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A FORMAL THEORY

OF PHYSICAL NECESSITY

Abstract. A system HW of normal modal logic, developed by R. Bigelow
& R. Pargetter is presented. Some formal issues concerning the system are
examined, such as completeness, number of distinct modalities and relations
to other systems. Some philosophical topics are also discussed. The Authors
interpret the system HW as the system of physical (nomic) modalities. It is
questioned, whether or not the system HW is justified to be claimed to be
the logic of physical necessity. The answer seems to may be negative.
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The objective of the present paper is to discuss some formal and philosoph-
ical issues concerning the system HW of modal logic, presented first by R.
Pargetter and analysed by Pargetter and Bigelow [1, 258–262]. The sys-
tem in question belongs to the set of normal modal logics and is claimed to
formalize the concept of physical (nomic) necessity.

1. Axiomatics

The system HW is a normal modal logic. The language is standard and in-
cludes, beside classical symbols, i.e., negation ¬, conjunction ∧, disjunction
∨, conditional → and equivalence ≡, two unary propositional connectives,
namely the physical necessity connective 2 and the physical possibility con-
nective 3. So that, classical definition of a well formed formula should be
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supplemented with two conditions, claiming that, provided φ is a well formed
formula, (2φ) and (3φ) are well formed formulas as well. In order to save
brackets we adopt the usual convention concerning the biding force of the
connectives. In the sequence 2, 3, ¬, ∧, ∨, →, ≡ the binding gets longer
and longer. In all places PC is the classical propositional calculus, and letters
i, j, k, n,m are natural numbers.

The modal connectives are mutually definable in the usual way, so we
accept the definition:

(1) (3φ)
df

= (¬2¬φ)

The axioms of the presented system are:

Any substitution of a PC-theorem is a HW-theorem.(2)

2(φ → ψ) → (2φ → 2ψ)(3)

2φ → φ(4)

322φ → 22φ(5)

33φ1 ∧ 33φ2 ∧ . . . ∧ 33φn → 3(3φ1 ∧ 3φ2 ∧ . . . ∧ 3φn)(6)

The rules of Modus Ponens and Necessitation:

⊢ (φ → ψ)
⊢ φ

⊢ ψ

(7)

⊢ φ

⊢ (2φ)
(8)

are also accepted. More accurately is to say, the axiom (6) be rather a
collection of infinitely many axioms.

It can be immediately seen, that HW is an extension of the well known
system T of modal logic, where axioms (5) and (6) are specific for the system
HW, and all other axioms and rules are adopted from the system T.

We will prove, as an example, some theorems of the system HW. In the
following proofs we call T theorems and derived rules of the system T, and
PC, theorems and derived rules of PC.

(9) 22p ≡ 322p

1. p → 3p T

2. 22p → 322p 1 : p/22p
3. 322p → 22p (5)

22p ≡ 322p 2, 3 × PC
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(10) 22p ≡ 3322p

1. 22p ≡ 322p (9)
2. 322p ≡ 3322p 1 × T

3. 22p ≡ 3322p 1, 2 × PC

(11) 33p ≡ 233p

1. 22p ≡ 322p (9)
2. 22p ≡ ¬33¬p T

3. 3p ≡ ¬2¬p T

4. ¬33¬p ≡ ¬2¬¬33¬p 1, 2, 3 × T

5. ¬33¬¬p ≡ ¬2¬¬33¬¬p 4 : p/¬p
6. ¬33p ≡ ¬233p 5 × T

33p ≡ 233p 6 × T

(12) 22p ≡ 222p

1. 22p → 3322p (10)
2. 3322p ≡ 23322p (11) : p/22p
3. 3322p → 23322p 2 × PC

4. 322p → 22p (9) × PC

5. 23322p → 2322p 4 × T

6. 2322p → 222p 4 × T

7. 22p → 222p 1, 3, 5, 6 × PC

8. 2p → p T

9. 222p → 22p 1 : p/22p
22p ≡ 222p 7, 9 × PC

(13) 33p ≡ 333p

1. 22p ≡ 222p (12)
2. 22¬p ≡ 222¬p 1 : p/¬p
3. 22p ≡ ¬33¬p T

4. 222p ≡ ¬333¬p T

5. ¬33¬¬p ≡ ¬333¬¬p 2 × 3, 4 × T

6. 33¬¬p ≡ 333¬¬p 5 × PC

33p ≡ 333p 6 × PC × T

The theorems proved are of some interest, because they are so called reduc-
tion laws, governing nested modalities. One can notice, the laws proved are
similar to those provable in the system S5, but involve double modalities
instead of single ones. It will be considered further later.
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2. Formal Semantics

