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This is not exactly a scientific article or a review. Rather, it is an attempt
to revisit and retrospectively understand the origin and development of some
ideas that I have been a witness to. This approach was suggested to me by
Professor A. Yu. Muravitsky, to whom I am grateful.

This article is dedicated to Alexander Vladimirovich Kuznetsov, the sci-
entist who has, perhaps, accomplished more than anyone else in the studies of
non-classical propositional logics. He was very broad-minded and conducted
research in many areas of non-classical logics. Always in a main stream of
research, he very often defined what the main stream was. Unfortunately,
not all of his results were published in easily accessible scientific journals and
thus they are not known enough and recognized in the scientific community.
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Sometimes these results were independently rediscovered and published by
others. Often his results with the original proofs were presented at various
seminars and published only much later or never were published. To a cer-
tain degree, they were part of the Russian logical folklore. No one of his
students, myself including, has enough knowledge in all these areas in order
to write a comprehensive survey about Kuznetsov’s research.

When I started getting interested in mathematical logic in 1968, I was
doing research in polynomial representations of k-valued functions, being
unaware at the time of Kuznetsov’s 1957 results on this topic (see [52]).
Later, when I started my research in propositional logics I was impressed by
his paper [24]. Since it was hard for me to imagine that the same person
accomplished so much in so many different areas of logic and because the
family name Kuznetsov is quite common in Russia, I thought that there
were at least two different individuals named Kuznetsov. Only much later,
when we met and I began my doctorate in superintutionistc logics under
his direction, did I realize my confusion. In this paper, I will focus merely
on certain aspects of research in superintuitionistic propositional logics and
some precursors of this research.

I start with two definitions very well known to all of Kuznetsov’s stu-
dents. Philosophical Encyclopedia, one of the most authoritative sources
on philosophy and logic in Russia in the 1950s, defines Logic as a science
about acceptable means of reasoning. Kuznetsov liked this definition and
convinced me to like it too. He often quoted P. S. Poretsky’s definition of
Mathematical Logic as a science, which is logic by subject matter and math-
ematics by means. This short, elegant and quite exact definition captures
two main roots of mathematical logic: philosophical logic and mathematics.

The discovery of paradoxes at the beginning of the 20th century led to
revision of what is admissible in scientific reasoning and what is not. As a
result of this revision, the concept of algorithm and notions of computable
(i.e. recursive, primitive recursive, etc.) functions were introduced. All this
had led to emerging of new systems of logic and analysis of admissibility
of rules of inference. The monopoly of classical logic came to an end. In
order to support intuitionism, in 1930 A. Heyting had suggested the basis
for intuitionistic way of reasoning, which is known to-day as Intuitionistic
Logic. This logic immediately attracted attention of researchers.

No matter what Kuznetsov was researching, a connection to logic as a
means of reasoning was always very important to him, as well as a fini-
tist approach, that is, reasoning in the scope of limited means outlined by
D. Hilbert. He never completely accepted the approach to propositional logic
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through closure operator because the means of defining such an operator are
often too undetermined or not finitististic enough. This is why he was al-
ways more interested in the logic defined by calculus or at least by recursive
algebra. This is why he preferred to use the terms “modus rule”, “modus
completeness” instead of “structural rule”, “structural completeness”—in
order to emphasize that such a rule is defined by finite lists of formulas.
Also, he valued very highly the results on intermediate logics obtained by
A. Wroński who has more often presented them in terms of pseudo-Boolean
algebras rather than in terms of closure operators. It was very desirable for
Kuznetsov to know, whether a particular logic is decidable and how com-
plex the decision procedure is. This is why he had never been interested in
Kleene-Rose Logic of recursive realizability and, on the contrary, was very
interested in Wajsberg’s approach to Heyting’s propositional calculus, [48]
where along with a set of axioms and rules of inference, Wajsberg suggested
a decision procedure, the proof of the correctness of which seemed to be
finitary. He was disappointed when he learned that the Wajsberg’s proof of
the main lemma appeared to be incorrect (see [36, 1, 20]).

In the second half of the 20th century, a new twist was added to the re-
search of propositional logics—applications. In 1938 C. Shannon discovered
connection between Boolean functions and switching circuits. Since a switch
can be in two states, a switching circuit represents a Boolean function. Con-
nection of switching circuits in “function world” corresponds to superposition
of corresponding functions. This discovery led to the following important
questions:

1. If switching circuit represents a Boolean function, how can a circuit be
built with the same functionality by using smallest possible number of ba-
sic elements (minimization of Boolean functions)? Only when the notion
of NP-completeness was introduced, it was proven that the problem of
minimization is NP-complete. Therefore, implementation of algorithms
of minimization is difficult.

