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Abstract. In this paper we show how modal logic can be applied in the

axiomatizations of some dynamic ontologies. As an example we consider

the case of mereotopology, which is an extension of mereology with some

relations of topological nature like contact relation. We show that in the

modal extension of mereotopology we may define some new mereological

and mereotopological relations with dynamic nature like stable part-of and

stable contact. In some sense such “stable” relations can be considered as

approximations of the “essential relations” in the domain of mereotopology.
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Introduction

The difference between static and dynamic ontology is that the later de-
pends on some changing parameters—time, space, environment, etc, which
we will consider globally as situations. Good examples of static and dynamic
ontologies are the statics and the dynamics from classical physics. There is
no unique way in general to make a given static ontology a dynamic one: it
depends of what we want to talk about changing objects. For instance in
classical dynamics objects are moving in space and time, have a trajectory,
velocity, acceleration, and many other characteristics describing moving ob-
jects which are not considered in statics. But in some simple cases, when we
consider only one changing parameter, say time, one can find a more uniform
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way to make static ontology a dynamic one: just by a suitable combination
of the language of the given static ontology with the language of a given tem-
poral logic. Examples of combining spatial ontology and temporal logic are
given in [9]. If we consider the vector of all parameters as a situation, then a
suitable logic of situations is for instance the modal logic S5. Then we may
“dynamise” a given static ontology, combining it in a suitable way with the
modal logic S5. Carnap’s semantics of S5 considers a non-empty universe U
of situations, and each sentence changes its truth from situation to situation.
Then the formula �A (“necessarily A”) is true at a given situation s ∈ U if
A is true in all situations in U . Dually ♦A (“possibly A”) is true at a given
situation s ∈ U if there is a situation s′ ∈ U in which A is true. Let for
instance P (.) be a predicate from a given ontology O and o is a given object
from O. If O is a static ontology then either o has the property P or o does
not have the property P . But if O depends on different situations, then P (o)
may vary its truth from situation to situation. Then the truth of �P (o) will
mean that P (o) is true in all situations. In some sense this says that P is
a “stable” or “essential” property of o. Then ♦¬P (o) will say that P is not
a stable or essential property of o. Similar “essentialists” interpretation can
be done not only for properties but also for relations. However, there is a
long discussion between ontologists whether �P (o) says that P is essential
property for o. Against this modal interpretation of essence is for instance
Kit Fine [7], but we will not go into this discussion. In some sense Fine is
right but we may take �P (o) as a simple approximation of the statement
“P is an essential property of o”. Practically we may conclude that P is
an essential property of o if we see that for all situations (accessible for us)
P (o) is true. Thus, combining a given static ontology O with the modal
logic S5, one can obtain a “dynamic version” of O. The extended language
can be used to characterize some properties or relations of O as stable (or
“essential”).

In this paper we will apply this method to combine mereotopology with
the modal logic S5 and to obtain in this way a dynamic version of mereotopol-
ogy which we will call modal mereotopology.

Mereotopology is an extension of mereology with some relations of topo-
logical nature. Mereology is an ontologycal discipline which can be charac-
terized shortly as a theory of “Parts and Wholes”. Typical in mereology are
the relations “part-of” and “overlap”. One of the basic mereological systems
is Leśniewski’s mereology. Its original presentation given by Leśniewski is
quite difficult to understand, but as Tarski showed, the mathematical equiva-
lent of mereology are complete Boolean algebras with deleted zero element 0
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(see Simons [11] for this fact). However, assuming 0 makes the theory more
simple. In Boolean formulation part-off relation coincides with the Boolean
ordering x ≤ y, and the overlap relation x O y can be defined by x · y 6= 0
(where ‘·’ is the Boolean multiplication). We will not go into details of
mereology and refer for this the book by Simons [11].

Mereology, however, is not capable to describe some relations between in-
dividuals as, for instance, one individual to be in a contact with another one.
Adding contact-like relations goes back to de Laguna [4] and Whitehead [12].
The intension of de-Laguna and Whitehead was to use mereology for building
of a new, pointfree theory of space as an extension of mereology, with the re-
lation of contact (or “connection” in Whitehead terminology). The primitive
objects of the new theory of space are called regions and it is “pointfree”,
because points are not taken as primitives but are definable by means of
regions, contact and some mereological relations. As Tarski showed (see Si-
mons [11]) standard point models of the new theory of space are regular open
(or regular closed) sets of some topological spaces with topological definition
of contact. For regular open sets the contact C has the following definition:
aCb iff Cl(a)∩Cl(b) 6= ∅ (here Cl is the topological closure operation). This
motivates some authors to call the extension of mereology with the contact
relation (or some of its derivatives) “mereotopology”. Mereotopology is often
called also a “region-based theory of space”. Since mereology is identified
with the theory of Boolean algebras, mereotopology can be identified with
the extensions of the language of Boolean algebras with the contact relation
C called contact algebras. Recent papers on contact algebras are Duentsch
and Winter [6] and Dimov and Vakarelov [5]. Survey articles on region-based
theory of space are Bennett and Duentsch [3], Pratt [10] and Vakarelov [13].

