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INTERPOLATION AND IMPLICIT

DEFINABILITY IN EXTENSIONS

OF THE PROVABILITY LOGIC∗

Abstract. The provability logic GL was in the field of interest of A.V. Kuz-
netsov, who had also formulated its intuitionistic analog—the intuitionistic
provability logic—and investigated these two logics and their extensions.

In the present paper, different versions of interpolation and of the Beth
property in normal extensions of the provability logic GL are considered. It
is proved that in a large class of extensions of GL (including all finite slice
logics over GL) almost all versions of interpolation and of the Beth property
are equivalent. It follows that in finite slice logics over GL the three versions
CIP, IPD and IPR of the interpolation property are equivalent. Also they
are equivalent to the Beth properties B1, PB1 and PB2.
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1. Introduction

We study interpolation problem for the family of normal extensions of the
well known provability logic GL. This logic has evoked a special interest due
to its completeness with respect to an arithmetical provability interpretation
[23]. A.V. Kuznetsov had formulated a proof-intuitionistic logic, which is an
intuitionistic analog of the provability logic GL, and investigated these two
provability logics and their extensions [5, 6, 7].
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Interpolation theorem proved by W. Craig [3] in 1957 for the classical
first order logic was a source of a lot of investigation devoted to interpolation
problem in various logical theories. Now interpolation is considered as a
standard property of logics and calculi like consistency, completeness and so
on. It is closely connected with so-called Beth definability properties. The
Beth properties have as their source the theorem on implicit definability
proved by E. Beth in 1953 [1] for the classical first order logic: Any predicate
implicitly definable in a first order theory is explicitly definable.

The original definition of interpolation admits various analogs which are
equivalent in the classical logic but are not equivalent in other logics. The
same is true for the Beth property. In [4, 20] several versions CIP, IPD, IPR
and WIP (of interpolation) and B1, B2, PB1, PB2 (of the Beth property)
are considered and a picture of their inter-relations in different logics is
presented. For any normal modal logic we have

CIP ⇐⇒ B1 ⇐⇒ PB1 ⇒ IPD ⇒ IPR ⇒ WIP ,

CIP ⇒ (B2 + IPD) ⇒ PB2 ⇒ B2, PB2 ⇒ IPR ,

and in general all the arrows are strict; moreover, the pairs IPD and PB2,
IPD and B2, IPR and B2, WIP and B2 are independent. All normal exten-
sions of the modal logic K4 have the property B2 and in all normal logics
over K4 we have

CIP ⇒ IPD ⇒ PB2 ⇒ IPR ⇒ WIP ,

and all the arrows are strict.
It was proved in [19] that the restricted interpolation property IPR im-

plies the projective Beth property PB2 in positive logics, in extensions of a
superintuitionistic logic KC and of a modal logic Grz.2, and so IPR is equiv-
alent to PB2 in those logics. It was stated in [18] that over the modal S5 all
the properties IPR, IPD, CIP, PB2 and WIP are equivalent. On the con-
trary, all extensions of the Grzegorczyk logic Grz and all superintuitionistic
logics have WIP, and PB2 implies neither IPD nor CIP, which are equivalent
for these logics.

In the present paper we consider the family of normal extensions of the
provability logic GL and study interrelations of various versions of interpo-
lation and of the Beth property over GL.

It is known that all normal extensions of the provability logic GL possess
B2 and WIP [10, 18]. As for the other properties under consideration, we
have already seen that CIP is the strongest of them in the family of normal
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modal logics and IPR is implied by B1, PB1, PB2 and IPD. Over GL, there
is a continuum of logics with CIP [9] and there is a continuum of logics
without IPR [14].

We define a large class of extensions of GL (containing all finite slice logics
over GL), in which IPR implies CIP. As a consequence, for all logics of this
class the variants CIP, IPD and IPR of interpolation, the Beth property B1
and the projective Beth properties PB1 and PB2 are equivalent.

There is a duality between normal logics over GL and varieties of di-
agonalizable algebras. Also interpolation properties have the correspond-
ing variants of the amalgamation property as their algebraic equivalent.
An algebraic counterpart of our results is obtained: for any locally finite
variety of diagonalizable algebras, the following properties are equivalent:
the amalgamation property, the strong amalgamation property, the super-
amalgamation property, the restricted amalgamation property and the
strong epimorphisms surjectivity.

