Robert Sochacki

REJECTED AXIOMS FOR THE "NONSENSE-LOGIC" W AND THE K-VALUED LOGIC OF SOBOCIŃSKI

Abstract

In this paper rejection systems for the "nonsense-logic" \mathbf{W} and the k-valued implicational-negational sentential calculi of Sobociński are given. Considered systems consist of computable sets of rejected axioms and only one rejection rule: the rejection version of detachment rule.

Keywords: rejected axioms, the logic W , the k-valued sentential calculi of Sobociński.

1. The logic W

The logic W which is considered in [1] is one of the so called "nonsense-logics" systems. The primitive terms of this logic are: implication ' \rightarrow ', conjunction ' \wedge ', disjunction ' V ' and negation ' \neg '. The set \mathbf{W} of theses of this logic is the content of the following matrix

$$
\mathfrak{M}_{\mathbf{W}}=\left(\left\{0, \frac{1}{2}, 1\right\},\{1\},\{c, k, a, n\}\right),
$$

where functions $c, k, a, n:\left\{0, \frac{1}{2}, 1\right\} \longrightarrow\left\{0, \frac{1}{2}, 1\right\}$ for ' \rightarrow ', ' \wedge ', ' V ' and ' \neg ', respectively, are defined as follows:

$$
c(x, y)= \begin{cases}0, & \text { if } x=1 \text { and } y \neq 1 \\ 1, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
k(x, y) & = \begin{cases}\min (x, y) & \text { if } x \neq \frac{1}{2} \text { and } y \neq \frac{1}{2} \\
\frac{1}{2} & \text { otherwise }\end{cases} \\
a(x, y) & = \begin{cases}\max (x, y) & \text { if } x \neq \frac{1}{2} \text { and } y \neq \frac{1}{2} \\
\frac{1}{2} & \text { otherwise }\end{cases} \\
n(x) & =1-x
\end{aligned}
$$

i.e. $\mathbf{W}=\mathrm{E}\left(\mathfrak{M}_{\mathbf{W}}\right)$, i.e. $\alpha \in \mathbf{W}$ iff $h^{e}(\alpha)=1$, for any valuation $e:$ At \longrightarrow $\left\{0, \frac{1}{2}, 1\right\}$, where At is the set of all propositional variables, while h^{e} is the standard homomorphic extension of e to the set of all formulas.

Of course, if $\ulcorner\alpha \rightarrow \beta\urcorner \in \mathbf{W}$ and $\alpha \in \mathbf{W}$, then $\beta \in \mathbf{W}$.
Now, we introduce new functors as follows:

$$
\begin{aligned}
& F_{0}(p, q)=(p \rightarrow q) \rightarrow[(p \vee q) \rightarrow(p \wedge q)] \\
& F_{\frac{1}{2}}(p, q)=[(\neg p \rightarrow(p \vee q)) \rightarrow(p \vee q)] \vee(p \rightarrow q), \\
& F_{1}(p, q)=F_{0}(q, p)
\end{aligned}
$$

To this functors there correspond in the matrix $\mathfrak{M}_{\mathbf{W}}$ the following functions:

$$
\begin{aligned}
& f_{0}(x, y)= \begin{cases}0 & \text { if } x=0 \text { and } y=1 \\
1 & \text { if } x \neq 0 \text { or } y \neq 1\end{cases} \\
& f_{\frac{1}{2}}(x, y)= \begin{cases}0 & \text { if } x=1 \text { and } y=\frac{1}{2} \\
1 & \text { if } x \neq 1 \text { or } y \neq \frac{1}{2}\end{cases} \\
& f_{1}(x, y)= \begin{cases}0 & \text { if } x=1 \text { and } y=0 \\
1 & \text { if } x \neq 1 \text { or } y \neq 0\end{cases}
\end{aligned}
$$

The rejected axioms for the logic \mathbf{W} are assumed to be the formulas: $F_{0}(p, q), F_{\frac{1}{2}}(s, r), F_{1}(t, u)$ or generalized disjunctions of these formulas, i.e. the expressions of the form:

$$
F_{i}(p, q) \vee F_{j}(r, s) \vee \cdots \vee F_{l}(t, u)
$$

where $i, j, \ldots, l \in\left\{0, \frac{1}{2}, 1\right\}$. It is easy to see that the set of these axioms is computable.