Logics related to mereotopology, or, region-based theory of space, are
presented, for instance, in the papers by Wolter and Zakharyaschev [14]
and Balbiani, Tinchev and Vakarelov [2]. In this paper we will combine
quantifier-free (propositional) logics related to static mereotopology with
the modal logic S5. The preference to use quantifier-free versions of logics is
to obtain simpler and possibly decidable systems. They contain the relations
x ≤ y (x is a part of y) and x C y (x is in a contact with y) and some of
their derivatives like “nontangential part-of”, “tangential contact”, etc (the
formal definitions will be given in the main text). Having in the language
the modal operator � we may express the relations “x is an essential part
of y” by �(x ≤ y) and “x is in an essential contact with y” by �(xC y), etc.
For instance “the head is an essential part of the human body”, while “the
hands are not essential parts of the human body”.
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The rest of the parer is structured as follows. Section 1 lists some prelim-
inary information. In Section 1.1 we survey some facts for contact algebras
and their topological representation theory, following mainly [5]. Contact al-
gebras here correspond to “static mereotopology”. In Section 1.2, following
[2], we describe some propositional logics related to contact algebras which
we call in this paper contact logics. Some of these logics are equivalent to
the logics introduced semantically in [14]. In Section 2 we combine the con-
tact logics from Section 1 with the modal logic S5. The resulting systems
are called modal contact logics. The obtained systems correspond to modal
mereotopology, which is a certain form of dynamic mereotopology. The main
results of this section are several completeness theorems of the new logics.
In section 3 we show that the new logics possess finite model property which
implies that they are decidable. In the concluding section 4 we show possible
extensions of the studied logics with new rules of inference and formulate
some open problems.

1. Preliminaries

1.1. Contact algebras

Definition 1.1. Following [5], by a Contact Algebra we will mean any
system B = (B, 0, 1, ·, +,∗ ,C), where (B, 0, 1, ·, +,∗ ) is a non-degenerate
Boolean algebra with a complement denoted by ‘∗’ and C – a binary relation
in B, called contact and satisfying the following axioms:

x C y → x 6= 0,(C1)

x C y → y C x,(C2)

x C (y + z)↔ x C y or x C z,(C3)

x · y 6= 0→ x C y.(C4)

We say that B is connected if it satisfies the following axiom of connectedness

(Con) a 6= 0, 1→ a C a∗.

We write C for the complement of C. Obviously, if B
′ is a Boolean

subalgebra of B, then it is also a contact subalgebra of B. If B
′ as a

Boolean algebra is generated by some subset B0 ⊆ B we say also that B
′ as

a contact subalgebra is generated by B0.

Examples of contact algebras: the contact algebra of regular closed sets.

Let X be an arbitrary topological space. We denote by Cl(a) and Int(a) the
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closure and interior of a subset a of X. A subset a of X is regular closed if
a = Cl(Int(a)). The set of all regular closed subsets of X will be denoted by
RC(X). It is a well-known fact that regular closed sets with the operations

a + b := a ∪ b, a · b := Cl(Int(a ∩ b)),

a∗ := Cl(X \ a), 0 := ∅, 1 := X .

form a Boolean algebra. If we define contact CX by: a CX b iff a ∩ b 6= ∅

then we have the following fact.

Lemma 1.2. RC(X) with the contact CX is a contact algebra. If X is a

connected space then RC(X) is connected.

The contact algebra of the above example is said to be standard contact
algebra of regular closed sets.

The topological space X is called semiregular if it has a closed base of
regular closed sets.

Theorem 1.3 (Representation theorem for contact algebras [5, 13]). For

each contact algebra B = (B,C) there exists a compact semiregular T0 space

X and an embedding h of B into the contact algebra RC(X). Moreover, if

B is connected then X is a connected space.

In the above theorem h satisfies also some additional nice conditions, but
in this paper we will not use them.

1.2. Logics related to contact algebras

Following [2] and [13] we present in this section a language for some proposi-
tional, quantifier-free logics related to contact algebras, which in this paper
are called contact logics. We present two kinds of semantics for the con-
tact logics: algebraic semantics based on contact algebras and topological
semantics based on contact algebras of some classes of topological spaces.

1.2.1. The language of contact logics

The language L(≤,C) of contact logics consists of
• a denumerable set Var of Boolean variables,

• Boolean operations: · (Boolean meet), + (Boolean join), ∗ (Boolean com-
plement), and 0, 1 (Boolean constants),

• propositional connectives: ¬, ∧, ∨, ⇒, ⇔, and propositional constants ⊤
and ⊥,

• relational connectives: ≤ (part-of) and C (contact).
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The set of Boolean terms B is defined in a standard way: from Boolean
variables and Boolean constants by means of Boolean operations.

Atomic formulas are formulas of the form ‘a ≤ b’ and ‘a C b’, where a
and b are Boolean terms.

Complex formulas (or simply formulas) are defined in a standard way
from atomic formulas and propositional constants ⊥ and ⊤ by means of
propositional connectives.