2. How can a circuit with a required functionality be built by using a given
set of elements (functional expressiveness, realization)?

3. What are the basic elements, by using which the circuit of any required
functionality can be built (functional completeness)?

The development of new types of logical elements (multi-state elements)
required a new logical apparatus that would “upgrade” the Boolean logic to
multi-valued logic. The transition to multi-valued logics was natural, since
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if the Boolean logic, the apparatus of Boolean functions, suits the regular
switching circuit needs, the apparatus of multi-valued logics is convenient
for needs of circuits of multi-state elements. The same issues of functional
expressiveness and completeness for k-valued logics attracted attention of
researchers.

In 1941 E. Post noticed that there were five functionally closed classes of
Boolean functions (now known as Post classes) that can be used to determine
whether a set of Boolean functions is functionally complete.1 Taking into
account that every Post class is decidable, there is a deciding procedure
to determine the functional completeness of any given finite set of Boolean
functions. In addition to that, Kuznetsov noticed something else (see [23]):

The Post classes are the maximal elements in partially ordered
(respective to inclusion) set of all non-trivial functionally closed
sets of Boolean functions.

Thus, the Post classes are (functionally) pre-complete. In other words,
adding a new element to a Post class will make it functionally complete; that
is, the closure of this enriched class by superposition of functions equals
the set of all functions. A. V. Kuznetsov introduced this notion of pre-
completeness in 1955, when reviewing Yablonsky’s results in (see [52]).

The concept of pre-completeness made a profound impact on many bran-
ches of logic and algebra. Kuznetsov generalized the notion of pre-
completeness, applying it to any algebraic systems, and proved that there
is a finite set of functionally pre-complete classes of multi-valued functions.
Realizing that finiteness of the set of functionally pre-complete classes is an
astonishing result, one can see that the possibility of applying the notion of
pre-completeness to other branches of logic might be even more important.
Indeed, it inspired many researchers to use the notion of pre-completeness
for different types of closure operations and they started investigating pre-
tabular logics, pre-locally tabular logics, pre-finitely approximable logics,
pre-structural complete logics etc.

The generalization of notions of the functional expressibility and com-
pleteness from 2- to k-valued logics was natural and relatively simple. The
definition of functional expressibility or completeness for a logic without fi-
nite characteristic matrix like the intuitionistic logic is much harder. The
problem is that certain functions cannot be defined in a finitistic manner.

1A set of functions is functionally complete if and only if for each of the Post classes,
this set contains at least one function that does not belong to this class.
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Kuznetsov solved this problem, using syntactical means to define express-
ibility. I believe, his first result on functional completeness in intuitionistic
logic was presented in [25]. He defined the expressibility of a formula F by
formulas F1, F2, . . . , Fn as an ability to infer the formula F from F1, F2, . . . ,
Fn and propositional variables, by using the rule of weak substitution (when
formula being substituted must be already inferred) and the rule of replace-
ment by equivalent. Article [25] gave a jump start to researchers working on
expressibility and completeness in the field of propositional logics (e.g., see
[40, 41, 10, 27]).

As mentioned above, the inferential side of logic was always important
to Kuznetsov. So in [3], he introduced the notion of a Regular Propositional
Calculus (RPC). This notion is general enough and yet is not a pure mathe-
matical abstraction but rather carries a logical sense. Namely, according to
Kuznetsov, a RPC is a finite list of axioms and two inference rules, modus
ponens and substitution, in the ordinary propositional language with con-
nectives: &, ∨, ⊃, ¬. Thus two RPCs can be different only with their axiom
sets. As we see, a calculus for him was just a way to finitarily define a logic
as a set of deducible formulas. He always paid a special attention to the ex-
treme cases: the empty calculus, that is, one whose axiom set is empty, and
the absolutely contradictory calculus, the axiom set of which contains one
axiom, p. He distinguished the terms superintuitionistic and intermediate
as applied to extensions of the intuitionistic propositional logic, favoring the
former.2 In [24] Kuznetsov formulated three algorithmic problems what in
a way changed a logical paradigm (in Kuhn’s sense):

1. General problem of equivalence: to construct an algorithm that by 2
RPCs I1 and I2 recognizes whether I1 and I2 are equivalent: define the
same logics

2. General problem of decidability: to construct and algorithm that for RPC
I and formula A tells whether A is deducible in I.

