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CHANGING ONE’S POSITION IN A DISCUSSION —

SOME ADAPTIVE APPROACHES
†

Abstract. This paper contains different approaches to solve the problem how

to construct the ultimate position out of one’s interventions in a discussion after

possibly one or more position changes. In all approaches it is the aim to come

as close as possible to human reasoning. Therefore all logics are adaptive logics.

The first logic is an extension of an adaptive translation into S5 of the Rescher-

Manor mechanisms. The second one is a dynamic proof theory based on a

technique using indices. In the end a satisfactory solution is given by a dynamic

proof theory expressing the idea of prioritized compatibility, i.e. compatibility

step by step.

1. Introduction

Apparently the position of someone in a discussion equals the consequence
set of all statements he made during that discussion. Is this consequence set
really the best representation for all there is to conclude from the sequence of
his interventions? Next to the contents of the interventions, the sequence also
contains an ordering in time. This could be more important than it seems
at first sight, for there could have been an evolution in the participant’s
position.

The interesting point of a discussion is the confrontation with other posi-
tions and the possibility to become convinced by arguments in favour of the
latter. So the temporal aspect of a discussion should not be ignored for it is
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crucial information necessary to interpret the dynamics of a participant’s po-
sition and therefore to interpret his ultimate position. This means we have to
consider a person’s interventions as forming a prioritized inconsistent base.1

A technique introduced and elaborated by N. Rescher and R. Manor appro-
priate to this context is reasoning from consistent parts of the inconsistent
whole. I shall call these mechanisms Rescher-Manor mechanisms.

Different approaches relevant to this situation are presented in [3]. The
aims of this paper are first to make the Rescher-Manor mechanisms adaptive
so that they link up better with human reasoning, second to extend these
mechanisms in the hope that it brings a significant enrichment and third
to look for other adaptive strategies that could be more efficient for the
case of rational discussions. I shall restrict my attention to three types of
RM consequences (to be defined in section 3). I shall translate them to the
semantics of the modal logic S5 in section 4, so they are made adaptive.
The first idea is to incorporate the RM consequences in the context of the
discussive logic D2r Joke Meheus introduced in [4]. It comes down to making
a selection on the models, this technique is already used in [1], here it will be
in section 5. Section 6 is an introduction to dynamic proof theories2. Two
such proof theories are presented here for the case of rational discussions.
The first one is based on a technique using indices that is developed in [5].
It is presented in section 7, applied in section 8 and commented in section
9. The second one is an elaboration of prioritized compatibility. After the
presentation in section 10 and the application in section 11, it is evaluated
and found to be an acceptable solution to the problem in section 12. First
I shall give some examples to get a picture of the problem.

2. Some examples

We use an ordered set Σ = 〈Γ1, Γ2, . . . , Γn〉 of sets Γi to list all the statements
made in the ith intervention.

2.1. Σ = 〈{p}, {∼q}, {q}, {∼p ∨ ∼q ∨ r}〉

We can see the speaker changed his opinion about q. Taking this into ac-
count, r is a consequence of the last intervention and should be a definite
consequence.

1This situation is mentioned as an open problem in [1].
2 Dynamic proof theories are the proof theories of adaptive logics, see [2].
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2.2. Σ = 〈{p}, {p ⊃ q}, {∼p}〉
Here it is obvious we should assume the person changed his opinion about
p, but what about q ? From the first two interventions one can conclude
q. The third intervention does not give any information about q. It can
be discussed wether we should keep q or not. However in case of a rational
discussion, one of the arguments for q is contradicted in the end and there
is no other reason proposed to confirm q.

2.3. Σ = 〈{r ∧ s}, {s ⊃ t}, {∼r}〉
We should lose r from r ∧ s because later ∼r is stated, but we should not
lose s (and t) of course. So we should hold the consequences of r∧s that are
not in contradiction with later interventions. In some cases this principle
needs some refinement, as explained in example 4.

2.4. Σ = 〈{∼p}, {p}〉
Although ∼p∨q is a consequence of ∼p that is not contradicted by p, together
with p one can derive q. Obviously it is ridiculous to believe q is really implied
by the participant’s statements. What is the matter here is that disjunctive
syllogism should not be applied here for the reason that p is unreliable (in
the context of adaptive logics).

2.5. Σ = 〈{p}, {∼p ∧ q}, {∼q}〉
It is clear the speaker changed his position twice and the definite conclusions
should be ∼p and ∼q.

2.6. Σ = 〈{p}, {∼p ∧ q}, {∼q}, {r}〉
The only difference with the example above is the extra premise r in the
end. We shall see that the interpretation of the other premises depends for
some consequence relations on whether or not r is added.

2.7. Σ = 〈{p ∧ q}, {p ⊃ r, q ⊃ ∼r}〉
We can not believe p ∧ q is still the opinion of the speaker at the moment
he claims p ⊃ r and q ⊃ ∼r, because we then would have equally acceptable
arguments for both r and ∼r. So though p∧q is not literally contradicted, we
should reject it because it has inconsistent consequences together with later
made statements. What is a more interesting problem is whether we should
keep at least one of them. In this situation both are equally acceptable, thus
we should keep the disjunction p ∨ q.

2.8. Σ = 〈{p}, {q}, {p ⊃ r, q ⊃ ∼r}〉
This is a different situation, because p and q are not claimed at the same
time. Here it could be reasonable to reject p because it was the earliest
statement of those that cause an inconsistency.
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2.9. Σ = 〈{p, p ⊃ q}, {s}, {∼(q ∧ s)}〉

Here a connected inconsistency occurs, at least one of q and s behaves in-
consistently. The priority makes us conclude that q should be false. The
arguments for q, p and p ⊃ q, are then no longer together acceptable ei-
ther. p is not really contradicted, thus maybe we should keep p, but the
same argument goes for p ⊃ q. As both have the same priority, it would
be acceptable to keep the disjunction p ∨ (p ⊃ q), which does not give any
information.