Formal semantics for the system HW is any relational model

M = 〈W,R, V 〉

where W is a non empty set of possible worlds, R is an accessibility relation

on W and V is a valuation function, mapping formulas into subsets of W ,
and so ascribing formulas their truth-values in possible worlds.

The accessibility relation R has two following features: reflexibility

(14) wRw

and, let us call it, Heimson Property

(15) ∃v(uRv ∧ ∀w vRw)

for all u, v,w ∈ W . The property (15) establishes, for any possible world u,
there be a world v, called the Heimson World for the world v, such as all
worlds are accessible from v. Consequently, in the model for the system HW

there is accessibility in two steps between any two possible worlds. We will
analyse the meaning of the Heimson Property and the reason to accept it
later, when the interpretation of the system presented is discussed.

We say that a formula φ is true or false in a possible world w ∈ W ,
symbolically:

w ∈ V (φ) w /∈ V (φ)

or respectively in the canonical model

φ ∈ w φ /∈ w

The function V may ascribe any truth value to a propositional letter. Ascrip-
tion of truth values to compound formulas satisfies the following conditions:

• w ∈ V (¬φ) if and only if w /∈ V (φ);

• w ∈ V (φ ∧ ψ) if and only if w ∈ V (φ) and w ∈ V (ψ);

• w ∈ V (2ψ) if and only if ∀v ∈ W (wRv → v ∈ V (φ)).

and respective conditions for other connectives, according to the classical
definitions and Definition (1).
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Models with accessibility relation R satisfying two features mentioned
are called HW-models. The formulas valid in all the HW-models are called
HW-valid.

The system presented in Section 1 is sound and complete with respect
to the class of relational models described in the present section. It was
first proved by Hughes in a personal communication with Pargetter [1, 260].
Nevertheless we provide an extra proof for the completeness result, achieved
with very simple methods. We use the concept of canonical model, involving
the Lindenbaum Theorem of Maximal and Consistent Extensions. We also
use the tool of point-generated model. Although the proof presented is
quite simple in the sense explicated, we think, it may be of some formal and
philosophical interest. Some formal interest may be ascribed to the proof
of Lemma 4 and the philosophical interest is connected with the fact that
a deeper insight into mutual relations between points in the HW-model is
important for the interpretation of the system and the ontology linked.

We definie a relation Rn, where n > 1.

(16)
xR1y ≡ xRy

xRn+1y ≡ ∃z(xRnz ∧ zRy)

We now can formulate the required lemmas.

Lemma 1. In the canonical model of the system HW it is the case that

xRny → xR2y.

Proof. Let as assume, that xR3y. We want to show, there is a z such as
xRz and zRy. It is enough to show, that the set z of formulas such as

z
df

= {φ : (2φ) ∈ x} ∪ {(3φ) : φ ∈ y}

is consistent as an extension of the system HW. Let us assume, z be in-
consistent. So there are formulas φ1, φ2, . . . , φm,3ψ1,3ψ2, . . . ,3ψn such as

(17)
2φ1,2φ2, . . . ,2φm ∈ x
ψ1, ψ2, . . . , ψn ∈ y
φ1, φ2, . . . , φm,3ψ1,3ψ2, . . . ,3ψn ⊢HW (χ ∧ ¬χ)

Because of the T-theorem 2(p ∧ q) ≡ 2p ∧ 2q we can equally accept one
formula φ and because of the T-theorem 3(p∧ q) → 3p∧3q we can accept
one formula (3ψ), such as

(18)
(2φ) ∈ x
ψ ∈ y
⊢HW (φ ∧ 3ψ → χ ∧ ¬χ)
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It is so, because by classical logic (ψ1∧. . .∧ψn) ∈ y, and so 3(ψ1∧. . .∧ψn) ∈
x. Now, from the third condition in (18) it follows that ⊢HW ¬(φ∧3ψ), and
so ⊢HW (3ψ → ¬φ), and so (by the system T) ⊢HW (33ψ → 3¬φ), and so

(19) ⊢HW (33ψ → ¬2φ)

Furthermore, from (18) second condition and the assumption, that xR3y
it follows that (333ψ) ∈ x. But the formula (13) is a HW-theorem, so
(33ψ) ∈ x but from it and (19) it follows that (¬2φ) ∈ x however, this
is incompatible with the first condition of (18), which ends this part of the
proof.