Abbreviations:

a = b := (a ≤ b) ∧ (b ≤ a),

a 6= b := ¬(a = b),

aCb := ¬(a C b),

a O b := a · b 6= 0 , overlap,

a≪ b := aCb∗ , nontangential part-of,

a Ct b := a C b ∧ ¬(a O b) . tangential contact

Substitution. Let α be a Boolean term or a formula, and let p1, . . . , pn be
a list of different Boolean variables. We write α(p1,..., pn) to indicate that
some of p1, . . . , pn occur in α.

If b1, . . . , bn are Boolean terms, then α(b1, ..., bn) or, more precisely,
α(p1/b1, ..., pn/bn) means the simultaneous substitution of b1, . . . , bn for p1,
. . . , pn. The formula α(b1, ..., bn) is called a substitutional instance of α.
If we consider p1, . . . , pn as meta variables for Boolean terms, then α(p1,
. . . , pn) is called a “schema”. Schemes are usually understood as schemes of
axioms of some axiomatic systems.

Let α = α(q1, ..., qn) be a formula of the propositional calculus built up by
different propositional variables q1, . . . , qn and the propositional connectives
¬, ∧, ∨, ⇒, ⇔, ⊥ and ⊤, and let α1, . . . , αn be formulas of L(≤,C). Then
α(α1, ..., αn) or, more precisely, α(q1/α1, ..., qn/αn) is called a substitutional
instance of the propositional formula α.

1.2.2. Semantics

First of all, we introduce an algebraic semantics of the language L(≤,C).
Let B = (B, 0, 1, ·, +,∗ , C) be a contact algebra. A mapping v from Var into
B is called a valuation. A pair M = (B, v), where B is a contact algebra
and v is a valuation in B, is called an algebraic model or an interpretation
in B.
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Given a model (B, v), the valuation v is extended to arbitrary Boolean
terms by induction in a standard way: v(a · b) = v(a) · v(b), v(a + b) =
v(a) + v(b), v(a∗) = v(a)∗, v(0) = 0, and v(1) = 1.

We define v also for formulas and then the value of v(α) belongs to the set
{0, 1}, considered as standard truth values false and truth. The definition
goes inductively as follows:

v(a ≤ b) = 1 iff v(a) ≤ v(b),
v(a C b) = 1 iff v(a) C v(b),

v(¬α) = 1 iff v(α) = 0,
v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1,
v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1.
We say that α is true in the model M = (B, v) if v(α) = 1 and in this

case we say that M is a model of α. We say that α is true in a contact algebra
B if α is true in all interpretations in B. If Σ is a class of contact algebras, α
is said to be true in Σ if α is true in all members of Σ. The set of all formulas
true in Σ is called the logic of Σ and is denoted by L(Σ). This is a semantic
definition of logic. If Σ1 ⊆ Σ2 then obviously L(Σ2) ⊆ L(Σ1). This implies
that the logic L(Σ) where Σ is the class of all contact algebras is the smallest
contact logic and thus will be denoted by CLmin. The logic corresponding
to the class of of all connected contact algebras will be denoted by LCCon.

Let T be a class of topological spaces. We consider the class Σ(T ) =
{RC(X) : X ∈ T }. The topological semantics of L(≤,C) in T consists of
interpretations in contact algebras RC(X) ∈ Σ(T ). A pair (X, v), where
X is a topological space and v is a valuation in RC(X) is referred to as a
topological model or a topological interpretation. If α is true in RC(X), we
write “α is true in X” for brevity.

1.2.3. Finite models

The following lemma will be of later use:

Lemma 1.4. Let α be a formula and {b1, . . . , bn} be the set of Boolean

variables occurring in α. Let B be a contact algebra (connected contact

algebra) and v be a valuation in B. Let B
′ = B(v(b1), . . . , v(bn)) be the

(finite) contact sub-algebra generated by the elements v(b1), . . . , v(bn) and

let v′ be the restriction of v in B
′. Then the following equality is true:

v(α) = v′(α).

Proof. Since the axioms of contact algebra and connected contact algebra
are universal first-order sentences, then the proof follows from the remarks
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that (1) any Boolean subalgebra of B is also a contact subalgebra of the same
type, and that (2) Boolean subalgebras generated by finite sets of elements
are finite. ⊣

The above lemma implies that the logics of all contact algebras and all
connected contact algebras have finite model property and are decidable.

1.2.4. Axiomatizations and completeness theorems

Axiomatization of CLmin and CLCon. We first introduce the axiomatic sys-
tem for the minimal logic CLmin. It is a Hilbert-type axiomatic system
consisting of axioms and inference rules.

Axioms of CLmin:

I. All formulas of L(≤,C) which are substitutional instances of the com-
plete set of axiom schemes of classical propositional logic (or all its
tautologies).

II. The set of axiom schemes for Boolean algebra in terms of the part-of
≤ (a, b, and c are arbitrary Boolean terms):

a ≤ a, a ≤ b ∧ b ≤ c⇒ a ≤ c, 0 ≤ a, a ≤ 1,

c ≤ a · b ⇐⇒ c ≤ a ∧ c ≤ b,

a · (b + c) ≤ (a · b) + (a · c),

c · a ≤ 0⇔ c ≤ a∗, a∗∗ ≤ a.