2.10. Σ = 〈{p}, {p ⊃ q}, {∼q}〉

One thing is sure, namely that ∼q is the case. As q is contradicted, the
arguments p and p ⊃ q are no longer together acceptable either, as in the
previous example. Here it is less plausible p was meant to be kept than p ⊃ q

was, because p ⊃ q was stated after p was. Keeping p ⊃ q implies also ∼p.

3. Some Rescher-Manor(-like) consequences

The set of premises Σ is an ordered set of sets, say Σ = 〈Γ1, Γ2, ..., Γn〉, where
Γi precedes Γj iff i < j. We assume that each Γi is a consistent set of well
formed formulas belonging to the standard predicative language L. We call
a set of the form Σ consistent iff ∪Σ is a consistent set.

A maximal consistent subset S of Σ is a consistent subset of Σ such that
it is not contained in a larger consistent subset of Σ. We shall denote it as
MCS.

Here we give the definitions of the three consequence relations we shall
consider: the P -consequence relation, the π-consequence relation and the
λ-consequence relation. For a set of the form of Σ we write Σ ⊢CL A instead
of ∪Σ ⊢CL A and later we shall also use this abbreviation in the context of
models.

Definition 1. Σ ⊢P A iff ∆ ⊢CL A for all MCS ∆ of Σ such that Γn ∈ ∆.

Definition 2. The set π is the consistent subset of Σ of the form {Γi, Γi+1,

..., Γn} such that {Γi−1, Γi, ..., Γn} is not consistent. Σ ⊢π A iff π ⊢CL A.

Definition 3. The set λ is the MCS one obtains by starting from π and
step by step adding or not adding the previous intervention depending on
wether or not it preserves consistency. Σ ⊢λ A iff λ ⊢CL A.3

3Remark that all P -consequences and all π-consequences are λ-consequences.
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The P -consequence relation is most efficient when the participant sum-
marizes his viewpoint in the end. All statements made before are handled
equally, none of them is a priori more important than any other. Of course
this situation is not the general course of a discussion.

The π-consequence relation is useful in a situation in which the partic-
ipant changes his viewpoint very suddenly and radically, probably because
he was not prepared for the discussion. The π-consequence relation will not
take into account the statements made before the turning point. This is not
a very realistic scenario of a discussion either.

In general the λ-consequence relation gives the best results. You can see
it works good in example 1 whereas the other consequence relations do not.
There q is not a P -consequence and p is not a π-consequence, but both are
λ-consequences. Notice that q is a π-consequence and p a P -consequence,
which illustrates none of these two consequence relations is better than the
other.

Example 5 shows a situation in which the π-consequence relation is better
than the λ-consequence relation, because the latter derives p undeserved
whereas the former does not. Rather surprisingly example 6 has different P -
consequences than example 5, nothing about p or q is P -derivable in example
6. That p is an undeserved λ-consequence in this example shows the λ-
consequence relation is not always more adequate than the P -consequence
relation. Thus we can conclude none of the three is efficient, nor is any of
them more efficient than another one.

4. Translation to S5

Let Fp be the set of primitive formulas of L, L being the standard language
of Classical Logic, henceforth abbreviated as CL. A standard CL-model is
represented by a domain D and an assignment function v and is symbolized
as M = 〈D, v〉. To simplify the semantic meta-language, a non-denumerable
set of pseudo-constants O is introduced, requiring that any element of the
domain D is named by at least one member of C ∪ O:

v : C ∪ O −→ D, where D = {v(α)|α ∈ C ∪ O}.

Through this operation we obtain the pseudo-language L+. The standard
modal language LM is extended to LM+ in the same way.

A S5-model is a triple M = 〈W,D,V 〉, where W is a set of CL-models
or worlds w, D is the domain of all these worlds and V the set of valua-
tion functions vw determined by these worlds. The valuation function vM

determined by a S5-model M has also a second argument, namely a world
w ∈ W , and is defined by the following clauses:
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C1 where A ∈ Fp, vM (A,w) = vw(A)
C2 vM (∼ A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨ B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM ((∃α)A(α), w) = 1 iff vM (A(β), w) = 1 for at least one β ∈ C ∪ O
C5 vM (3A,w) = 1 iff vM (A,w′) = 1 for at least one w′ ∈ W .

The other logical constants are defined as usual. First we define some useful
selections of S5 models of Σ⋄ = 〈Γ⋄

1, ..., Γ⋄

n〉 where {A1, ..., An}⋄ denotes the
set {3A1, ...,3An}.

Definition 4. A S5-model M = 〈W,D,V 〉 is a MA-model of Σ⋄ iff it is a
S5-model of which every world verifies a MCS of Σ.

Definition 5. A MA-model M = 〈W,D,V 〉 is a RM-model of Σ⋄ iff it is a
MA-model such that each MCS of Σ is verified by some world of W .4

Definition 6. For a S5-model M = 〈W,D,V 〉 and w ∈ W : AbΣ(w) =
{Γi ∈ Σ | v(A,w) = 0 for some A ∈ Γi} .

Definition 7. A CL-model M is maximally normal with respect to Σ iff for
all 1 ≤ i ≤ n there is no CL-model M ′ such that AbΣ(M ′)∩(Γi∪. . .∪Γn) = ∅
and AbΣ(M) ∩ (Γi ∪ . . . ∪ Γn) 6= ∅.

4.1. The P -consequence relation

Where M = 〈W,D,V 〉 is a S5-model and w ∈ W , extend the S5-semantics
with the clause 5:

v(2nA,w) = 1 iff v(A,w′) = 1 for all w′ ∈ W such that Γn 6∈ AbΣ(w′).