3. General problem of completeness: to construct an algorithm that by 2
RPCs I1 and I2 such that I1 ≤ I2 recognizes whether I1 and I2 are
equivalent, i.e. I1 is complete in I2.

The algorithmic problems were raised up to the next level. In addition
to the question, whether a particular logic is decidable, Kuznetsov raised

2The distinction is that the former includes the logic of the absolutely contradictory
calculus but the latter does not.
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the question, whether the property of decidability itself is decidable. In
fact, Kuznetsov was a great master of introducing generalizations that would
include everything possible, but he never crossed the line of a common logical
sense. The notion of a pre-complete class for similar algebraic systems, that
of a RPC, and that of means of separability [30] are good examples of his
approach.

In [24] Kuznetsov proved that the problems 1–3 above are undecidable.
Furthermore, the problem of recognition, whether any given RPC is su-
perintuitionistic, is also undecidable. In his proof, the ability to use a
non-superintuitionistic calculi was essential. It was natural to ask, whether
this problem is decidable for any Superintuitionistic Propositional Calculus
(SPC). In [3, p. 52] Kuznetsov formulated the following conjecture (despite
the fact that the set of all SPCs as a poset is rather complex; see [46]):
Every SPC is finitely approximable (which means that every SPC is decid-
able). The problem, whether every SPC is finitely approximable, became
known as Kuznetzov problem. In [17] R. Harrop noted that it was unknown,
whether there were undecidable SPCs. In the footnote on p. 288, R. Harrop
mentioned that paper [24] was unavailable to him and he is merely familiar
with the review of it in the Mathematical Reviews. The questions asked by
Kuznetsov and Harrop prompted a lot of further research on SPCs.

The notion of a finitely approximable logic is well known. The idea to
use a set of finite matrices to validate formulas when logic is not tabular
goes back to [19] (see also [35, 15, 42]). The notion was introduced in [24]
and put in the center of stage. The term finite model property is more pop-
ular nowadays. It was introduced in 1958 by R. Harrop [14]. Kuznetsov
published his paper in 1963 and it does not contain a reference to the Har-
rrop’s paper. I believe that at the time of publication, not to say at the
time when the Kuznetsov’s research had been conducted and presented at
the Moscow seminar on mathematical logic, he was not familiar with the
Harrop’s paper. But, in any case, despite the fact that the terms finite
model property and finite approximability became synonyms today, these
notions are different. The difference is that the term model, as R. Harrop
used it, is equivalent to the notion of logical matrix whose essential part is
a set of designated elements. Obviously, for any superintuitionistic logic, its
model in the above sense can be replaced with a pseudo-Boolean algebra.
Also, Kuznetsov mentioned to me once that the term model had already
been used in several different meanings which makes the term finite model
property ambiguous. I think that he might have borrowed the term finite
approximability from algebra, specifically from group theory, in particular,
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from A. I. Mal’cev (see [34]). I believe that one of the reasons that finite
model property won the ‘term contest’ is that it is more comprehensible in
English than its counterpart.

It is interesting that a notion equivalent to approximability, was intro-
duced much earlier by J. C. C. McKinsey. In his paper [35] published in 1943,
J. C. C. McKinsey defined the notion of finite reducibility as follows:

“The set of formulas A is finitely reducible with respect to class
of algebras A if every formula α of A, which is true of every finite
algebra of A, is true of A.” [35, p. 69]

Two paragraphs further, McKinsey states the following theorem:

“If A is class of sentences, that is finitely reducible with respect
to axiomatizable class A of algebras, then there is a decision
method for A.”

Kuznetsov told me once that the McKinsey’s paper became available to
him much later after the work on [24] had been completed, partly because
during the World War II the delivery of the issues of Journal of Symbolic
Logic was discontinued. On the other hand, when he was working on his
address to the 17th International Congress of Mathematicians, I pointed out
to him that the term finite model property might, perhaps, sound better
than finite approximability for the English speaking audience. But he was
skeptical about that and favored the latter term.