Let \mathbf{W}^{*} be the smallest set of formulae which contains all rejected axioms and is closed under the rejection version of detachment rule (modus ponens):

$$
\begin{equation*}
\text { if }\ulcorner\alpha \rightarrow \beta\urcorner \in \mathbf{W} \text { and } \beta \in \mathbf{W}^{*} \text {, then } \alpha \in \mathbf{W}^{*} . \tag{RMP}
\end{equation*}
$$

Theorem 1. For any formula $\alpha: \alpha \notin \mathbf{W}$ iff $\alpha \in \mathbf{W}^{*}$.
Proof. " \Rightarrow " Suppose that $\alpha \notin \mathbf{W}$, i.e. $\alpha \notin \mathrm{E}\left(\mathfrak{M}_{\mathbf{W}}\right)$, where $\alpha=\alpha\left(p_{i_{1}}, p_{i_{2}}\right.$, $\ldots, p_{i_{n}}$), for $i_{1}, \ldots, i_{n} \in \mathbb{N}^{+}$. This means that there is a valuation e_{0} such that $h^{e_{0}}(\alpha) \leqslant \frac{1}{2}$. Let us assume that $e_{0}\left(p_{i_{1}}\right)=l_{1}, \ldots, e_{0}\left(p_{i_{n}}\right)=l_{n}$, where l_{1}, $\ldots, l_{n} \in\left\{0, \frac{1}{2}, 1\right\}$. In order to reject the formula α we consider the following rejected axiom:

$$
\chi_{0}:=F_{l_{1}}\left(p_{i_{1}}, q\right) \vee F_{l_{2}}\left(r, p_{i_{2}}\right) \vee \cdots \vee F_{l_{n}}\left(p_{i_{n}}, s\right),
$$

where the formula $F_{l_{k}}\left(r, p_{i_{k}}\right), k \in\{1,2, \ldots, n\}$ occurs in χ_{0} only if $l_{k}=\frac{1}{2}$.
It is easy to see that $h^{e_{0}}\left(\chi_{0}\right)=0$. Moreover, $\left\ulcorner\alpha \rightarrow \chi_{0}\right\urcorner \in \mathrm{E}\left(\mathfrak{M}_{\mathbf{W}}\right)$, i.e. $\left\ulcorner\alpha \rightarrow \chi_{0}\right\urcorner \in \mathbf{W}$. Thus, $\alpha \in \mathbf{W}^{*}$, by the rejection rule (RMP).
$» \Leftarrow "$ It is easy to prove by induction on the length of a proof. If α is a rejected axiom, then $\alpha \notin \mathrm{E}\left(\mathfrak{M}_{\mathbf{W}}\right)$, i.e., $\alpha \notin \mathbf{W}$. Suppose that for some $\beta \in \mathbf{W}^{*}$ we have $\ulcorner\alpha \rightarrow \beta\urcorner \in \mathbf{W}$. Then by the inductive hypothesis we have that $\beta \notin \mathbf{W}$. So also $\beta \notin \mathbf{W}$.

Example 1. Let us consider the formula $\alpha={ }^{'} p_{1} \rightarrow\left[\left(p_{1} \vee p_{2}\right) \wedge\left(p_{3} \wedge p_{1}\right)\right]$ '. Under the valuation e such that $e_{0}\left(p_{1}\right)=1, e_{0}\left(p_{2}\right)=\frac{1}{2}, e_{0}\left(p_{3}\right)=0$, we have $h^{e_{0}}(\alpha)=0$. In order to reject the formula α we consider the rejected axiom χ_{0} of the form:

$$
F_{0}\left(p_{3}, q\right) \vee F_{\frac{1}{2}}\left(r, p_{2}\right) \vee F_{1}\left(p_{1}, s\right)
$$

We have $h^{e_{0}}\left(\chi_{0}\right)=0$ and $\left\ulcorner\alpha \rightarrow \chi_{0}\right\urcorner \in \mathrm{E}\left(\mathfrak{M}_{\mathbf{W}}\right)$, i.e. $\left\ulcorner\alpha \rightarrow \chi_{0}\right\urcorner \in \mathbf{W}$. Now, using the rule (RMP), we obtain $\alpha \in \mathbf{W}^{*}$.

2. The k-valued implicational-negational sentential calculus of Sobociński

Let us consider the k-valued ($k \geqslant 3$) implicational-negational (' \rightarrow ', ' \neg ') sentential calculus of Sobocinski [2]. The set \mathbf{S}_{k} of theses of this calculus is the content of the following matrix

$$
\mathfrak{M}_{\mathbf{S}_{k}}=(\{0,1, \ldots, k-1\},\{1, \ldots, k-1\},\{c, n\}),
$$

where functions $c, n:\{0, \ldots, k-1\} \longrightarrow\{0, \ldots, k-1\}$ for ' \rightarrow ' and ' \neg ', respectively, are defined as follows:

$$
\begin{aligned}
c(x, y) & = \begin{cases}y & \text { if } x \neq y \\
k-1 & \text { if } x=y\end{cases} \\
n(x) & = \begin{cases}x+1 & \text { if } x<k-1 \\
0 & \text { if } x=k-1\end{cases}
\end{aligned}
$$

The axiomatization of this calculus is given in [2]. Similarly, as in the case of the logic W , we shall show that for this calculus, any formula which is not a thesis is rejected.