Then we can define

Definition 8. Σ |=S5P A iff Σ3 |=MA 2nA.

Theorem 1. For A modality-free, Σ ⊢P A iff Σ |=S5P A.

Proof. By Definition 8, Σ |=S5P A iff Σ3 |=MA 2nA. M is a MA-model
of Σ3 iff each world of M verifies a MCS of Σ. In view of the semantic
definition of 2n, it follows that Σ3 |=MA 2nA iff there is no CL-model
that verifies a MCS containing Γn in which ∼A is true. This means ∼A is
incompatible with the MCS of Σ that contain Γn. In terms of the classic
consequence relation this is translated to: ∆ ⊢CL A whenever ∆ is a MCS
of Σ and Γn ∈ ∆. By Definition 1, the latter is equivalent to Σ ⊢P A.

4Notice that a RM -model can contain different worlds that verify the same MCS.
5We will use the same notations for the extended systems of S5.
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4.2. The π-consequence relation

Where M = 〈W,D,V 〉 is a S5-model and w ∈ W , extend the S5-semantics
with the clause:

v(2πA,w) = 1 iff v(A,w′) = 1 for all w′ ∈ W that are maximally
normal with respect to Σ.

Then we can define

Definition 9. Σ |=S5π A iff Σ3 |=S5 2πA.

Theorem 2. For A modality-free, Σ ⊢π A iff Σ |=S5π A.

Proof. By Definition 9, Σ |=S5π A iff Σ3 |=S5 2πA. In view of the semantic
definition of 2π, it follows that Σ3 |=S5 2πA iff there is no CL-model that
verifies π in which ∼A is true. This means ∼A is incompatible with π. In
terms of the classic consequence relation this is translated to: π ⊢CL A. By
Definition 2, the latter is equivalent to Σ ⊢π A.

4.3. The λ-consequence relation

Where M = 〈W,D,V 〉 is a S5-model and w ∈ W , extend the S5-semantics
with the clause:

v(2λA,w) = 1 iff v(A,w′) = 1 for all w′ ∈ W such that the following
holds:
for all w′′ ∈ W and for all 2 ≤ i ≤ n, if AbΣ(w′′) ∩ (Γi ∪ . . . ∪ Γn) =
AbΣ(w′)∩(Γi∪. . .∪Γn) and AbΣ(w′′)∩Γi−1 = ∅, then AbΣ(w′)∩Γi−1 =
∅.

Then we can define

Definition 10. Σ |=S5λ A iff Σ3 |=RM 2λA.

Theorem 3. For A modality-free, Σ ⊢λ A iff Σ |=S5λ A.

Proof. By Definition 10, Σ |=S5λ A iff Σ3 |=RM 2λA. In view of the
semantic definition of 2λ, it follows that Σ3 |=RM 2λA iff there is no CL-
model that verifies λ in which ∼A is true. This means ∼A is incompatible
with λ. In terms of the classic consequence relation this is translated to:
λ ⊢CL A. By Definition 3, the latter is equivalent to Σ ⊢λ A.
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5. A selection on the models

First we define the unreliable formulas of a set of premises. Let Fp denote the
set of primitive formulas and let Dab(A1, ..., An) be a notation for ∃(3A1 ∧
3∼A1)∨ . . .∨∃(3An ∧3∼An), for A1, ..., An elements of Fp and where ∃A

stands for the existential quantification over all free variables occurring in A6.
Each Ai is called a factor of the Dab-consequence. Note that a permutation
of the factors results in an equivalent formula, so it is appropriate to use
sets as argument for Dab(). Dab(Θ) is a minimal Dab-consequence of Σ iff
it is a S5-consequence of Σ⋄ and any Dab(∆) for which ∆ ⊂ Θ is not a
S5-consequence of Σ⋄.

Definition 11. U(Σ) = {A | A is a factor of a minimal Dab-consequence
of Σ} .

In the models we want to keep, only the unreliable formulas will be
allowed to behave abnormally, that is to have both their confirmation and
their negation possible in the model. Therefore we define the abnormal part
of a model:

Definition 12. Ab(M) = {A ∈ Fp | M |= ∃(3A ∧ 3∼A)}.

Definition 13. M is a S5⋆-model of Σ⋄ iff M is a S5-model of Σ⋄ and
Ab(M) ⊆ U(Σ).

Definition 14. M is a MA⋆-model of Σ⋄ iff M is a MA-model of Σ⋄ and
Ab(M) ⊆ U(Σ).

Definition 15. M is a RM ⋆-model of Σ⋄ iff M is a RM -model of Σ⋄ and
Ab(M) ⊆ U(Σ).

Definition 16. Σ |=S5P⋆ A iff Σ⋄ |=MA⋆ 2nA.

Definition 17. Σ |=S5π⋆ A iff Σ⋄ |=S5⋆ 2πA.

Definition 18. Σ |=S5λ⋆ A iff Σ⋄ |=RM
⋆ 2λA.

Now we can define the extended consequence relations:

Definition 19. Σ ⊢P ⋆ A iff Σ |=S5P⋆ A.

Definition 20. Σ ⊢π⋆ A iff Σ |=S5π⋆ A.

6The abbreviation Dab stands for disjunction of abnormalities.
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Definition 21. Σ ⊢λ⋆ A iff Σ |=S5λ⋆ A.

Let us see what is gained by this extra selection in the examples of section
2. All three consequence sets are more complete in example 3 (s and t are
held), whereas only the π⋆-consequence set is more complete in example 1 as
well (p is retained). There is an overall improvement for some consequences
of lost premises (e.g. in example 3 for the simplification of a conjunction),
but not in all situations (e.g. not for example 5). The most problematic
examples are probably the fifth and the sixth. Only the π-consequence
relation in example 5 and the P -and π-consequence relations in example
6 did not derive p, which means that here the P -and the λ-consequence
relations have serious shortcomings, but unfortunately the extension can
not save anything. Also in examples 7, 8, 9 and 10, the extension gives no
extra consequences, because all occurring primitive formulas are unreliable.