2. Beth properties and interpolation

If p is a list of variables, let A(p) denote a formula whose all variables are
in p, and F(p) the set of all such formulas.

Let L be a logic, ⊢L deducibility relation in L. We mean that the lan-
guage contains at least one propositional constant ⊤ (“true”) or ⊥ (“false”).
Suppose that p, q, q′ are disjoint lists of variables that do not contain x and
y, q and q′ are of the same length, and A(p, q, x) is a formula. We define
two variants PB1 and PB2 of the projective Beth property:

PB1 If ⊢L A(p, q, x) & A(p, q′, y) → (x ↔ y), then
⊢L A(p, q, x) → (x ↔ B(p)), for some formula B(p).

PB2 If A(p, q, x), A(p, q′ , y) ⊢L x ↔ y, then A(p, q, x) ⊢L x ↔ B(p),
for some B(p).

The Beth properties B1 and B2 arise from PB1 and PB2 respectively by
omitting q and q′:

B1 If ⊢L A(p, x) & A(p, y) → (x ↔ y), then ⊢L A(p, x) → (x ↔ B(p)),
for a suitable formula B(p).

B2 If A(p, x), A(p, y) ⊢L x ↔ y, then A(p, x) ⊢L x ↔ B(p),
for a formula B(p).
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The Beth properties are closely connected with the Craig interpolation

property, CIP, and the deductive interpolation property, IPD, defined as fol-
lows (where the lists p, q, r are disjoint):

CIP If ⊢L A(p, q) → B(p, r), then there exists a formula C(p) such that
⊢L A(p, q) → C(p) and ⊢L C(p) → B(p, r).

IPD If A(p, q) ⊢L B(p, r), then there exists a formula C(p) such that
A(p, q) ⊢L C(p) and C(p) ⊢L B(p, r).

We also consider a restricted interpolation property introduced in [16]:

IPR If A(p, q), B(p, r) ⊢L C(p), then there exists a formula A′(p) such
that A(p, q) ⊢L A′(p) and A′(p), B(p, r) ⊢L C(p).

A weak interpolation property WIP [18] is a particular case of IPR:

WIP If A(p, q), B(p, r) ⊢L ⊥, then there is a formula A′(p) such that
A(p, q) ⊢L A′(p) and A′(p), B(p, r) ⊢L ⊥.

The most known modal logics such as Lewis’ systems S4 and S5, Grze-
gorczyk’s logic Grz, the logic GL of provability, the logic K4 and the least
normal modal logic K have the properties CIP and PB1.

A normal modal logic is any set of modal formulas containing all the
tautologies of the two-valued propositional logic and the axiom 2(A → B) →
(2A → 2B), and closed under the inference rules R1: A, A → B/B and R2:
A/2A, and the substitution rule. The set of normal modal logics containing
a normal modal logic L is denoted by NExt(L). If L is a normal modal logic,
by ⊢L we denote deducibility in L by the rules R1 and R2.

Recall the standard denotations for some normal modal logics:

K4 = K + (2p → 22p),

GL = K4 + (2(2p → p) → 2p),

S4 = K4 + (2p → p),

S4.1 = S4 + (23p → 32p),

Grz = S4 + (2(2(p → 2p) → p) → p),

Grz.2 = Grz + (32p → 23p),

S5 = S4 + (p → 23p).

Interrelations of interpolation with Beth properties are presented in the
following

Proposition 2.1 ([12, 14, 16, 18]). In the family of normal modal logics

(1) PB1 is equivalent to each of the properties CIP and B1,
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(2) PB1 implies the conjunction of B2 and IPD but the converse does not

hold,

(3) the conjunction of B2 and IPD implies PB2,

(4) PB2 implies B2 but the converse is not true,

(5) PB2 and IPD are independent, B2 and IPD are independent,

(6) PB2 implies IPR and IPR implies WIP,

(7) WIP and B2 are independent.

Since all logics over K4 have B2 [10], we obtain

Proposition 2.2. For any logic in NExt (K4):

CIP ⇒ IPD ⇒ PB2 ⇒ IPR ⇒ WIP.