III. The set of axiom schemes for the contact C (a, b, and c are arbitrary
Boolean terms):

(C1) a C b⇒ a 6= 0,

(C2) a C b⇒ b C a,

(C3) a C (b + c)⇔ a C b ∨ a C c,

(C4) a · b 6= 0⇒ a C b.

Inference rule: Modus ponens (MP):
α, α⇒ β

β

If we add to the above axioms the axiom

(Con) a 6= 0 ∧ a 6= 1⇒ a C a∗,

then we obtain the axiomatization of the logic CLCon. The obtained ax-
iomatic systems will also be denoted correspondingly by CLmin and CLCon.
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The notion of a proof in CLmin and CLCon is a standard one. All provable
formulas are called theorems of the corresponding logic. It is easy to see that
the set of theorems is closed under the substitution rule:

if α(p1, ..., pn) is a theorem and p1, . . . , pn is a sequence of different
Boolean variables, then for any Boolean terms b1, . . . , bn, the formula
α(b1, ..., bn) is also a theorem.

1.2.5. Canonical models and completeness theorems

In this section, following mainly [2] and [13] we will introduce a canonical-
model construction, which is the main tool in the proof of the completeness
theorem for CLmin and CLCon. We list some definitions and facts about this
construction, because they will be used and modified later for the modal
extension of contact logics.

Let L be any of the logics CLmin and CLCon. A set Γ of formulas is
called an L-theory or simply a theory if it contains all theorems of L and is
closed under the rule

(MP) if A and A⇒ B are in Γ, then B in Γ.

For example, the set of all theorems of L is a theory; moreover, it is the
smallest theory. A theory Γ is said to be consistent if ⊥ 6∈ Γ and maximal
if it is consistent and maximal with respect to the set inclusion. Maximal
theories are also referred to as maximal consistent sets.

Some well-known properties of theories are listed in the following lemma.

Lemma 1.5. The following assertions hold.

(i) Let Γ be a theory, and let α be a formula. Then the set Γ + α = {β :
α⇒ β ∈ Γ} is the smallest theory containing Γ and α. The set Γ + α
is inconsistent if and only if ¬α ∈ Γ.

(ii) The following conditions are equivalent for any theory Γ:

• Γ is maximal,

• for any formula α, ¬α ∈ Γ if and only if α 6∈ Γ,

• for any formulas α and β, α ∨ β ∈ Γ if and only if α ∈ Γ or β ∈ Γ.

(iii) Any consistent theory can be extended to a maximal theory (the Lin-

denbaum Lemma).

The following assertion presents a semantical construction of maximal
theories.
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Lemma 1.6. Let M be a model. Then the set of formulas Γ = {α : M is

a model of α} is a maximal Lmin-theory. If M is a model over connected

contact algebra, then Γ is a maximal LCont-theory.

A set of formulas A is consistent in L if A is contained in an L-consistent
theory and, consequently, A is contained in a maximal L-theory in view of
the Lindenbaum Lemma.

Let S be a maximal theory in L. Based on the Lindenbaum-algebra
construction, we construct in a canonical way a contact algebra associated
with S. In the set of Boolean terms B, we introduce the equivalence relation:
a ≡S b if and only if a = b ∈ S. Since ≡S is a congruence relation depending
on S, it is possible to consider equivalence classes of Boolean terms |a|S =
{b : a ≡S b} and to define the canonical contact algebra BS over S by setting
|a|S · |b|S = |a · b|S , |a|S + |b|S = |a + b|S , |a|∗

S
= |a∗|S , |a|S ≤ |b|S if and only

if a ≤ b ∈ S, and |a|SC|b|S if and only if aCb ∈ S.

Using the axioms of logic, we can prove that BS is a contact algebra
and, if L contains the axiom (Con) then BS is a connected contact algebra.

We define a canonical valuation for Boolean variables putting vS(p) = |p|.
Then the pair MS = (BS , vS) is called a canonical model over S. We have
vS(a) = |a|S for any Boolean term a.

The following assertion is proved in a standard way.

Lemma 1.7. The following two conditions are equivalent for any formula α
in the logic L:

• α is a theorem of L,

• α is true in all canonical models MS of L.

Now, we can state a completeness theorem for the logics CLmin and
CLCon.

Theorem 1.8 (Completeness of CLmin [2]). The following conditions are

equivalent for any formula α:

• α is a theorem of CLmin,

• α is true in all contact algebras,

• α is true in all topological spaces.

Theorem 1.9 (Completeness of CLCon [2]). The following conditions are

equivalent for any formula α:
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• α is a theorem of CLCon,

• α is true in all connected contact algebras,

• α is true in all connected topological spaces.

Theorems 1.8 and 1.9 present weak completeness statements. The strong
statements are also valid (cf. [2]). For instance, for the logic CLCon it can
be formulated as follows.

Theorem 1.10 (Strong completeness of CLCon). The following conditions

are equivalent for any set A of formulas:

• A is consistent in CLCon,

• A has an algebraic model,

• A has a topological model.