The greatest defect of the Rescher-Manor approach seems to be that it
does not care about losing all consequences of rejected premises, although
not all consequences lead to inconsistencies with the consequences of the
other not rejected premises. Apparently it was too late here to make a
saving adaptive move. So maybe we should try another approach.

6. Intro to dynamic proof theories

Dynamic proof theories are designed to be a more faithful representation of
human reasoning and also to describe reasoning processes for undecidable
problems. Their main characteristic is that a conclusion can be revised when
necessary, that is when insight in the premises has increased in such a way
that the conclusion can no longer be sustained. The tool used to express
revision is marking.

The rules for a dynamic proof can be grouped in three sorts: the premise
rule(s), the unconditional rule(s) and the conditional rule(s). All can be
applied at any time, but not all applications remain valid. A line derived
at a certain stage of the proof on a certain condition is marked when the
condition is not or no longer fulfilled. Of course when the condition is fulfilled
at a later stage, the line is again unmarked. In most dynamic proofs (here
also) marked lines do not belong to the proof any more.

A line in a dynamic proof consists of five elements: (i) the line number,
(ii) the formula derived on that line, (iii) the numbers of the lines used to
derive the second element, (iv) the rule applied to derive the second element
and (v) the fifth element referring to the condition on which the second
element is derived. What is considered as finally derived in a dynamic proof
is stated by the following.
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Definition 22. A formula A is finally derived at line i at stage s of a proof
iff line i is not marked at stage s and any extension of the proof in which line
i is marked, may be further extended in such a way that line i is unmarked.

7. A solution with indices

In [5] indices are used to handle theories that are inconsistent due to the
ambiguity of some expression occurring in it. The idea of indexing and af-
terwards leaving out again the indices on certain conditions will be used here
too. The purpose is not to interpret ambiguities, but to interpret changes
of opinion. In the end, the formulas without indices in the proof should
represent the ultimate position of the speaker.

Let Σ = 〈Γ1, Γ2, ..., Γn〉 be the set of interventions as before. Assume
again that each Γi is consistent itself. ΣI is constructed as follows. First
all formulas in each Γi are transformed in such a way that only primitive
formulas occur under the scope of a negation7. Then to every primitive
formula occurring in a member of Γi, the index i is given. For example 2.9
ΣI is 〈{p1,∼p1∨q1}, {s2}, {∼q3∨∼s3}〉. It is obvious that ΣI is consistent.
Thus there is no danger in using CL to reason from ΣI .

PREM If A ∈ ∪ΣI , one may add a line consisting of (i) the appropriate
line number, (ii) A, (iii) a dash, (iv) PREM, and (v) ∅.

RU If B1, . . . , Bm ⊢CL A, and B1, . . . , Bm occur in the proof on the con-
ditions ∆1, . . . , ∆m respectively, then one may add a line consisting of
(i) the appropriate line number, (ii) A, (iii) the numbers of the lines
on which the Bi are derived, (iv) RU, and (v) ∆1 ∪ . . . ∪ ∆m.

Real inconsistencies can not be derived in this way, but disguised incon-
sistencies can. The latter are formulas that would be inconsistencies if the
indices were left out. For example 2.9, (p1 ∧∼p1)∨ (q1 ∧∼q3)∨ (s2 ∧∼s3) is
CL-derivable from ΣI and is a disguised disjunction of contradictions. Let
P 1, . . . , Pm be primitive formulas. The general format of disguised incon-
sistencies is ∃(P 1

i1
∧ ∼P 1

j1
) ∨ . . . ∨ ∃(Pm

im
∧ ∼Pm

jm
), where ∃A stands for the

existential quantification over all free variables occurring in A. If Θ1 is the set
{P k

ik
| ik < jk}∪ {∼P k

jk
| jk < ik} and Θ2 is the set {P k

ik
| ik ≥ jk}∪ {∼ P k

jk
|

jk ≥ ik}, we shall note Din(Θ1, Θ2) for ∃(P 1
i1
∧∼P 1

j1
)∨ . . .∨∃(Pm

im
∧∼Pm

jm
)8.

Let def (Θ1) then be the set of the atoms in Θ1 of which the primitive

7An implication should be written as a disjunction.
8The abbreviation Din stands for disguised inconsistency.
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formulas have the lowest index in Θ1 and let saf (Θ1) then be the set of
the atoms in Θ1 that occur in conjunction in the Din-formula with atoms
in Θ2 of which the primitive formulas have the highest index in Θ2. A
Din-formula Din(Θ1, Θ2) will be minimal at a stage of the proof iff no Din-
formula Din(∆1, ∆2) is derived at that stage for which (∆1∪∆2) ⊂ (Θ1∪Θ2).
For example 2.9 not only (p1∧∼p1)∨ (q1∧∼q3)∨ (s2∧∼s3) is CL-derivable,
but also (q1 ∧ ∼q3) ∨ (s2 ∧ ∼s3) is. The latter- if derived in the proof- is a
minimal Din-formula. It are those minimal Din-formulas that will indicate
which indices may be left out and which formulas should be considered as
representing the ultimate opinion of the speaker.

Deleting an index will be a conditional step at any stage of the proof,
because at a later stage new Din-formulas can be derived that indicate that
certain indices can not be deleted. Before leaving out the indices of a formula,
again the special form is required in which only primitive formulas occur
under the scope of a negation. For every deletion of an index, the atom of
which the primitive formula loses its index is added to the condition. For
every new derivation, the conditions of the used lines are carried over.