In logics over S5 all these properties are equivalent [18]. On the contrary,
over S4, neither CIP is equivalent to IPD nor IPD to PB2 [4, 17]. Further,
all logics over S4.1 and over GL have WIP [18]. On the other hand, IPR is
equivalent to PB2 over Grz.2 and only finitely many logics over Grz.2 have
IPR [19], although IPR is not equivalent to IPD in NExt(Grz.2) [17].

Recall that the family of logics with CIP in NExt(GL) has the cardinality
of continuum but there is also a continuum of logics without CIP in this
family [9]. In [8] we have found a logic Gγ in NExt(GL), which possesses
CIP but is neither finitely axiomatizable nor finitely approximable. At the
same time the logic Gγ is decidable and is the greatest among infinite slice
logics with IPR in NExt(GL) [14]. Recall that L ∈ NExt(GL) is a logic of

finite slice if L ⊢ 2
n⊥ for some n  0, and of infinite slice otherwise. It

is known that L is of finite slice of the number n if the length of chains in
Kripke frames satisfying L is bounded by n; L is of infinite slice if it admits
chains of any length.

We divide the family NExt(GL) into two parts: the lower part consisting
of all logics contained in Gγ and the upper part

U(GL) = {L ∈ NExt(GL) | L 6⊂ Gγ}.

In this paper we prove that for any logic in U(GL), IPR implies IPD, so
for all such logics we have:

CIP ⇐⇒ IPD ⇐⇒ IPR ⇐⇒ B1 ⇐⇒ PB1 ⇐⇒ PB2 .

Of course, on U(GL) all the six properties differ from WIP and from B2,
which are satisfied in all logics of this class.
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3. Interpolation and amalgamation

An algebraic equivalent of IPR was found in [16]. For the properties B1 and
B2, and also for CIP and IPD it was done in [11], and for PB2 in [14].

It is well known that there exists a duality between normal modal logics
and varieties of modal algebras. A modal algebra is an algebra A = (A, →,
¬,2) that is a boolean algebra with respect to → and ¬ and, moreover,
satisfies the conditions 2⊤ = ⊤ and 2(x → y) ≤ 2x → 2y. A modal
algebra A is called transitive if it satisfies the inequality 2x ≤ 22x; a

topoboolean algebra, or interior algebra if it satisfies 2x ≤ x; a diagonalizable

algebra if it satisfies 2(2x → x) = 2x. It is well known that the modal logic
K4 can be characterized by the variety of all transitive algebras, S4 by the
variety of topoboolean algebras, GL by diagonalizable algebras.

By a valuation in an algebra A, we mean, as usual, a homomorphism
from the algebra of all formulas into A.

If A is a formula, A a modal algebra, then A |= A denotes that the
identity A = ⊤ is satisfied in A. We write A |= L instead of (∀A ∈ L)(A |=
A). We denote V(L) = {A | A |= L}. Each normal modal logic L is
characterized by the variety V(L).

All varieties of modal algebras possess such important properties as
congruence-distributivity and congruence extension property:

CEP If A is a subalgebra of B then every congruence Φ on A can be
extended to a congruence Ψ on B such that Ψ ∩ A2 = Φ.

We recall the definitions.

A class V has Amalgamation Property if it satisfies the condition

AP For each A, B, C ∈ V such that A is a common subalgebra of B and
C, there exist an algebra D in V and monomorphisms δ : B → D and
ǫ : C → D such that δ(x) = ǫ(x), for all x ∈ A.

A class V has Strong Amalgamation Property (StrAP) if it satisfies AP
and, moreover, δ(B) ∩ ǫ(C) = δ(A).

A class V has Super-Amalgamation Property (SAP) if it satisfies AP and,
in addition:

δ(x) ≤ ǫ(y) ⇐⇒ (∃z ∈ A)(x ≤ z and z ≤ y),

δ(x) ≥ ǫ(y) ⇐⇒ (∃z ∈ A)(x ≥ z and z ≥ y).
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A class V has Strong Epimorphisms Surjectivity if it satisfies

SES For each A, B in V , for every monomorphism α : A → B and for every
x ∈ B − α(A) there exist C ∈ V and homomorphisms β : B → C,
γ : B → C such that βα = γα and β(x) 6= γ(x).

A class V has Restricted Amalgamation Property if it satisfies the con-
dition:

RAP For each A, B, C ∈ V such that A is a common subalgebra of B and
C there exist an algebra D in V and homomorphisms δ : B → D,
ε : C → D such that δ(x) = ε(x), for all x ∈ A and the restriction δ′

of δ onto A is a monomorphism.