2. Modal contact logics

We extend the language L(≤,C) to the language L(≤,C,�) with the modal
operation � of necessity and introduce ♦ (possibility) by definition: ♦ =
¬�¬. Now if α is a formula then �α and ♦α are also formulas. The se-
mantics of L(≤,C,�) will be a combination of the algebraic and topological
semantics of L(C,≤) with the Carnap’s semantics for S5. We want the
combination to be quantifier-free in order to obtain simpler and decidable
systems. Normally first-order S5 with equality (see [8]) uses constant domain
semantics in which the standard axioms of equality are true: these are the
axiom (Refl) x = x (Reflexivity) and (Sub) (x = y)∧ϕ[x/z]⇒ ϕ[y/z] (substi-
tutivity). These axioms do not contain quantifiers and if we accept constant-
domain semantics, we must accept also these axioms. But in combination
with S5 axioms, they have some unacceptable consequences, for instance
(x = y)⇔ �(x = y). This formula implies the formula (x ≤ y)⇔ �(x ≤ y)
which is highly unacceptable, because it says that “x is a part of y iff x
is a stable (essential) part of y”. So we will use a kind of varying domain
semantics.

2.1. Semantics

Let W be a nonempty set and for each x ∈W let B(x) be a contact algebra.
Then the pair S = (W, {B(x) : x ∈W}) is called algebraic modal structure or
shortly a frame. If all contact algebras in S are in the form RC(X)(x) : x ∈



174 Dimiter Vakarelov

W for a given topological space X(x), then the frame is called topological.
The algebras B(x) of S are called the contact algebras of S. A frame is
connected if the algebras of the frame are connected.

A two-variable function v(x, b) with first argument x ∈ W and second
argument b is a Boolean variable, is called a valuation if for each x ∈W and
b ∈ Var, v(x, b) is in B(x). The pair M = (S, v) is called a model.

Given a frame S and a valuation v, we extend v for arbitrary Boolean
terms inductively in a standard way: v(x, a∗) = v(x, a)∗, v(x, a ·b) = v(x, a) ·
v(x, b), v(x, a + b) = v(x, a) + v(x, b), v(x, 1) = 1 and v(x, 0) = 0, where the
operations ∗, · and + are taken in the contact algebra B(x). Further on this
will always be assumed. We define v also when the second argument is a
formula and the value in this case belongs to the set {0, 1}. The definition
is by induction as follows:

v(x, a ≤ b) = 1 iff v(x, a) ≤ v(x, b),

v(x, a C b) = 1 iff v(x, a) C v(x, b),

v(x,¬α) = 1 iff v(x, α) = 0,

v(x, α ∧ β) = 1 iff v(x, α) = 1 and v(x, β) = 1,

v(x, α ∨ β) = 1 iff v(x, α) = 1 or v(x, β) = 1,

v(x,�α) = 1 iff (∀y ∈W ) v(y, α) = 1.

We say that a formula α is true in a model M = (S, v), or that M is a model
of α if for all x ∈ W we have v(x, α) = 1; α is true (or valid) in the frame
S if it is true in all models over S; α is true in a class of frames Σ if it is
true in each frame from Σ. The set L(Σ) of all formulas true in Σ is called
a modal contact logic, or simply a logic, of Σ. We denote by MLCmin the
logic of all frames and by MLCCon – the logic of all connected frames.

Let a be a Boolean term, considered as a region, S = (W, {B(x) : x ∈
W}) be a frame and v be a valuation. The elements of W will be considered
as situations. Then v(x, a) will be considered as the region a at the situation
x. Changing in v(x, a) the parameter x denotes the changes of the region
a from one situation to another in the space of situations W . The truth
conditions have the following intuitive meaning. For instance v(x, a ≤ b) = 1

means that the region a is a part of the region b at the situation x. The
condition v(x, a ≤ b) = 1 for all x ∈ W means that a is a part of b in all
situations in W , which says that in this model a is a stable (or in some
sense “essential”) part of b. The same can be expressed by the truth of the
formula �(a ≤ b) at any x ∈ W . So, indeed �(a ≤ b) expresses stable
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(essential) part-of relation. Similar essentialists interpretation can be done
for the other mereological or mereotopological relations expressible in our
language, for instance �(a C b).

2.2. Axiomatizations

In this section we propose a Hilbert style axiomatization of MCLmin and
MCLCon.

Axiom schemes for MCLmin:

I. All formulas of L(≤, C,�) which are substitution instances of the com-
plete set of axioms of classical propositional logic (or all its tautologies).

II. Axiom schemes for the propositional modal logic S5: �(α ⇒ β) ⇒
(�α⇒ �β), �α⇒ α, �α⇒ ��α, ♦�α⇒ α.

III. The set of axiom schemes for Boolean algebra and contact C as in the
logic CLmin

Inference rules:

Modus ponens (MP):
α, α⇒ β

β
,

Necessitation (N):
α

�α
The above formal system is denoted also by MCLmin. If we add to

MCLmin the axiom (Con) for connectedness we obtain the axiom system for
the logic MCLCon.

It is easy to check that the following lemma is true.

Lemma 2.11 (Soundness of MCLmin and MCLCon). The following conditions

are true for any formula α:

(i) If α is a theorem of MCLmin then α is true in all frames.

(ii) If α is a theorem of MCLCon then α is true in all connected frames.