RC If B occurs in the proof on the condition Θ and there occurs an atom
A in B of which the primitive formula is indexed, then one may add
a line consisting of (i) the appropriate line number, (ii) the formula
obtained from B by replacing all occurrences of A outside the scope
of a negation by A with the index left out, (iii) the number of the line
on which B is derived, (iv) RC, and (v) Θ ∪ {A}.

How the Din-formulas should interfere with the conditional derivations,
can be approached in several useful ways. The reliability strategy is the one
in which every possible abnormality (disjunct of a minimal Din-formula) is a
reason not to omit certain indices. The minimal abnormality strategy is the
one in which a minimal set of abnormalities obstructs the unindexing. The
defeasibility strategy is the one in which only the most defeasible formulas
can not lose their indices. The safety strategy is a little different because it
depends on the defeating formulas instead of the defeated ones. It is the one
in which only the most strongly defeated formulas keep their indices.

First we introduce some sets. Let Mins(Σ) be the set of Θ1 for which
Din(Θ1, Θ2) for some Θ2 is a minimal Din-formula derived unconditionally
at stage s of the proof. Now we can define the set Φs(Σ). Let the sets φi

contain at least one element from each member of Mins(Σ). Φs(Σ) is the set
of those φi that are not supersets of any other φi.
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The marking definitions are the following:

• for reliability: a line on condition Θ is marked at a stage s of the proof
iff there is a Θ1 ∈ Mins(Σ) for which Θ1 ∩ Θ 6= ∅.

• for minimal abnormality: a line on which A is derived on condition Θ
is marked at a stage s of the proof iff there is no φ ∈ Φs(Σ) such that
Θ ∩ φ = ∅ or there is a φ ∈ Φs(Σ) such that there is no line on which
A is derived on a condition Θ′ for which Θ′ ∩ φ = ∅.

• for defeasibility: a line on condition Θ is marked at a stage s of the
proof iff there is a Θ1 ∈ Mins(Σ) for which def (Θ1) ∩ Θ 6= ∅.

• for safety: a line on condition Θ is marked at a stage s of the proof iff
there is a Θ1 ∈ Mins(Σ) for which saf (Θ1) ∩ Θ 6= ∅.

Let us call these proof theories POCHI1, POCHI2, POCHI3 and
POCHI4. I give only the definition for the reliability approach, the other
ones are completely analogous.

Definition 23. Σ ⊢POCHI1 A iff A is finally derived in a POCHI1-proof
from ΣI .

The consequence relations to interpret the ultimate position of the speaker
will be called ⊢POCH1, ⊢POCH2, ⊢POCH3 and ⊢POCH4.

Definition 24. Σ ⊢POCH1 A iff Σ ⊢POCHI1 A and A is free of indices.

It is clear that the consequence sets of Σ for POCH1, POCH2, POCH3

and POCH4 are consistent and closed under CL.

8. Examples

8.1. ΣI = 〈{p1}, {∼q2}, {q3}, {∼p4 ∨ ∼q4 ∨ r4}〉
The only minimal Din-formula is (∼q2∧q3). In all approaches all premises ex-
cept ∼q2 may be used without indices and the CL-consequences of {p, q, r}
are the consequences.

8.2. ΣI = 〈{p1}, {∼p2 ∨ q2}, {∼p3}〉
The only minimal Din-formula is (p1 ∧ ∼p3). In all approaches the CL-
consequences of ∼p are the consequences.

8.3. ΣI = 〈{r1 ∧ s1}, {∼s2 ∨ t2}, {∼r3}〉
The only minimal Din-formula is (r1 ∧ ∼r3). In all approaches the CL-
consequences of {s, t, ∼r} are the consequences.
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8.4. ΣI = 〈{∼p1}, {p2}〉

The only minimal Din-formula is (∼p1 ∧ p2). In all approaches the CL-
consequences of p are the consequences.

8.5. ΣI = 〈{p1}, {∼p2 ∧ q2}, {∼q3}〉

The minimal Din-formulas are (p1 ∧∼p2) and (q2 ∧∼q3). In all approaches
the CL-consequences of {∼p, ∼q} are the consequences.

8.6. ΣI = 〈{p1}, {∼p2 ∧ q2}, {∼q3}, {r4}〉

The consequences only differ from the ones of the previous example in that
r is added to {∼p, ∼q}.

8.7. ΣI = 〈{p1 ∧ q1}, {∼p2 ∨ r2, ∼q2 ∨ ∼r2}〉

The Din-formula (p1∧∼p2)∨(q1∧∼q2)∨(r2∧∼r2) is derivable, but it is not
a minimal Din-formula. The disjunct (r2 ∧∼r2) can be omitted, because it
is a real contradiction and in CL everything is derivable in that case. The
only minimal Din-formula is (p1 ∧∼p2) ∨ (q1 ∧∼q2). For the reliability, the
defeasibility and the safety strategy, the lines in the proof that have p1 or
q1 in their condition, are marked. For the minimal abnormality strategy the
situation is different. Formulas that are derived on a condition that does
not contain p1 and on possibly another condition that does not contain q1

are saved. An illustration of a POCHI2-proof from ΣI follows.

1 p1 ∧ q1 - PREM ∅
2 ∼p2 ∨ r2 - PREM ∅
3 ∼q2 ∨ ∼r2 - PREM ∅
4 (p1 ∧ ∼p2) ∨ (q1 ∧∼q2) 1, 2, 3 RU ∅
5 p1 1 RU ∅
6 p1 ∨ q 5 RU ∅
7 p ∨ q 6 RC {p1} (

√
)

8 q1 1 RU ∅
9 p ∨ q1 8 RU ∅
10 p ∨ q 9 RC {q1}
11 ∼p ∨ r 2 RC {∼p2, r2}
12 ∼q ∨ ∼r 3 RC {∼q2, ∼r2}
13 ∼p ∨ ∼q 11, 12 RU {∼p2, r2, ∼q2, ∼r2}
14 (p ∧∼q) ∨ (∼p ∧ q) 10, 13 RU {q1, ∼p2, r2, ∼q2, ∼r2} (

√
)

15 (p ∧∼q) ∨ (∼p ∧ q) 7, 13 RU {p1, ∼p2, r2, ∼q2, ∼r2}
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Line 7 is derived as a marked line. As soon as line 10 is derived, line 7 is
unmarked. Line 14 is also derived as a marked line, but it is unmarked when
line 15 is derived. p∨q and (p∧∼q)∨(∼p∧q) are both POCH2-consequences
of Σ that are not consequences for any of the other strategies.