Theorem 3.3. Let L be a normal modal logic.

(1) L has CIP if and only if V(L) has SAP.

(2) L has IPD if and only if V(L) has AP.

(3) L has PB2 if and only if V(L) has SES.

(4) L has IPR if and only if V(L) has RAP.

Proof. (1) and (2) are proved in [11], (3) in [12] and (4) in [16]. ⊣

It follows that B1 and PB1 are also equivalent to the super-amalgamation
property of the corresponding variety.

We need some criteria for AP and RAP in varieties of modal algebras.
Recall that a modal algebra is subdirectly irreducible (finitely indecompos-

able) if it can not be represented as a subdirect product (finite subdirect
product) of its proper quotient algebras. For any class V of algebras, by
FI(V ) and SI(V ) we denote the classes of finitely indecomposable and sub-
directly irreducible algebras in V respectively, FG(V ) stands for finitely
generated algebras in V .

Theorem 3.4 ([11]). For any logic L in NExt(K) the following are equiva-

lent:

(a) L has IPD,

(b) V(L) has AP,

(c) for any finitely indecomposable A, B, C in V(L) such that A is a

subalgebra of both B and C there exist D in V(L) and monomorphisms

g : B → D, h : C → D such that g(z) = h(z), for all z in A.
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Denote [∗]x = x & 2x. It is known that a transitive algebra is finitely
indecomposable iff it satisfies the condition:

[∗]x ∨ [∗]y = ⊤ ⇒ ([∗]x = ⊤ or [∗]y = ⊤).

We say that an element a of a transitive algebra A is an opremum of A if
a 6= ⊤, [∗]a = a and (∀x ∈ A)(x 6= ⊤ ⇒ [∗]x ≤ a). Recall that a transitive
algebra is subdirectly irreducible iff it has an opremum; it is easy to see that
an opremum is unique.

Say that a monomorphism α : A → B of two subdirectly irreducible
transitive algebras is o-preserving if it maps the opremum of A into opremum
of B. Another variant of the Restricted Amalgamation Property of a class
V was defined in [14] as follows:

RAP∗ for any o-preserving monomorphisms β : A → B and γ : A → C of
subdirectly irreducible algebras in V there exist an algebra D in V
and monomorphisms δ : B → D, ε : C → D such that δβ = εγ.

In [16] we proved

Theorem 3.5. For any logic L in NExt(K4) the following are equivalent:

(a) L has IPR,

(b) V(L) has RAP,

(c) V(L) has RAP∗.

4. Equivalence of IPR and CIP in some extensions of GL

In this section we prove that IPR implies CIP for any logic in the family
U(GL) defined in Section 1, and so CIP, IPD, RAP and PB2 are equivalent in
this family. Remember that these four properties are equivalent over S5 but
non-equivalent over S4 and even over Grz. More exactly, CIP does not follow
from IPD over S4, IPD does not follow from PB2 in finite slice logics over
Grz (and so over S4). Also PB2 differs from IPD in superintuitionistic and
positive logics[13, 15]. On the other hand, IPR implies PB2 over Grz.2 [19].

Recall that a modal logic L containing K4 is a logic of finite slice if L con-
tains a formula ϕn for some n, where ϕ0 = ⊥, ϕn+1 = pn+1 → 2(2¬pn+1 →
ϕn). For logics over GL, one can take some simpler formulas. Namely, a
logic L in NExt(GL) is a finite slice logic iff it contains a formula 2

n⊥ for
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some n. It is known that L is a logic of infinite slice if and only if it is
contained in the logic

G.3 = GL + ([∗]([∗]p → q) ∨ [∗]([∗]q → p)).

Recall that a logic L is said to be locally tabular if for any finite set of
propositional variables there are only finitely many formulas of these vari-
ables non-equivalent in L. The logic L is locally tabular if and only if the
variety V(L) is locally finite, i.e. any finitely generated algebra in V(L) is
finite.

Lemma 4.6 ([2, 22]). A logic L in NExt(K4) is locally tabular iff it is a logic

of finite slice.

Remember that we defined an upper part of NExt(GL) as follows:

U(GL) = {L ∈ NExt(GL) | L 6⊂ Gγ}.