In 1965 A. S. Troelstra published a very exciting result: Every intermedi-
ate logic is a limit of some monotonic decreasing sequence of tabular logics.
This obviously meant that every intermediate logic is finitely approximable
and, hence, all SPCs are decidable. The problem was that this statement
turned out to be wrong: later in [49] V. A. Yankov3 proved that there are
intermediate logics which are not finitely approximable, but since these log-
ics are not finitely axiomatizable, i.e., are not defined by SPC, the question
about finite approximability of SPCs remained open. He also proved [50, 51]
that there is a continuum of intermediate logics that are not finitely approx-
imable, by building a set of strongly independent formulas: no one formula
of this set can be deduced from the rest. It also meant that the structure of
the intermediate logics is much richer than it had been anticipated.

In order to build a strongly independent set of formulas, Yankov used
(previously introduced by him [49]) the notion of a characteristic formula.

3Or “Jankov”—there are two English spellings of his name in literature.
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These formulas are linked to pseudo-Boolean algebras, which became com-
monly accepted algebraic semantics for superintuitionistic logics. Among
all pseudo-Boolean algebras, one subclass plays a special role. They, called
Gödelean algebras, are pseudo-Boolean algebras that satisfy the following
condition (discovered by Gödel in his work on the intuitionistic proposi-
tional calculus): if disjunction of any two elements is equal to the unit4,
then at least one of these two elements equals the unit. In [49] Yankov in-
troduced the notion of a Gödelean implicative structure, that is to say, of a
Gödelean pseudo-Boolean algebra. He noticed that a finite pseudo-Boolean
algebra is Gödelean if and only if it has a pre-top element. For each finite
algebra with a pre-top element, one can build a characteristic formula so
that refutability of any formula F on this algebra is equivalent to deducibil-
ity of the characteristic formula from the formula F. It is very interesting
because typically a deduction is used for proving the validity of formulas,
while here deduction is used to refute a formula by deducing something that
is not valid on a particular pseudo-Boolean algebra.5

The negative answer to the hypothesis in [24] was given in [26] by con-
structing an example of SPC without the finite approximability. Despite the
fact that this discovery was important in its own right, there is something
else that is, perhaps, even more important: a link between superintuition-
istic logics and varieties of pseudo-Boolean algebras.6 With each superin-
tuitionistic logic, one can associate a variety of all pseudo-Boolean algebras
such that all formulas from this logic are valid on each algebra in this va-
riety. Conversely, each variety of pseudo-Boolean algebras corresponds to
the superintuitionistic logic, the formulas of which are valid on the free al-
gebras of this variety. In fact, the free algebra with the countable set of
free generators is isomorphic to the Lindenbaum algebra of the correspond-
ing superintuitionistic logic. Thus, finite approximability of the logic is the
same as finite approximability of free algebras of the corresponding variety.
This idea about dualism between propositional logics and varieties of their
models had a profound influence on researchers probably in all classes of
propositional logics. It allowed them to have at their disposal both notions
and techniques developed in logic and universal algebra.

4The unit of a pseudo-Boolean algebra is its greatest element.
5In [31] J. Łukasiewicz defined a calculus for the non-theorems of the classical propo-

sitional logic. The Łukasiewicz’s calculus was formulated not purely in terms of the new
deducibility, but also included the deducibility in the classical logic.

6To some extent, the idea is traced back to McKinsey and Tarski.
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The problem of decidability of SPCs is equivalent to the problem of
deducibility in IPC (with substitution rule): Is there a decision procedure
determining for any two propositional formulas, whether one of them is
deducible from the other?

The hope to answer this question positively by using finite approxima-
bility failed, since not every SPC is finitely approximable. The question had
remained open until the negative answer was given by V. B. Shehtman in
[38] by constructing an undecidable SPC.

In [12] V. Ya. Gerčiu proved that the non-finitely approximable SPC
found in [26] is not an exception. He constructed an infinite segment (in
the poset of all SPCs), no calculus from which is finitely approximable. In
contrast to the “negative” results that showed that class of all SPCs is much
more complex than it had been anticipated, L.L. Maksimova proved [33]
that there are just three pre-tabular superintuitionistic logics. This means
that the problem of recognition, whether SPC is tabular, is decidable.