8.8. ΣI = 〈{p1}, {q2}, {∼p3 ∨ r3, ∼q3 ∨ ∼r3}〉
The only minimal Din-formula here is (p1 ∧ ∼p3) ∨ (q2 ∧ ∼q3). For the
reliability, the minimal abnormality and the safety strategy, the results are
the same as in the previous example. For the defeasibility approach, the
situation is different. Only lines that have p1 in their condition are marked.
Let us look at a POCHI3-proof from ΣI .

1 p1 - PREM ∅
2 q2 - PREM ∅
3 ∼p3 ∨ r3 - PREM ∅
4 ∼q3 ∨ ∼r3 - PREM ∅
5 (p1 ∧ ∼p3) ∨ (q2 ∧∼q3) 1-4 RU ∅
6 p 1 RC {p1}

√

7 q 2 RC {q2}
8 ∼p ∨ r 3 RC {∼p3, r3}
9 ∼q ∨ ∼r 4 RC {∼q3, ∼r3}
10 ∼r 7, 9 RU {q2, ∼q3, ∼r3}
11 ∼p 8, 10 RU {∼p3, r3, q2, ∼q3, ∼r3}

Line 6 is a marked line and is never unmarked. q, ∼r and ∼p are all POCH3-
consequences of Σ that are not consequences for any of the other strategies.

8.9. ΣI = 〈{p1, ∼p1 ∨ q1}, {s2}, {∼q3 ∨∼s3)}〉
The only minimal Din-formula here is (q1 ∧ ∼q3) ∨ (s2 ∧ ∼s3). For every
strategy p will be a consequence. For the reliability and the safety strategy,
q1 in a condition and s2 in a condition leads to marking. For the minimal
abnormality strategy, formulas that are derived on a condition that does not
contain q1 and on another condition that does not contain s2, are saved.
For example q ∨ s and (q ∧ ∼s) ∨ (∼q ∧ s) are POCH2-consequences of Σ.
For the defeasibility strategy, only lines that have q1 in their condition are
marked. For example s and ∼q are POCH3-consequences of Σ that are not
consequences for any of the other strategies.

8.10. ΣI = 〈{p1}, {∼p2 ∨ q2}, {∼q3}〉
The only minimal Din-formula is (p1 ∧ ∼p2) ∨ (q2 ∧ ∼q3). The results for
the reliability and the minimal abnormality strategy are the same. Only ∼q
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and its CL-consequences are POCH1, resp. POCH2-consequences of Σ.
For the defeasibility strategy ∼q and ∼p are finally derivable, whereas for
the safety strategy ∼q and p are finally derivable.

9. Comparing the strategies

In example 7 the minimal abnormality strategy gives the most acceptable
result. For examples 8, 9 and 10, the best results are obtained by the
defeasibility strategy. Whether the safety strategy can be the most efficient,
we can not see from these examples, but we can imagine another one.

Σ = 〈{q ⊃ ∼s, q ⊃ p}, {q}, {s}〉

ΣI = 〈{∼q1 ∨ ∼s1, ∼q1 ∨ p1}, {q2}, {s3}〉

The only minimal Din-formula is (∼q1 ∧ q2) ∨ (∼s1 ∧ s3). Here the safety
strategy gives the most consequences: CnCL({s, q, p}). The reliability
strategy is clearly the least efficient and is in no situation preferable to the
other ones. Choosing one of the logics POCH2, POCH3 or POCH4 as
the best in all cases is impossible. In examples 7, 8 and 9, the consequence
set of the most efficient logic coincides with the richest consequence set. The
idea arises here that we have to choose for every situation the logic giving the
richest consequence set. This is also supported by the fact that in a rational
discussion one only reconsiders a conclusion when necessary, we should keep
as much as possible. We can suggest the following

Choice of the logic:

If there is an i ∈ {2, 3, 4} s.t. CnPOCHj(Σ) ⊆ CnPOCHi(Σ) for j ∈ {2, 3, 4},
then POCHi is the appropriate logic.

Unfortunately, there could be cases in which there is no such logic. The latter
is confirmed by example 10. Let us have a closer look at this situation.
Stating p, later p ⊃ q and eventually ∼q is not that transparent. In real
discussions it is even an obscure evolution. The speaker in question, let’s call
him Ché, does not tell us what was wrong with the arguments p and p ⊃ q.
This could of course be said by another participant. By not reacting Ché
implies his agreement. Maybe we should have incorporated the interventions
of the other participants on which Ché agrees. In the supposition we have
done so, the evolution is rather incomprehensible, but one is inclined to think
that rejecting p is the appropriate interpretation in view of the least priority.
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It is also worth mentioning that the POCH-logics handle this situation
differently when the arguments p and p ⊃ q are stated in the same inter-
vention. Then p1 and ∼p1 ∨ q1 are equivalent to (p1 ∧ ∼p1) ∨ (p1 ∧ q1).
Because of the consistency of CL, the latter is equivalent to p1 ∧ q1. We
can conclude that the intervention {p, p ⊃ q} gives the same results as the
intervention {p, q}. This occurs in example 9. Therefore p is a consequence
for all strategies, though it should not belong to the ultimate position of the
speaker.