The logic Gγ is defined by

Gγ = GL + {γk(p) | k < ω},

where for any k  0:

αk = 2
k+1⊥ & ¬2k⊥,

βk(p) = [∗](αk → p) ∨ [∗](αk → ¬p),

γk(p) = β0(p) & · · · & βk(p).

The logic Gγ is a logic of infinite slice, so the family U(GL) contains all
finite slice logics in NExt(GL).

Our interest to the logic Gγ arises from

Proposition 4.7 ([8, 14]). The logic Gγ has CIP and is the greatest among

infinite slice logics with IPR in NExt(GL).

It was proved in [8] (see also [4]) that the logic Gγ is neither finitely
axiomatizable nor finitely approximable. At the same time it is Kripke
complete and decidable. Its characterization by so-called ω-linear frames is
presented in [4]. We recall the definition. It is known [22] that the logic GL
is complete with respect to the class of GL-frames. A frame W = (W, R) is a
GL-frame if R is irreflexive and transitive and there is no infinite increasing
chain in W . A GL-frame W is said to be ω-linear if the set Fin(W ) = {x ∈
W | h(x) < ω} forms a chain. Here h(x) is the supremum of the cardinalities
of chains in W with origin at x.
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We note that the class U(GL) is decidable, i.e. there is an algorithm
which, for any finite system Ax of new axiom schemes, decides if the logic
GL + Ax belongs to U(GL). In order to show that, we use the following
lemma, which is a part of Theorem 12.10 of [4].

Lemma 4.8. Let A0 be any formula, r the number of subformulas of A0, and

let s = 2r. Then the following are equivalent:

(a) A0 ∈ Gγ,

(b) A0 is valid in all ω-linear frames,

(c) GL ⊢ (γs(⊥) & γs(p1) & · · · & γs(pk)) → A0, where p0, . . . , pk are all

the variables of A0.

Proposition 4.9. (1) There is an algorithm which, for any finite system Ax

of new axiom schemes, decides if the logic GL + Ax belongs to U(GL).

(2) There is an algorithm which, for any finite system Ax of new axiom

schemes, decides if the logic GL + Ax is a logic of finite slice.

Proof. Let L = GL + Ax. Denote by A0 the conjunction of all formulas
in Ax. We have L ∈ U(GL) if and only if A0 6∈ Gγ. By Lemma 4.8 and
decidability of GL [22], we obtain the statement (1). To prove (2), we note
that a logic L over GL is a logic of finite slice if and only if G.3 0 A0;
moreover, the logic G.3 is decidable [22]. ⊣

Now we show that IPR implies CIP in all logics of U(GL). First we prove
the following statements.

Lemma 4.10. Let A be a subdirectly irreducible diagonalizable algebra and

a ∈ A. Then a is an opremum if and only if a < ⊤ and 2a = ⊤.

Proof. Let A be subdirectly irreducible and Ω its opremum. Then Ω < ⊤
and [∗]Ω = Ω & 2Ω = Ω, i.e. Ω ≤ 2Ω.

Suppose that 2Ω < ⊤. Then [∗]2Ω ≤ Ω by the definition of opremum.
On the other hand, [∗]2Ω = 2Ω & 22Ω = 2Ω, so 2Ω ≤ Ω. Remember
that GL ⊢ 2(2p → p) → 2p. It follows that 2(2x → x) ≤ 2x for any
diagonalizable algebra and any x. We obtain

⊤ = 2(2Ω → Ω) ≤ 2Ω ,

so 2Ω = ⊤—a contradiction. Thus 2Ω = ⊤.
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For the converse, let a be any element in A such that a < ⊤ and 2a = ⊤.
We show that a = Ω. As Ω is an opremum, it is clear that a = [∗]a ≤ Ω.
Assume that a < Ω. Then we have Ω → a < ⊤, [∗](Ω → a) = (Ω → a) &
2(Ω → a) = (Ω → a) & ⊤ = (Ω → a) ≤ Ω, so ¬Ω ≤ Ω and Ω = ⊤ – a
contradiction. Thus a = Ω. ⊣

Lemma 4.11. Let a diagonalizable algebra A be finitely indecomposable.

Then A is subdirectly irreducible if and only if there is a ∈ A such that

a < ⊤ and 2a = ⊤.

Proof. If A is subdirectly irreducible, its opremum a satisfies the required
conditions by Lemma 4.10.