2.3. Canonical models and completeness theorems

Let L be any of the logics MCLmin and MCLCon. The canonical construction
for L which we will follow is similar to that for the non-modal contact logics
from Section 2. There to each maximal theory S is associated canonically a
contact algebra. The new thing now is that to each maximal theory S we will
associate a class of maximal theories WS (this will give us the set W of the
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model) and to construct canonically a contact algebra BS(Γ), corresponding
to each maximal theory Γ ∈WS .

Let WL be the set of all maximal theories of L. Let for a set of formulas
Γ define �Γ = {α : �α ∈ Γ}. Define for Γ, ∆ ∈WL, ΓR∆ iff �Γ ⊆ ∆.

In the following lemma we list without proof some standard facts for the
operation � and the relation R.

Lemma 2.12. (i) If Γ is a theory then �Γ is a theory too.

(ii) R is an equivalence relation in WL.

(iii) For any Γ ∈WL and for any formula α we have:

�α ∈ Γ iff (∀∆ ∈WL)(ΓR∆→ α ∈ ∆).

Now for each maximal theory S we define a canonical model associated
with S denoted by MS = (WS , {BS(Γ) : Γ ∈WS}, vS).

The definition of WS . We put WS = {Γ ∈ WL : ΓRS}. Since R is an
equivalence relation, then WS is just an R-equivalence class generated by S.
We have the following

Lemma 2.13. (i) If Γ, ∆ ∈WS then ΓR∆.

(ii) If Γ ∈WS then for any formula α we have:

�α ∈ Γ iff (∀∆ ∈WS) α ∈ ∆).

Proof. Condition (i) follows from the fact that R is an equivalence relation
and that WS is an R-equivalence class. Condition (ii) follows from (i) and
Lemma 2.12(iii). ⊣

The definition of BS(Γ). Let Γ ∈ WS. The construction of BS(Γ) repeats
the construction of the canonical contact algebra BS from Section 1.2 –
instead of an arbitrary maximal theory S just take Γ from WS . The elements
of BS(Γ) are the equivalence classes of the form |a|Γ. If L = MCLCon, then
BS(Γ) is connected.

The definition of vS(Γ, a). Let Γ ∈WS and a be a Boolean variable. Define
vS(Γ, a) := |a|Γ.

Lemma 2.14 (Truth Lemma). Let MS = (WS , {BS(Γ) : Γ ∈ WS}, vS) be a

canonical model of L. Then the following equivalence is true for any formula

α and Γ ∈WS :

vS(Γ, α) = 1 iff α ∈ Γ.
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Proof. We proceed by induction on the complexity of α. The interesting
cases are: α = a ≤ b, a C b, �β.

The case α = a ≤ b. We have the following chain of equivalences:
vS(Γ, a ≤ b) = 1 iff vS(Γ, a) ≤ vS(Γ, b) iff |a|Γ ≤ |b|Γ iff a ≤ b ∈ Γ.

The case α = a C b. The proof is similar to the above.
The case α = �β. We have: vS(Γ,�β) = 1 iff (∀∆ ∈WS)(vS(∆, β) = 1)

iff (by induction hypothesis) (∀∆ ∈ WS)(β ∈ ∆) iff (by Lemma 2.13(ii))
�β ∈ Γ. ⊣

Lemma 2.15. The following two conditions are equivalent for any formula α:

(a) α is a theorem of L,

(b) α is true in all canonical models of L.

Proof. The implication (a)→(b) is just the soundness of L (For the case
L = MCLCon use the fact that all canonical models of L are connected).

For the implication (b)→(a) suppose that α is not a theorem of L. Then,
by the Lindenbaum Lemma there exists a maximal theory S such that α 6∈ S.
Consider the canonical model determined by S: MS = (WS , {BS(Γ) : Γ ∈
WS}, vS). Since S ∈WS and α 6∈ S then vS(S, α) = 0, by Lemma 2.14. ⊣

Now we are ready to proof the completeness theorem for MCLmin and
MCLCon.

Theorem 2.16 (Completeness theorem for MCLmin and MCLCon). The

following conditions are equivalent for any formula α:

(a) α is a theorem of MCLmin (MCLCon),

(b) α is true in all frames (all connected frames),

(c) α is true in all topological frames (all connected topological frames),

(d) α is true in all topological frames corresponding to the class of (con-

nected) compact semiregular T0 spaces.

Proof. We consider only the case for MCLmin, the case for MCLCon can
be obtained in a similar way.

The implications (a) → (b) → (c) → (d) are obvious by the soundness
lemma. The implication (d)→ (b) follows from the representation theorem
for contact algebras (Theorem 1.3). For the implication (b) → (a) suppose
that α is true in all frames. Then α is true in all models, and hence α is true
in the canonical models of MCLmin. Then by Lemma 2.15, α is a theorem
of MCLmin. ⊣
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The following is the strong version of the completeness theorem.

Theorem 2.17 (Strong completeness theorem for MCLmin and MCLCon).
The following conditions are equivalent for any set A of formulas:

(a) A is a consistent set in MCLmin (MCLCon),

(b) A has an algebraic model in the class of all frames (in the class of all

connected frames),

(c) A has a topological model in the class of topological models (in the class

of all connected topological models),

(d) A has a topological model in the class of all (connected) compact semi-

regular and T0 spaces.