In view of the above comments it is clear that these logics are an improve-
ment, but certainly not a satisfactory solution. It could possibly be more
efficient to proceed step by step by looking at each stage what is compatible
with the results of the previous stages.

10. Compatibility step by step

This idea could be handled semantically, but as it is my purpose to look after
representations of human reasoning, I shall only explain the proof theory.

The strategy here will be to consider step by step which consequences
of a lower level can be added to the previous considered levels. The aim
is to keep as much CL-consequences as possible, that is to keep all CL-
consequences that are compatible with the previous level. This is justified
by the fact that in a rational discussion one only reconsiders a conclusion
when necessary, as was mentioned before in section 9. As underlying logic
we take CL. Let Σ = 〈Γ1, Γ2, ..., Γn〉 be the set of interventions as before.
Now which should be the first level to be considered? If Γn is inconsistent,
we do not want to add all its CL-consequences of course. Therefore we shall
introduce a Γn+1 = ∅. From Γn+1 all CL-theorems are CL-derivable and no
inconsistencies are compatible with them.

It could be that premises are not compatible with the previous level.
Because here we do not want to change the form of the premises, we shall
have to introduce them conditionally. The condition will be an ordered set
containing the premise itself and the stage to which it belongs (the index of
the Γi to which it belongs).

PREM If A ∈ Γi, one may add a line consisting of (i) the appropriate line
number, (ii) A, (iii) a dash, (iv) PREM, and (v) {〈A, i〉}.

To have at each moment the possibility to derive CL-consequences, we
need an unconditional rule.
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RU If B1, . . . , Bm ⊢CL A, and B1, . . . , Bm occur in the proof on the con-
ditions ∆1, . . . , ∆m respectively, then one may add a line consisting of
(i) the appropriate line number, (ii) A, (iii) the numbers of the lines
on which the Bi are derived, (iv) RU, and (v) ∆1 ∪ . . . ∪ ∆m.

Now when should a line be marked? A line should certainly be marked
when it is not compatible with the previous level. Also the lines of which
the derivation is based on marked lines should be marked. In view of the
rules PREM and RU, a line should be marked when the condition contains
an element 〈A, i〉 for which ¬A is derived on a previous level. The level on
which a formula is derived can be formally defined as follows.

Definition 25. If A is derived on condition {〈B1, i1〉, . . . , 〈Bm, im〉}, then
the level of this derivation is min{i1, . . . , im}.

It could also be that some formulas are compatible with the previous
level, but that they are not jointly compatible with it! In that case the
disjunction of the negations of these formulas is derivable on the previous
level. To recognize such a situation it is necessary to check whether the
disjunction of negations is minimal (at that or a higher level), that is whether
no disjunction of a subset of these negations is derivable at that or a higher
level.

Definition 26. ¬A1 ∨ . . . ∨ ¬Am (we shall write Don(A1, . . . , Am)) is a
minimal disjunction of negations of level i at stage s iff at stage s,
¬A1 ∨ . . . ∨ ¬Am is derived at level i on an unmarked line and for no Θ ⊂
{A1, . . . Am}, Don(Θ) is derived at stage s at a level higher than or equal
to i.

Definition 27. If at stage s, 〈B1, i〉, . . . , 〈Bm, i〉 all occur in conditions
of lines in the proof and Don({B1, . . . , Bm}) is a minimal disjunction of
negations of a level higher than i, then all lines containing such a 〈Bj , i〉 for
some 1 ≤ j ≤ m in their condition are marked.

This is already something, but our aim is not yet completely achieved.
There may be consequences of marked premises that are compatible (also in
the broad sense) with the previous level. These must be saved in some way.
The most straightforward way to do this is to introduce these formulas on
their own conditions, as we did for the premises. Now not only consequences
of a single marked line should be considered, but also consequences of several
marked and unmarked premises of the same level.
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RC If B1, . . . , Bm ⊢CL A, and B1, . . . , Bm occur in the proof on marked
or unmarked lines with the conditions {〈B1, i〉}, . . . , {〈Bm, i〉} respec-
tively, then one may add a line consisting of (i) the appropriate line
number, (ii) A, (iii) the numbers of the lines on which the Bi are
derived, (iv) RC, and (v) {〈A, i〉}.

We shall call this logic PCOM, referring to prioritized compatibility.

Definition 28. Σ ⊢PCOM A iff A is finally derived in a PCOM-proof from
Σ.

It is again clear that the consequence set of Σ for PCOM is consistent
and closed under CL.

11. Examples

11.1. Σ = 〈{p}, {∼q}, {q}, {∼p ∨∼q ∨ r}〉
Let us have a look at a proof and see the interaction between RC and the
marking, i.e. the marking of applications of RC.

1 p - PREM {〈p, 1〉} √

2 ∼q - PREM {〈∼q, 2〉} √

3 q - PREM {〈q, 3〉}
4 ∼p ∨ ∼q ∨ r - PREM {〈∼p ∨ ∼q ∨ r, 4〉}
5 ∼q ∨ ∼p 2 RC {〈∼q ∨ ∼p, 2〉}
6 ∼p 3, 5 RU {〈q, 3〉, 〈∼q ∨ ∼p, 2〉}

Line 2 was already marked from the introduction of line 3. At this stage
line 1 gets marked, though it looks rather obscure to do so. The point is
that by the application of RC some arbitrariness sneaks in that should not
be handled as real information. This arbitrariness can be expressed by also
applying RC for the derivation of its counterpart. In this way the balance
is restored.