In [13] it was suggested to approach investigation of SPLs by studying
finite slices. A slice is defined by the cardinality of a longest chain in a
pseudo-Boolean algebra on which all the formulas of this logic are valid. In
[28] Kuznetsov announced that every finitely generated pseudo-Boolean al-
gebra such that not every finite chain algebra is embedded in it is finite.7

This implies that the logics of finite slices are finitely approximable. An-
other notion in superintuitionistic logics, adapted from algebra, was that
of local tabularity. A logic is called locally tabular if for each finite set of
propositional variables any set of non-equivalent formulas containing only
these variables is also finite. In other words, the corresponding variety of
pseudo-Boolean algebras is locally finite, when all its free algebras with fi-
nite number of generators are finite. Some results on locally tabular SILs
can be found in [8]. One important property of the intuitionistic calcu-
lus is the disjunction property: if disjunction of two formulas is provable
in the intuitionistic calculus then at least one of these formulas is prov-
able. Obviously, this property pertains to intuitionistic criticism of the
foundations of mathematics. From the algebraic standpoint this property
being considered for a particular logic means that any free algebra of the
corresponding variety of pseudo-Boolean algebras is Gödelian. In [32] the
algebraic criteria of disjunctive property was discovered and in [21] it was
proven that there is no maximal superintuitionistic logic with the disjunction
property.

7Another proof of this theorem can be found in [6].
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Usually, a propositional calculus is defined as a set of axioms along with
a set of rules of inference. An inference rule that preserves the set of provable
(in this calculus) formulas is called admissible (in this calculus). Let IPC be
an intuitionistic propositional calculus with two postulated rules of inference,
modus ponens and substitution. In [16] R. Harrop noticed that besides the
postulated rules the rule

¬A ⊃ (B ∨ C)/(¬A ⊃ B) ∨ (¬A ⊃ C)

preserves the set of formulas provable in IPC, that is, is admissible, but the
corresponding implication

(¬A ⊃ (B ∨ C)) ⊃ ((¬A ⊃ B) ∨ (¬A ⊃ C))

is not provable in IPC, that is, the rule above is not derivable. It seemed
to be an isolated example. However, in 1972 during my discussion with
Kuznetsov regarding the problem of deducibility in IPC, he mentioned that
there is perhaps another example of admissible non-derivable in IPC rule;
namely, one that corresponds to the characteristic formula of the 7-element
cyclic pseudo-Boolean algebra,8 which is:

(¬¬A ⊃ A) ⊃ (A ∨ ¬A)/¬A ∨ ¬¬A

Then, he linked this rule to the quasi-equality

(¬¬A ⊃ A) ⊃ (A ∨ ¬A) = 1 ⇒ ¬A ∨ ¬¬A = 1,

which is valid on the free pseudo-Boolean algebras. Naturally, the following
question emerged: Is there an algorithm to find whether a given rule is ad-
missible in IPC? Since not so many admissible non-derivable rules had been
known, Kuznetsov thought at that time that the variety of rules admissible
in IPC should have had a simple description. For instance, there might exist
a finite basis for the admissible rules. And, if this hypothesis were true,
then the problem of the algorithmic recognition of admissibility would have
been resolved positively. He set me a task to try to prove the existence of a
finite basis. Several years later after this discussion, when Friedman’s paper
[11] was published, the problem of the recognition of admissibility in IPC
became known as the 40th Problem of Friedman. The fact that IPC, as

8This formula is also known as Scott Formula (see [22]). The rule corresponding to it
is also known as Lemmon-Scott Rule (see [45]).
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it follows from the above examples, is not structurally complete, that is to
say, not every structural rule admissible in IPC is also derivable, while the
classical propositional logic is structurally complete, made it interesting to
study, which superintuitionistic logics are structurally complete and whether
there is a decision procedure to determine by IPC whether it is structurally
complete.9 And the idea of pre-completeness helped one more time. In [4]
the complete list of all structurally pre-complete superintuitionistic logics
was presented and, since there are only 5 pre-complete logics, the problem
of the structural completeness is decidable.

Let us call a modus variation a pair 〈L, R〉, where L is a propositional
logic and R is a set of admissible in L structural rules. Two modus vari-
ations 〈L, R1〉 and 〈L, R2〉 are equivalent if for any formulas A and B, B
can be deduced from A using rules from R1 if and only if B can be deduced
from A using rules from R2. The lattice of all modus variations of super-
intuitionistic logics is dual isomorphic to the lattice of all quasi-varieties of
pseudo-Boolean algebras. Logic L is structurally complete if there is only one
modus variation of this logic. The correspondence between modus variations
and quasi-varieties works in the same way as the correspondence between
logics and varieties.