Let us now assume by induction, that for some n, if xRny, then xR2y,
let us also assume, that xRn+1y. It follows, there be such z, that xRnz and
zRy. It gives, by the inductive assumption, that xR2z, and so xR3y. But
this gives, by the first part of the proof, that xR2y.

Lemma 2. In the canonical model of the system HW it is the case that

yR2x → xR2y.

Proof. Let us assume, that yR2x. We will show, that

z = {φ : (2φ) ∈ x} ∪ {(3ψ) : ψ ∈ y}

is consistent in HW. For indirect proof let us assume z be inconsistent.
We have already shown, when proving Lemma 1, that it follows from it,
that ⊢HW ¬(φ ∧ 3ψ). Now, it follows from it, that ⊢HW φ → ¬3ψ and so
⊢HW φ → 2¬ψ and so (by the rules of the system T)

⊢HW 332φ → 3322¬ψ

but the formula (10) is a theorem of the system HW, so

(20) ⊢HW 332φ → 22¬ψ

Now, under the assumption, (2φ) ∈ x and yR2x, so (332φ) ∈ y. It follows
from it and from (20), that (22¬ψ) ∈ y and so (¬ψ) ∈ y, but under the
assumption ψ ∈ y.

Lemma 3. In the canonical model of the system HW it is the case that

yRnx → xR2y.

Proof. Let us assume, that yRnx. It follows from Lemma 1 that yR2x.
And by Lemma 2 that xR2y.
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Lemma 4. In the canonical model of the system HW it is the case that

∃y xRy ∧ ∀z(xR2z → yRz)

Proof. Let us define for some established world w

Ω
df

= {x ∈ W : wR2x}

Now, if x ∈ Ω and φ ∈ x, then (33φ) ∈ w. Let us so define

Λ
df

= {φ : (∃x ∈ Ω) φ ∈ x}

We are to show, that there exists such a world h, that wRh and for every
x ∈ Ω it is the case that hRx. So we have to prove, that a set of formulas

h
df

= {φ : (2φ) ∈ w} ∪ {(3ψ) : ψ ∈ Λ}

is consistent in the system HW. Let us assume the set Λ be inconsistent. So
there is a theorem of the system HW

3ψ1 ∧ · · · ∧ 3ψn → ¬φ

where ψ1, . . . , ψn ∈ Λ and (2φ) ∈ w. But so the formula

3(3ψ1 ∧ · · · ∧ 3ψn) → 3¬φ

and

(21) 3(3ψ1 ∧ · · · ∧ 3ψn) → ¬2φ

are theorems. We have assumed (33ψ1), . . . , (33ψn) ∈ w, and so under
the axiom (6) (3(3ψ1 ∧ · · · ∧3ψn)) ∈ w. From this and from (21) it follows
that (¬2φ) ∈ w but we have assumed that (2φ) ∈ w.

We will now remind the definition of so called point-generated submodel
of a canonical model.

Definition 1. A w-generated submodel of a model M = 〈W,R, V 〉 is the
model M′ = 〈W ′, R′, V ′〉 where

x ∈ W ′ ≡ x ∈ W ∧ ∃n wRnx ,

xR′y ≡ xRy ∧ x ∈ W ′ ∧ y ∈ W ′ ,

V ′ = V restricted in the domain to W ′ .
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Lemma 5. For all w ∈ W ′ it is the case that

W ′, w |= φ if and only if W,w |= φ .

The proof of the lemma just formulated is well known and there is no
need to repeat it. Now we can formulate The completeness theorem as
follows

Theorem 1 (completeness). Every HW-valid formula is a theorem of the

system HW.