1 p - PREM {〈p, 1〉} (
√

)
2 ∼q - PREM {〈∼q, 2〉} √

3 q - PREM {〈q, 3〉}
4 ∼p ∨ ∼q ∨ r - PREM {〈∼p ∨ ∼q ∨ r, 4〉}
5 ∼q ∨ ∼p 2 RC {〈∼q ∨ ∼p, 2〉} √

6 ∼p 3, 5 RU {〈q, 3〉, 〈∼q ∨ ∼p, 2〉} √

7 ∼q ∨ p 2 RC {〈∼q ∨ p, 2〉} √

8 (q ∧ p) ∨ (q ∧ ∼p) 3 RU {〈q, 3〉}
9 ∼(∼q ∨ ∼p) ∨∼(∼q ∨ p) 8 RU {〈q, 3〉}
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10 ∼p ∨ r 3, 4 RU {〈q, 3〉, 〈∼p ∨∼q ∨ r, 4〉}
11 r 1, 10 RU {〈p, 1〉, 〈q, 3〉, 〈∼p ∨ ∼q ∨ r, 4〉}

As soon as line 9 is derived, the marking pattern changes. Lines 5, 6 and 7
are marked, line 1 is again unmarked and line 2 stays marked. The PCOM-
consequences of Σ are the CL-consequences of {p, q, r}.

11.2. Σ = 〈{p}, {p ⊃ q}, {∼p}〉
The PCOM-consequences of Σ are the CL-consequences of {∼p}.

11.3. Σ = 〈{r ∧ s}, {s ⊃ t}, {∼r}〉
The following proof illustrates the use of RC.

1 r ∧ s - PREM {〈r ∧ s, 1〉} √

2 s ⊃ t - PREM {〈s ⊃ t, 2〉}
3 ∼r - PREM {〈∼r, 3〉}
4 ∼(r ∧ s) 3 RU {〈∼r, 3〉}
5 r 1 RC {〈r, 1〉} √

6 s 1 RC {〈s, 1〉}
7 t 2, 6 RU {〈s ⊃ t, 2〉, 〈s, 1〉}

Line 1 gets marked by the derivation of line 4. Line 5 is derived as a marked
line in view of line 3. Thanks to RC s is derivable and can be used to derive
t. The PCOM-consequences of Σ are the CL-consequences of {∼r, s, t}.

11.4. Σ = 〈{∼p}, {p}〉
The PCOM-consequences of Σ are the CL-consequences of {p}.

11.5. Σ = 〈{p}, {∼p ∧ q}, {∼q}〉
The PCOM-consequences of Σ are the CL-consequences of {∼q,∼p}.

11.6. Σ = 〈{p}, {∼p ∧ q}, {∼q}, {r}〉
The PCOM-consequences of Σ are the CL-consequences of {r,∼q,∼p}.

11.7. Σ = 〈{p ∧ q}, {p ⊃ r, q ⊃ ∼r}〉
The following proof again illustrates the use of RC.

1 p ∧ q - PREM {〈p ∧ q, 1〉} √

2 p ⊃ r - PREM {〈p ⊃ r, 2〉}
3 p ⊃ ∼r - PREM {〈p ⊃ ∼r, 2〉}
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4 ∼(p ∧ q) 2, 3 RU {〈p ⊃ r, 2〉, 〈p ⊃ ∼r, 2〉}
5 p 1 RC {〈p, 1〉} √

6 q 1 RC {〈q, 1〉} √

7 ∼p ∨ ∼q 4 RU {〈p ⊃ r, 2〉, 〈p ⊃ ∼r, 2〉}

Line 1 is marked by the derivation of line 4. Line 5 and 6 are marked by the
derivation of line 7. Note that the formulas derived on line 4 and line 7 are
equivalent, but the marking can only occur when the formula ∼(p∧q) is rec-
ognized as being equivalent to ∼p∨∼q. Thanks to RC the disjunction of the
two jointly incompatible formulas is derivable. The PCOM-consequences
of Σ are the CL-consequences of {(p ∧ ∼q) ∨ (∼p ∧ q)}.

11.8. Σ = 〈{p}, {q}, {p ⊃ r, q ⊃ ∼r}〉
The PCOM-consequences of Σ are the CL-consequences of {q,∼r,∼p}.

11.9. Σ = 〈{p, p ⊃ q}, {s}, {∼(q ∧ s)}〉
The following proof illustrates the marking of premises of the same level that
are not jointly compatible.

1 p - PREM {〈p, 1〉} √

2 p ⊃ q - PREM {〈p ⊃ q, 1〉} √

3 s - PREM {〈s, 2〉}
4 ∼(q ∧ s) - PREM {〈∼(q ∧ s), 3〉}
5 ∼q 3, 4 RU {〈s, 2〉, 〈∼(q ∧ s), 3〉}
6 ∼(p ∧ (p ⊃ q)) 5 RU {〈s, 2〉, 〈∼(q ∧ s), 3〉}
7 ∼p ∨ ∼(p ⊃ q) 6 RU {〈s, 2〉, 〈∼(q ∧ s), 3〉}

Lines 1 and 2 are marked by the derivation of line 7. An equivalent formula
to the one derived on line 7 was already derived on line 6. The PCOM-
consequences of Σ are the CL-consequences of {s,∼q}.

11.10. Σ = 〈{p}, {p ⊃ q}, {∼q}〉
The PCOM-consequences of Σ are the CL-consequences of {∼q,∼p}.

12. Evaluation and open problems

For all the examples the system PCOM gives precisely the desired results.
The only limitations it has are due to our intuitions and demands. We have
been looking for a consequence relation of which the consequences represent
the construction of the ultimate position of a participant in a discussion after
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possibly one ore more position changes. The construction here is based on
our intuitions, so the system can only be considered satisfactory as far as it
expresses our expectations. One of our presuppositions was that statements
of other participants on which Ché agrees were incorporated in Σ. When
this is not fulfilled, we need the interventions of the other participants to
figure out ourselves on which parts Ché agrees or to question him about it
to obtain really certain information. The latter situation contains two open
problems: one similar to the one solved here, but more complex, and one of
erotetic logics.
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