Characteristic formulas introduced by Yankov in [49] has been extremely
helpful in the exploration of superintuitionistic logics. If we have a finite irre-
ducible algebra, the characteristic formula is the implication, the antecedent
of which represents the tables that define all operations for the elements of
this algebra and the consequent of which is the pre-top element.10 If instead
of implication we use a rule we will get the characteristic rule of the alge-
bra. In other words, if we have a finitely defined irreducible algebra where
equalities

A1 = 1, A2 = 1, . . . , An = 1

define this algebra and B represents the unique pre-top element (which exists
since algebra is irreducible) then

A1 = 1, A2 = 1, . . . , An = 1 ⇒ B = 1

is a characteristic quasi-equality of this algebra. It turned out that ev-
ery finitely presented pseudo-Boolean algebra is finitely approximable and,

9The notion of structural completeness was introduced in [37].
10It is a well-known fact that a pseudo-Boolean algebra is irreducible if and only if it

has a pre-top element.
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therefore, every irreducible finitely presented pseudo-Boolean algebra is fi-
nite (see [6]).

The idea of using characteristic rules allowed to prove not only that IPC
has many modus variations, but that it is the case for much simpler logic
such as the logic LZ of infinite one-generated pseudo-Boolean algebra [3].
There are continuum different modus variations of this logic, even though
all the rules that are valid in LZ are consequences of axioms of LZ (see [3])
and generalized Mints rule (see [36]):

((A ⊃ B) ⊃ (A ∨ C)) ∨ D/((A ⊃ B) ⊃ A) ∨ ((A ⊃ B) ⊃ C) ∨ D.

There is another approach to the investigation of structural rules that
uses a generalized notion of logical matrix. Traditionally, a logical matrix is a
triplet M = 〈A, Σ, ∆〉, where A is a set of elements, Σ is a set of operations on
A that represent connectives, and ∆ is a set of designated elements. Formula
A is valid on M if the result of each interpretation of A belongs to ∆. In
order to use matrices for modus variations the definition of a matrix should
be generalized as follows: instead of the subset ∆, a closure operator Cn
should be used with the condition ∆ = Cn∅.11 Using generalized matrices
one can prove that there is an algorithm deciding for two finite generalized
matrices, whether they define the same modus variation ([2, 53]).

The third way of looking at modus variations is to introduce [5, 7] an
additional modal-like operator � on Lindenbaum algebra L of IPC, which
would represent in a way deducibility in IPC. This operator can de defined
as follows:

�x =

{

1 if x = 1,

0 otherwise.

The following axioms

�A ⊃ A

�A ⊃ ��A

�(A ⊃ B) ⊃ (�A ⊃ �B)

¬�¬�A ⊃ �A

�(A ∨ B) ⊃ (�A ∨ �B)

and additional rule A/�A are valid. Let L
� denote this algebra and LL� is

the logic of the algebra L
�.

11This type of matrices was introduced in [39].
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The axioms look fairly familiar. The last one represents Gödel disjunc-
tion theorem. The rule A/B is represented in LL� by the formula �A ⊃ �B.
Logic LL� represents admissibility in the following sense:

There is an algorithm that for each formula A builds a deductive
equivalent in LL�, a formula of the following form:

n

&
i=1

(�Ai ⊃ �Bi)

This means that every formula is deductively equivalent in LL� to a con-
junction of formulas representing rules. The main question was whether
LL� is decidable (H. Friedman) or, in other words, whether LL� is finitely
axiomatizable (which is related to the A. V. Kuznetsov’s hypothesis about
existence of finite basis for admissible rules).

In 1979 at the 2nd Soviet-Finnish Symposium on Modal Logics, I formu-
lated the following conjecture:

Logic LL� can be defined by the above five axioms and by the
formulas:

�(An ⊃ (s ∨ t)) ⊃ �(
n

∨

j=1

(An ⊃ pj) ∨ (An ⊃ s) ∨ (An ⊃ t)) (∗)

where An =
n

&
i=1

(pi ⊃ qi).

The positive answer to Friedman’s problem was given by V. V. Rybakov
[44] (see also [43]). The fact that the rules corresponding to formulas (∗)
constitute the basis of admissible in IPC rules was proved in [18], where these
rules are called Visser’s rules (since they were reintroduced by A. Visser
[47]). But since the means of inference in LL� are stronger than regular, the
conjecture that LL� may be finite axiomatizable remains open.

Kuznetsov presented a summary his school had conducted by 1974 in [29].
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