Assume that A is finitely indecomposable and there is a ∈ A such that
a < ⊤ and 2a = ⊤. We show that a is an opremum of A. It is clear that
[∗]a = a. We note that for any x ∈ A:

[∗]x ∨ [∗]([∗]x → a) = ⊤. (†)

Indeed, by distributivity we have

[∗]x ∨ [∗]([∗]x → a) = ([∗]x ∨ ([∗]x → a)) & ([∗]x ∨ 2([∗]x → a)) ≥

≥ ⊤ & 2a = ⊤.

Take any x 6= ⊤. Since A is finitely indecomposable, by (†) we have
[∗]([∗]x → a) = ⊤ and so [∗]x ≤ a. Thus A has an opremum and is
subdirectly irreducible. ⊣

Lemma 4.12. Let A be a subdirectly irreducible diagonalizable algebra, B

finitely indecomposable diagonalizable algebra and α a monomorphism of

A into B. Then B is subdirectly irreducible and α is o-preserving, i.e.

α(ΩA) = ΩB.

Proof. Let b = α(ΩA). Then, by Lemma 4.10, b < ⊤ and 2b = α(2ΩA) =
⊤. By Lemma 4.11, B is subdirectly irreducible. ⊣

Moreover, immediately by Lemma 4.11 we obtain

Lemma 4.13. Let a diagonalizable algebra A be finitely indecomposable,

A |= 2
n+1⊥ and A 6|= 2

n⊥. Then A is subdirectly irreducible and Ω = 2
n⊥

is its opremum.

Remember that U(GL) = {L ∈ NExt(GL) | L 6⊂ Gγ}.

Proposition 4.14. Let L ∈ U(GL) be a logic with IPR. Then L has CIP.
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Proof. Assume that L ∈ U(GL) possesses IPR. Then V(L) has RAP. We
consider two cases: (1) L is a logic of infinite slice and (2) L is a logic of
finite slice.

Case 1. It was proved in [14], Theorem 5.6, that for any infinite slice
logic L′ ∈ NExt(GL) with IPR, the variety V(L′) contains V(Gγ). Then
V(L) contains V(Gγ) and L ⊆ Gγ. Thus L = Gγ, so L possesses CIP by
Proposition 4.7.

Case 2. Let L be a logic of finite slice. There is a k such that L ⊢ 2
k⊥.

We prove that V(L) has the amalgamation property AP. Take any finitely
indecomposable algebras A, B, C such that A is a common subalgebra of
B and C. Take the least n such that A |= 2

n⊥. If n = 0, then all the
three algebras are degenerate, so there is an amalgam of these algebras. If
n > 0, then A is subdirectly irreducible and Ω = 2

n−1⊥ is an opremum of
A by Lemma 4.13. By Lemma 4.12 it follows that B and C are subdirectly
irreducible and the identity monomorphisms from A into B and C are o-
preserving. By RAP∗ there are some D ∈ V(L) and monomorphisms δ : B →
D and ε : C → D such that δ(x) = ε(x) for all x ∈ A. Thus, by Theorem 3.4,
V(L) has AP and L has IPD.

It was proved in [9] that IPD implies CIP in all finite slice logics in
NExt(GL). ⊣

Theorem 4.15. For any logic in U(GL), all the properties CIP, IPD, IPR,

B1, PB1, PB2 are equivalent.

Proof. By propositions 2.1 and 2.2, over GL we have

CIP ⇐⇒ B1 ⇐⇒ PB1 ⇒ IPD ⇒ PB2 ⇒ IPR.

The equivalence follows from Proposition 4.14. ⊣

Having in mind the duality between normal modal logics and varieties
of modal algebras, we can reformulate Theorem 4.15 in algebraic terms.
Immediately by Lemma 4.6 and Theorem 3.3 we obtain

Theorem 4.16. For any locally finite variety of diagonalizable algebras, the

following properties are equivalent: the amalgamation property, the super-

amalgamation property, the strong amalgamation property, the restricted

amalgamation property, the strong epimorphisms surjectivity.

Problem. What are relations between IPR, PB2, IPD and CIP in infinite slice
extensions of GL? Is it true that IPR ⇒ PB2, PB2 ⇒ IPD or IPD ⇒ CIP
in NExt(GL)?
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