Proof. Again we consider only the case for MCLmin, the case for MCLCon

is similar. The equivalence of (b), (c) and (d) follows from the representation
theorem for contact algebras (Theorem 1.3). The implication (b) → (a) is
obvious. For the proof of the implication (a) → (b) suppose that A is
a consistent set of formulas in MCLmin. Then by the Lindenbaum Lemma
there exists a maximal theory S containing A. Consider the canonical model
MS = (WS , {BS(Γ) : Γ ∈WS}, vS). Since A ⊆ Γ then by the Truth Lemma
vS(S, α) = 1 for all α ∈ A. So MS is an algebraic model of A. ⊣

3. Decidability

In this section we will show that the logics MCLmin and MCLCon are decid-
able, showing that both logics have finite model property. The proof goes
trough suitable modification of filtration method from modal logic. First we
will describe the relevant constructions only for the logic MCLmin.

The first step is to show that contact algebras in the modal frames can be
considered finite. Namely, let M = (W, {B(x) : x ∈ W}, v) be a model and
b1, . . . , bn be a set of different Boolean variables. Let for each x ∈W , B′(x)
be the the contact subalgebra of B(x) generated by the elements v(b1), . . . ,
v(bn) and let v′ be the restriction of the valuation v on the algebras B

′(x),
considered only for the variables b1, . . . , bn. Obviously the number of the
elements of B′(x) for each x ∈W is ¬ 2n. Then the following lemma is true.

Lemma 3.18. Let For(b1, ..., bn) be the set of all formulas containing only

variables from the list b1, . . . , bn. Then the following equivalence is true for

any formula α ∈ For(b1, ..., bn) and x ∈W : v(x, α) = 1 iff v′(x, α) = 1.
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Proof. The proof easily follows by induction on the construction of α and
Lemma 1.4. ⊣

As a consequence we obtain the following

Corollary 3.19. The following conditions are equivalent for any formula α:

• α is true in the class of all frames,

• α is true in the class of all frames of the form (W, {B(x) : x ∈ W}) such

that for each x ∈ W the number of the elements of algebra B(x) is ¬ 2n

where n is the number of the Boolean variables in α.

This corollary restrict the class of frames where a given formula α have
to be tested only to frames with finite algebras with upper bound on the
number of elements effectively computable from the size of α. This, however,
still does not imply decidability. So our second step is to make finite both
parts of the frames in which α has to be tested.

Let A be a finite set of formulas, closed under subformulas and let
b1, . . . , bn be the list of all Boolean variables occurring in A. Let M =
(W, {B(x), x ∈ W}, v) be a model such that for all x ∈ W the cardinal-
ity of B(x) is ¬ 2n. Define in W an equivalence relation ≡ (depending
on A) as in the filtration construction from the ordinary modal logic: for
x, y ∈ W , x ≡ y iff (∀α ∈ A)(v(x, α) = 1 ↔ v(y, α) = 1). For any x ∈ W
let |x| = {y ∈ W : x ≡ y}. Define W ′ = {|x| : x ∈ W}. As in the filtration
theory from modal logic one can show that W ′ is a finite set with cardinality
¬ 2m, where m is the number of the elements of the set A. Now we want
to associate with each element from W ′ a finite contact algebra with cardi-
nality ¬ 2n. To this end from each equivalence class we choose an element
f(|x|) ∈ |x| (note that in this step the Axiom of choice is applied and that
f is the choice function). Using the function f we define a total function
g : W → W as follows: for x ∈ W put g(x) = f(|x|). Obviously for any
x ∈W we have g(x) ∈ |x| and hence |x| = |g(x)|. Now for each |x| ∈W ′ we
associate a contact algebra B

′(|x|) putting B(|x|) = B(g(x)). It is easy to
see that if x1 ≡ x2 then B

′(|x1|) = B
′(|x2|). In this way we define the frame

(W ′, {B′(|x|) : |x| ∈W ′}). We define a valuation v′ in this frame putting for
each Boolean variable from the list b1, . . . , bn and |x| ∈ W ′: v′(|x|, bi) = 1
iff v(g(x), bi) = 1, i = 1, . . . , n. Now let a be any Boolean term built from
the variables b1, . . . , bn. Then, by an easy induction on the complexity of a
one can verify the equivalence

(1) v′(|x|, a) = 1 iff v(g(x), a) = 1 .



180 Dimiter Vakarelov

Lemma 3.20 (Filtration Lemma). The following equivalence holds for any

formula α ∈ A and any x ∈W : v(x, α) = 1 iff v′(|x|, α) = 1.

Proof. We proceed by induction on the complexity of α. First let us con-
sider the case of atomic α.

Case 1 : α = a ≤ b ∈ A. We have: v(x, a ≤ b) = 1 iff v(g(x), a ≤ b) = 1
(because x ≡ g(x) and a ≤ b ∈ A) iff v(a) ≤ v(b) in B(g(x)) iff v′(a) ≤ v′(b)
in B

′(|x|) (because of (1)).
Case 2 : α = a C b can be proved in a similar way.
Now let us consider the case of arbitrary α. The nontrivial case is α =

�β ∈ A with the inductive hypothesis (i.h.) that for β the statement is true.
So we have to prove the equivalence: v(x,�β) = 1 iff v′(|x|,�β) = 1.