Proof. Let φ not be a theorem of HW. We will show, there be a HW-model
not satisfying φ. Hence φ is not theorem, it is not satisfied in the canonical
model for the system HW. So there exists a world in canonical model which
not satisfies φ. Let us call the world w, hence φ /∈ w. We will show that
the w-generated submodel of the canonical model for the system HW is a
HW-model. The relation R in the canonical model is reflexive, because of
the presence of the axiom (4), which is, of course, the axiom (T). And so
obviously reflexive is the relation R′ because, under Definition 1, the relation
R′ shares formal properties of the relation R restricted to the set W ′. So,
we need to prove

wRmx → ∃y(xRy ∧ ∀z xRnz → yRz)

By lemmas 1 and 3 every world x in the w-generated part of the canonical
model is such as wR2x ∧ xR2w, but it follows, that every two worlds in the
model are such as xR4y, but on the same lemmas it follows that

(22) xR2y

for every two worlds in the w-generated part of the canonical model. But
under Lemma 4 it follows from (22) that for all x in the w-generated part
of the canonical model for the system HW it is the case that

∃y xRy ∧ ∀z yRz

which finishes the proof.

3. HW and Some Other Modal Logics

The weakest normal modal logic is called K and consists assumptions (1),
(2), (6), (7) and (8). By the addition of the formula (4) to the set of axioms
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we obtain the system T. We want to consider three systems stronger than T:
B, S4 and S5. Their axiomatics consist from the assumptions of the system T

and one specific axiom, which is called analogically to the respective system:

φ → 23φ(B)

2φ → 22φ(S4)

3φ → 23φ(S5)

The system HW is a normal modal logic, so it includes the system K as its
part. From the axioms presented it immediately follows that HW includes
the system T as well. It may be easily proved, that T is a proper part of
HW, because axioms (5) and (6) are not theorems of T. The system HW is
itself included in S5 as its proper part, because the axiom (S5) of the system
S5 is not a theorem of HW. There is no inclusion between HW and S4 or
B in any direction. Those mutual relationships between modal systems are
presented in Figure 1. It is a well known fact that the lattice presented in

S5

B HW S4

T

Figure 1. A lattice of some modal logics with HW

Figure 1 is not distributive, although the same lattice without the HW would
be distributive.

As it was said, the relation of HW to the system T is obvious. To prove
that every HW-theorem is an S5-theorem, one should notice, that the univer-
sal relation relation—such as uRw for any u,w ∈ W—satisfies the condition
(15), defining the Heimson Property. The system S5 is sound and complete
(inter alia) in the frame with universal accessibility relation, so any HW-valid
formula is S5-valid. As regards other systems mentioned in Figure 1, neither
the axiom (B), nor (S4) is a theorem of HW, and neither the axiom (5) nor
(6) of the system HW is a theorem of the system B or S4.
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As it was said, HW is a proper subset of S5. However, one can define the
connectives of S5 in HW, but not otherwise. So, in a sense, S5 is included
in HW.

Let 2HW and 3HW be the connectives of the system HW. If one adds
the definitions

(2S5φ)
df

= (2HW2HWφ)(23)

(3S5φ)
df

= (3HW3HWφ)(24)

One can prove every theorems of S5 for the connectives 2S5 and 3S5. So
it may be said, the system S5 be included in the system HW supplemented
with definitions (23) and (24). The relation between HW and S5 is analogous
to the relation between PC and the intuitionistic propositional calculus.

4. Distinct Modalities in HW

A modality is any unbroken finite sequence of symbols: ¬, 3, 2, including
an empty sequence, which will be signified by ×. A variable representing
modalities is #. The number of connectives in a modality is called length of
the modality. Modalities #i and #j are said to be equivalent in a system if
and only if a formula (#i ≡ #j) is a theorem of the system. Otherwise the
modalities are called distinct. There are infinitely many distinct modalities
in the system T, fourteen distinct modalities in the system S4 and six in
the system S5. In a normal modal logic any modality is equivalent with
a modality including no instances of the negation connective or only one
instance and that at the beginning. The later modality is called a standard

form. We shall assume from now on that all modalities are expressed in
standard form.

There are infinitely many—more accurately ℵ0—distinct modalities in
the system HW. However, there are more reduction laws in the system in
question than in the system T.

