^{5}$ The proposition "some S is not P " has the following notation in predicate logic: $\exists x(x \in S \wedge x \notin P)$.
 ${ }^{6}$ Nominal constants that we substitute for the variable S are called a subject. Nominal constants that we substitute for the variable P are called a predicate.

[^2]: ${ }^{7}$ Thus, the truth interpretation $(S)^{I}$ and $(P)^{I}$ ranges over not the set $\{\top, \perp\}$, but the set $\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{n}, \ldots\right\}$ of nominal constants.

[^3]: ${ }^{8}$ The operations λ and μ take each element k in the set B_{\cap} to a unique element λ_{k} and μ_{k} in the set B.

[^4]: ${ }^{9}$ By Vasilév's opinion, there exists a unique particular proposition, namely, particular affirmative negative proposition and its functor is \mathbf{m}. This proposition can be formulated as an indifferent statement (" S is and is not P "), as a disjunctive statement (" S is P or is not P "), and as an accidental statement (" S can be P ").

[^5]: ${ }^{10}$ The proposition of Vasilév's syllogistic "every S is P " has the following notation in predicate logic: $\forall x\left(x \in S^{+} \Rightarrow x \in P^{+}\right)$or $\neg \exists x\left(x \in S^{+} \wedge x \notin P^{+}\right)$, where S^{+}and P^{+}are closed sets, i.e., $S^{+}=\mathbf{C} S$ and $P^{+}=\mathbf{C} P$.
 ${ }^{11}$ The proposition of Vasilév's syllogistic "no S is P " has the following notation in predicate logic: $\forall x\left(x \in S^{+} \Rightarrow x \notin P^{+}\right)$or $\neg \exists x\left(x \in S^{+} \wedge x \in P^{+}\right)$.
 ${ }^{12}$ The proposition of Vasilév's syllogistic "some, but not every S is P " has the following notation in predicate logic: $\exists x\left(x \in S^{+} \wedge x \in\left(P^{+} \cap \neg P^{+}\right)\right)$.