(→) Suppose v(x,�β) = 1. Then for any y ∈ W we have v(y, β) = 1.
Since β is in A we may apply the i.h. for β. Then we obtain: for any |y| ∈W ′,
v′(|y|, β) = 1, which implies that v′(|x|,�β) = 1.

In a similar way we can prove the converse implication (←). ⊣

Now we are ready to prove the main result in this section.

Proposition 3.21. The following conditions are equivalent for any for-

mula α:

(a) α is true in all frames,

(b) α is true in all frames in the form (W, {B(x) : x ∈ W}) such that for

each x ∈W the the number of the elements of the algebra B(x) is ¬ 2n

where n is the number of Boolean variables occurring in α,

(c) α is true in all frames in the form (W, {B(x) : x ∈ W}) such that for

each x ∈ W the the number of the elements of the algebra B(x) is

¬ 2n where n is the number of Boolean variables occurring in α and the

number of the elements of W is ¬ 2m where m is the number of the

subformulas of α.

Proof. The equivalence (a) ↔ (b) is already proved—this is Lemma 3.19.
The implication (b) ↔ (c) is obvious. The implication (c) → (b) follows
from Lemma 3.20. ⊣

As a corollary of Proposition 3.21 we obtain decidability of MCLmin.
Slightly modifying the above constructions we can obtain the same result
for the logic MCLCon.

Theorem 3.22 (Decidability of MCLmin and MCLCon). The logics MCLmin

and MCLCon possess finite model property and hence are decidable.
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4. Concluding Remarks

In Section 2 we proved completeness theorems for the logics MCLmin and
its extension with the axiom of connectedness: the logic MCLCon. Both
logics are quantifier-free and in a sense they are propositional. The logic
MCLmin corresponds to mereotopology formalized by contact algebras and
MCLCon corresponds to the mereotopology formalized by connected contact
algebras. Both notions have universal first-order formulations which makes
possible to obtain quantifier free formulation of the corresponding logics:
MCLmin and MCLCon. There are, however, interesting classes of contact
algebras characterizing by axioms which are not universal conditions. The
following are two examples.

The first is the axiom of extensionality:

(Ext) (∀a 6= 1)(∃b 6= 0) a C b .

This axiom is equivalent on the base of the other axioms of conact algebra
to the following condition of extensionality assumed by Whitehead [12]:

a = b↔ (∀c)(a C c↔ b C c) .

By means of this condition the part-of relation a ≤ b is definable by the
contact relation C as follows:

a ≤ b↔ (∀c)(a C c→ b C c).

Extensional contact algebras have models in the class of the so called
“weakly regular topological spaces” introduced in [6]. For the representation
theory of extensional contact algebras see [6, 5, 3, 13].

Another interesting axiom is the axiom of normality:

(Nor) a C b→ (∃c)(a C c ∧ b C c∗).

The name (Nor) is adopted, because it is true in contact algebras of normal
topological spaces. The combination of (Ext) and (Nor) corresponds to the
mereotopology of all compact Hausdorff spaces.

Since the axioms (Ext) and (Nor) are not universal first-order sentences,
they cannot be added as additional axioms to the minimal logic MCLmin.
But they can be simulated by additional rules of inference in the logic
MCLmin, which imitate the quantification rules in the first-order logic. These
rules are the following:
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The rule of extensionality:

EXT
α⇒ (p = 0 ∨ a C p)

α⇒ (a = 1)

where p is a Boolean variable that does not occur in a and α.

The rule of normality:

NOR
α⇒ (a C p ∨ p∗

C b)

α⇒ a C b

where p is a Boolean variable that does not occur in a, b, and α.

The completeness theorem for extensions of the logic CLmin with some
of the rules EXT and NOR is given in [2]. The completeness techniques is
similar to that of the proof of CLmin. Only the notion of a theory is changed:
we consider there theories which are closed also with respect to variants of the
rules EXT and NOR. The effects of the new rules on the canonical contact
algebras is that they satisfy the corresponding first-order axioms (Ext) and
(Nor) and consequently imply the completeness with respect to the desired
classes of contact algebras, and by applying the corresponding representation
theorems—completeness to the corresponding classes of topological spaces.

If we apply this techniques to the extensions of MCLmin and MCLCon

with (some of) the rules EXT and NOR we may obtain completeness theo-
rems also for these new logics. This is rather routine technical work similar
to the proofs given in Section 2. That is why we left this exercise to the in-
terested reader. There is, however, one interesting question about these new
extensions. It is shown in [2] that adding the rules EXT and NOR to the
logics CLmin and CLCon they do not produce new theorems and the effect of
the new rules is that they give completeness theorems with respect to more
special contact algebras and topological spaces. It is an open problem, how-
ever, if this is true also for the extensions of the logics MCLmin and MCLCon

with EXT and NOR. Another open problem concerns decidability of these
extensions. So we conclude the paper with these two open problems.
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