Actually, theorems (9), (11)–(13) are important reduction laws. Those
theorems allow to remove or add equivalently any modality on the left side
of any sequence 22 or 33.

Theorem 2. Any modalities of the form #i22#k and #j22#k or of the

form #i33#k and #j33#k are respectively equivalent in the system HW.

Proof. Because the system HW is normal, the theorem follows from the
reduction laws (9), (11), (12) and (13).
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We may show, there is no more relevant reduction laws in HW. First we
will introduce some abbreviations. We will write

Θn
2
,Θn

3

for an unbroken sequence of symbols 2 and 3, of the length n, beginning
with—respectively—2 or 3, such as immediately before and immediately af-
ter 2 there are only 3s or nothing, and immediately before and immediately
after 3 there are only 2s or nothing, for example

Θ3
3 = 323

Θ4
2

= 2323

More accurate definition may be inductive.

Θ1
2

df

= 2

Θ2
2

df

= 23

Θ2k+1
2

df

= Θ2k
2 2

Θ2k+2
2

df

= Θ2k+1
2 3

for any natural k > 1, and analogically, dually, for Θn
3

.

Theorem 3. No formula of the form

3Θn
3
φ ≡ Θn

3
φ(25)

2Θn
3
φ ≡ Θn

3
φ(26)

3Θn
2φ ≡ Θn

2φ(27)

2Θn
2φ ≡ Θn

2φ(28)

is theorem of the system HW.

Proof. The proof is inductive. If n = 1 formulas (25)–(28) are equivalent
to axioms of the systems S4 or S5, so they cannot be theorems of HW. We
will therefore assume, for an established n these formulas are not theorems
of HW and show the same for n+ 1.

Because of the assumption there exist HW-models including submodels
defined as follows.

The formula (25) for n + 1 is not valid, if there exists a HW-model
M = 〈W,R, V 〉 including a submodel M′ = 〈W ′, R′, V ′〉 satisfying following
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conditions:

w1, w2, w3, w4 ∈ W

w1Rw2, w2Rw3, w2Rw4

w1 ∈ V (3Θn+1
3 φ), w1 /∈ V (Θn+1

3 φ)

w2 ∈ V (Θn+1
3

φ), w2 /∈ V (Θn
2
φ)

w3 ∈ V (Θn
2
φ)w4 /∈ V (Θn−1

3
φ)

But on the assumption that (27) is not valid for n, there exists a HW-model
including a submodel M′′ = 〈W ′′, R′′, V ′′〉 satisfying

w1, w2, w3 ∈ W

w1Rw2, w1Rw3

w1 ∈ V (3Θn
2
φ), w1 /∈ V (Θn

2
φ)

w2 ∈ V (Θn
2
φ)

w3 /∈ V (Θn−1
3 φ)

But w2 and w3 from M
′′ satisfy respectively w3 and w4 from M

′. Further-
more w2 from M

′ may be the Heimson World for itself and for w1, so the
existence of a HW-model M′ is ensured.

In other cases the argument is analogous.
For (26) with n+ 1 M

′ satisfies:

w1, w2, w3, w4 ∈ W

w1Rw2, w1Rw3, w2Rw4

w1 ∈ V (Θn+1
3 φ), w1 /∈ V (2Θn+1

3 φ)

w2 /∈ V (Θn+1
3

φ)

w3 ∈ V (Θn
2
φ)

w4 /∈ V (Θn
2φ)

But on the assumption that (28) is not valid with n, there exists a HW-model
including a submodel M′′ = 〈W ′′, R′′, V ′′〉 satisfying

w1, w2 ∈ W

w1Rw2

w1 ∈ V (Θn
2φ), w1 /∈ V (2Θn

2φ)

w2 ∈ V (Θn−1
3

φ), w2 /∈ V (Θn
2
φ)
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But w1 and w2 from M
′′ satisfy respectively w3 and w4 from M

′. Further-
more w1 from M

′ may be the Heimson World for itself and w2 from M
′′ may

be the Heimson World for w2 from M′, so the existence of a HW-model M′

is ensured.
It is easy to show analogous arguments for (27) and (28), however, it

is not necessary, because in normal modal logics any formula of the form
(27) or (28) is equivalent to an appropriate formula of the form (26) or (25)
respectively.

We will also use some simple lemmas.

Lemma 6. Any two modalities #i2 ane #j3 not including the symbol ¬
are distinct in the system HW.

This lemma obviously follows from the fact, that HW is a subset of S5.
If (#i2φ ≡ #j3φ), not including the symbol ¬, is a theorem of HW, then
it is a theorem of S5. But—under the reduction laws of S5—in such case
(2φ ≡ 3φ) is a theorem of S5, which is false.

Lemma 7. Let k, n be natural numbers, and k > 1. No formula of the form

Θ2k
2

Θn
2
φ ≡ Θn

2
φ

Θ2k
3

Θn
3
φ ≡ Θn

3
φ

is a theorem of the system HW.

The proof of this lemma is straightforward as well. If there is no HW-
model falsifying formulas of the established forms, there is no HW-model
falsifying an appropriate formula of the form

Θ2k
2 φ ≡ φ

Θ2k
3
φ ≡ φ

which is again false.

Lemma 8. Let k, n be any natural numbers. No formula of the form

3Θ2k
2

Θn
2
φ ≡ Θn

2
φ(29)

33Θ2k
2 Θn

2φ ≡ Θn
2φ(30)

2Θ2k
3 Θn

3φ ≡ Θn
3φ(31)

22Θ2k
3

Θn
3
φ ≡ Θn

3
φ(32)

is a theorem of the system HW.
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Proof. Because HW is normal, it is again enough to prove the lemma for
two first cases.

Suppose that (3Θ2k
2

Θn
2
φ ≡ Θn

2
φ) is a theorem, in that case so are:

(23Θ2k
2

Θn
2
φ ≡ 2Θn

2
φ), (2323Θ2k

2
Θn

2
φ ≡ 232Θn

2
φ) Under Theorem 2

there is a theorem (3Θ2k
2

Θn
2
φ ≡ 2Θn

2
φ) and so (2323Θ2k

2
Θn

2
φ ≡

23Θ2k
2

Θn
2
φ), which contradicts Lemma 7.

Let us consider the second formula. Suppose (33Θ2k
2

Θn
2
φ ≡ Θn

2
φ) is

a theorem. In that case so are (233Θ2k
2

Θn
2
φ ≡ 2Θn

2
φ) But under Theo-

rem 2 there is a theorem (33Θ2k
2 Θn

2φ ≡ 2Θn
2φ) and so there is a theorem

(2Θn
2φ ≡ Θn

2φ) which contradicts Theorem 3.
For other two formulas the result follows from the two first and usual

mutual definitions of modal symbols.

The theorems and lemmas proved in this section allow us to tell, what
exactly distinct modalities there are in the system HW. Any two sequences
of symbols of the form Θn

2, 2Θn
2, 3Θn

2, Θn
3, 2Θn

3, 3Θn
3, for any natural

n, including 0, either look exactly identical, or are distinct modalities in
HW. There are no more distinct modalities in HW beside those mentioned
and their negations. Anyway, as it was said, still, there are infinitely many
distinct modalities in the system in question.

5. Interpretation

The philosophical reason to develop the system presented is its interpreta-
tion. The majority of modal logic was first concerned with the concept of
logical necessity. Contemporary modal logicians often claim themselves not
to be interested in any kind of modality at all. The subject of modal logic,
they claim, is rather the scope of relational first order structures than any
modality [2, xi–xii, xiv–xv]. The system HW turns back to modalities. It is
supposed to formalize the concept of physical (nomic) necessity.

Logical necessity is a property characteristic of logical laws and physical
(nomic) necessity is a property characteristic of physical laws. For example,
the logical law of excluded middle

φ ∨ ¬φ

is logically necessary. An example of physical modality can be provided with
the relativistic mass equation

(33) m =
m0

√

1 − v2

c2
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The physically necessary formula (33) establishes—among other things—
that it is impossible for an object with non-zero rest mass to move at the
speed of light in vacuum. It is so because if any such object had moved at the
speed of light, it would have had infinitely big mass, which is not possible,
because no infinite force could be present in nature and such force must had
been acting to move an infinite mass object [3, ch. 15]. So, it is logically
necessary, that a given pen moves at the speed of light or does not move at
the speed of light; but it is physically necessary that the pen doesn’t move
at the speed of light.

According to Bigelow and Pargetter there are three essential features
of physical laws: they describe regularities (generalizations) of some sort,
and they ascribe the special kind of necessity to these regularities, and they
include idealizations, which make them vacuous in a sense (cf. [5] for further
discussion).

A question then arises, what is the accurate meaning of those emphasized
modal words of physical language. One should agree, that it is not the same
concept, like in logical language, e.g., when one says, it is necessary that
(φ ∨ ¬φ) or m0 = m0. The concept of logical modality is usually connected
with the concept of consistency. A formula φ is logically necessary in a sense
if and only if its negation (¬φ) is not consistent. A formula (or a set of
formulas) is consistent if and only if it has a model, if it is satisfiable.

But obviously physical laws—like (33)—are not necessary in the sense.
There seems to be nothing inconsistent in the proposition about a non-zero
rest mass object moving at the speed of light. Actually, in classical physics
it is physically necessary, under physical laws, that if any object is acted by
any force long enough, the object will move at the speed of light and faster.
One cannot, say, know the result of Michelson-Morley experiment without
the experiment, just from inconsistence of the opposite result.

On the other hand physical laws, like (33), and their consequences are
not only a part of history of accidental behavior of physical objects. Physical
laws do not just recount a coincidence. Scientists do not have to repeat, say,
Michelson-Morley experiment in order to know, whether or not the speed of
light depends on the motion of the source of light. Physical laws seem to re-
count a kind of physical structure of the world, or at least to approximate it.

Neither the view identifying physical and logical modalities, nor the one
identifying the first kind of modal notions with truthfulness or just some
sort of syntactical or pragmatic properties, seems to be correct. One should
rather say, that logical necessity and physical necessity are two distinct con-
cepts. Bigelow and Pargetter claim the physically necessary sentences are
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physical laws and their logical consequences [1, p. 214–227]. However, the
concept of physical necessity is involved in the definition of physical law. The
solution of the problem may be an axiomatic system providing the meaning
of physical modal expressions.

Having so many systems of modal logic, one may ask, whether or not it
is sensible to expect the formal analysis of nomic modalities be found among
those systems.

The aim of formalization is now to find and describe the very difference
between physically necessary sentences and logically necessary ones on one
side, and accidental ones on the other. To achieve this Bigelow and Pargetter
involve the ontology of possible worlds. They claim, the accidental truths
hold at least in our world, logically necessary truths hold in all possible
worlds—so they use so called leibnizian necessity—and physically necessary
truths hold in our world and in all appropriately accessible worlds, but not
necessarily in all worlds at all [1, p. 238]. They suugest as well, logical
necessity, which—as we mentioned—is leibnizian, be formalized accurately in
the system S5. All they need is to find the formal similarities and differences
between S5 and the system constructed.

The main similarity involves the rule, that makes a scientist look for the
truth. Physical laws should then be true sentences. Of course, in the history
most propositions proposed as laws turned out to be false. However, they
should at least reasonably approximate the truth. The first postulat is then
physically necessary formulas be true. This means the accessibility relation
in the model of physical nesessity should be reflexive. And so, the system of
physical necessity should include the system T as its subset.

The other rule involved says, the physical laws could change, further-
more, they could be totally different than they actually are. There could be
even no physical laws at all. That means, it could be the case any actual
physical law could turn out to be only accidental truth. So in the model of
physical necessity, for any possible world w, there should exist a world w′

which is exactly the same like w, but there are no physical laws in w′. All
physical laws of w are true in w′, but only accidentally true. A question then
arises, whether the possibility of any physical law being accidental is logical
or physical. In the former case the law-free world just described should only
exist, but in the latter case the world w′ in question should not only exist, but
also be accessible from the given world w. Bigelow and Pargetter recommend
the second alternative to be accepted, but this seems to be only an assump-
tion of theirs. Therefore, in the model of physical necessity, for any world w,
there is to be a world w′ accessible from w and such as there is no physical
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necessary formulas in w′. Such a world is called Heimson World for the given
world w (that is way the system presented is called HW) [1, p. 238–245].

It may be noticed, if there are no necessitities in a world, there is no
reason there should be any world not accessible from it. So the existence of
the Heimson World for a world w may be represented as a world w′ satisying
two following conditions:

• w′ is accessible from w, because any physcically necessary formula of w
is—as it was said—true in w′;

• any world is accessible from w′, because no formula is physically necessary
in w′.

These conditions, however, give us the formula (15), and so HW-model is
claimed to be the model of physical necessity. But the system HW is sound
and complete, so it is claimed to be the very system of physical necessity
itself.

6. Discussion

Does system HW succeed in formalizing the concept of physical necessity?
We suggest not.

We think, the analyses described in the previous section are deep and
mostly correct. We agree that physically necessary formulas should be con-
sidered as true. And we find the construction of the concept of Heimson
World brilliant, although it needs further discussion regarding the accessi-
bility of the Heimson World, as it was mentioned. So, we think those as-
sumptions of the system HW analysed are correct, or at least approximately
correct.

However, there are some assumptions not analysed, in particular there is
the system K involved, that is the weakest normal system of modal logic. Can
it be justified that the concept of physical necessity satisfies the assumptions
of the system K, that is the axiom (6) and the rule of necessitation (8)?
Bigelow and Pargetter say, these assumption be so basic, that they are shared
by any normal sense of modal connectives [1, 106]. However, is the concept
of physical necessity normal? It can be answered, the system K is satisfied by
any standard relational model. However, what makes us think, the model
of physical necessity be standard relational model? We think, there are
usually two reasons. The first one is formal simplicity and, one can even
say, a kind of inner perfection of normal modal logic and their relational
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models. But, we claim, it is not any philosophical argument. The other
reason involves the concept of physical necessities as relative necessities. If,
as it was mentioned, physical necessities are simply logical consequences of
the set of physical laws, then logical necessities are physical necessities, for
logical necessities are logical consequences of any set of premises, including
the empty set. But again, are physical necessities logical consequences of
physical laws? In our paper [6] we argue, it is not necessary to accept that
view. We sketch a theory, according to which the essential difference between
logical and physical necessity is the difference of truthmakers.

Let us so consider an example (33) of physical necessity. As we said,
under the equation it is physically impossible for an object with non-zero
rest mass to move at the speed of light in vacuum. Let us write for it:

(34) 2¬(v = c)

for an established object. Futhermore, the equation (33) gives the reason
for (34). Again, as it was said (34) obtains because if any such object had
move at the speed of light, it would have had infinitely big mass:

(35) 2(v = c → m = ∞)

However, is well known, that the formula

(36) 2¬φ → 2(φ → ψ)

which is one of, so called, paradoxes of the strict implication is a theorem of
any normal modal logic. So it is a theorem of the system HW. The proof of
that fact is obvious. Under the formula (36) both, (35) and

(37) 2(v = c → m 6= ∞)

obtain. We will try to argue, it is not acceptable for physical modalities.
Theorem (36) is a modal version of the classical law of Duns Scotus. The

last law claims, any proposition to follow from a contradiction. As it was
said, logical modalities are closely linked with the concept of consistency and
inconsistency. But is so the case for physical modalities?

As it was said, an essential feature of the method of empirical sciences
is to include idealizations. Physical laws describe some situations physically
impossible, for example what would have happened, if any non-zero mass
object had moved at the speed of light in vacuum. And there are physical
laws that describe situation of the kind, furthermore the laws govern those
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situations with physical necessity. Those laws are—as each physical law—
justified on empirical way, including even sophisticated experiments. When
preparing experiments a scientist aims to create circumstances as similar to
those physically impossible circumstances, that are to be described by the
law, as he is able to. Hence, (34) (35) are true and (37) is false. The formula
(37) cannot ever it be empirically confirmed.

To sum up, we claim, the adequate logic of physical (nomic) necessity
is not any normal system of modal logic. Nevertheless, we think that the
system HW is very interesting. It is interesting formally (and still not so
involved). It is also philosophically interesting logic, because, even if we
question the assumptions taken from the system K, there still are axioms
(5) and (6) and important analyses suggesting the formulas in question to
formalize important features of physical modalities.
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