Since $\mathbf{S}_{k}=\mathrm{E}\left(\mathfrak{M}_{\mathbf{S}_{k}}\right)$, we have: if $\ulcorner\alpha \rightarrow \beta\urcorner \in \mathbf{S}_{k}$ and $\alpha \in \mathbf{S}_{k}$, then $\beta \in \mathbf{S}_{k}$.
We adopt the following new functors:

$$
\begin{align*}
G_{0}(p, q) & =p \rightarrow \neg(q \rightarrow q), \\
G_{1}(p, q) & =p \rightarrow \neg^{2}(q \rightarrow q), \\
\vdots & \\
G_{k-2}(p, q) & =p \rightarrow \neg^{k-1}(q \rightarrow q)
\end{align*}
$$

where the symbol \neg^{i} (for $i \in \mathbb{N}^{+}$) is defined as follows: $\neg^{1}=\neg$ and $\neg^{i+1}=$ $\neg \neg^{i}$. The following functions correspond in $\mathfrak{M}_{\mathbf{S}_{k}}$ to functors listed in (\dagger):

$$
\begin{aligned}
& g_{0}(x, y)= \begin{cases}0 & \text { if } x \neq 0 \\
k-1 & \text { if } x=0\end{cases} \\
& g_{1}(x, y)= \begin{cases}1 & \text { if } x \neq 1 \\
k-1 & \text { if } x=1\end{cases} \\
& \vdots \\
& g_{k-2}(x, y)= \begin{cases}k-2 & \text { if } x \neq k-2 \\
k-1 & \text { if } x=k-2\end{cases}
\end{aligned}
$$

Moreover, on the basis of the function n we have:

$$
n\left(g_{0}(x, y)\right)= \begin{cases}1 & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

$$
\begin{aligned}
n\left(g_{1}(x, y)\right) & = \begin{cases}2 & \text { if } x \neq 1 \\
0 & \text { if } x=1\end{cases} \\
& \vdots \\
n\left(g_{k-2}(x, y)\right) & = \begin{cases}k-1 & \text { if } x \neq k-2 \\
0 & \text { if } x=k-2\end{cases}
\end{aligned}
$$

We shall define the next new functors:

$$
\begin{align*}
& F_{k-1}(p, q)= \neg G_{0}(q, p) \rightarrow\left(\neg G_{1}(q, p) \rightarrow(\ldots\right. \\
&\left.\left.\left(\neg G_{k-3}(q, p) \rightarrow\left(\neg G_{k-2} \rightarrow \neg G_{k-2}(p, q)\right)\right)\right)\right), \\
& F_{k-2}(p, q)= F_{k-1}(p, q) \rightarrow\left(\neg G _ { 0 } (q , p) \rightarrow \left(\neg G_{1}(q, p) \rightarrow(\ldots\right.\right. \\
&\left.\left.\left.\left(\neg G_{k-3}(q, p) \rightarrow \neg G_{k-2}(p, q)\right)\right)\right)\right) \\
& F_{k-3}(p, q)= F_{k-1}(p, q) \rightarrow\left(F _ { k - 2 } (p , q) \rightarrow \left(\neg G_{0}(q, p) \rightarrow(\ldots\right.\right. \\
&\left.\left.\left.\left(\neg G_{k-4}(q, p) \rightarrow \neg G_{k-2}(p, q)\right)\right)\right)\right) \\
& \vdots \\
& F_{1}(p, q)= F_{k-1}(p, q) \rightarrow\left(F _ { k - 2 } (p , q) \rightarrow \left(\ldots \left(F_{2}(p, q)\right.\right.\right. \\
&\left.\left.\rightarrow\left(\neg G_{0}(q, p) \rightarrow \neg G_{k-2}(p, q)\right)\right)\right) \\
& F_{0}(p, q)= F_{k-1}(p, q) \rightarrow\left(F_{k-2}(p, q) \rightarrow\left(\ldots\left(F_{1}(p, q) \rightarrow \neg G_{k-2}(p, q)\right)\right)\right)
\end{align*}
$$

The following functions correspond in the matrix $\mathfrak{M}_{\mathbf{S}_{k}}$ to these functors:

$$
f_{l}(x, y)= \begin{cases}0 & \text { for } x=k-2 \text { and } y=l \\ k-1 & \text { for } x \neq k-2 \text { or } y \neq l\end{cases}
$$

where $0 \leqslant l \leqslant k-1$.
Now, we shall define the very useful functor A_{S} :

$$
A_{\mathrm{S}}(p, q)=\neg^{2}(p \rightarrow p) \rightarrow\left[(q \rightarrow p) \rightarrow \neg G_{0}(p, q)\right] .
$$

It is easy to verify that the following function a_{S} correspond in the matrix $\mathfrak{M}_{\mathbf{S}_{k}}$ to the functor A_{S}. This function has a special property:

$$
a_{\mathrm{S}}(x, y)=\max \{x, y\}, \text { for } x, y \in\{0, k-1\} .
$$

The rejected axioms are assumed to be the formulas of the form (\ddagger) and expressions formed by the functor A_{S}, i.e.:

$$
F_{i}(p, q) \text { or } A_{\mathrm{S}}\left(\left(F_{i}(r, p), F_{j}(q, s), \ldots, F_{t}(u, v)\right)\right. \text {, }
$$

for $i, j \ldots, t \in\{0,1, \ldots, k-1\}$, where

$$
\begin{aligned}
A_{\mathrm{S}}(\alpha) & =\alpha, \\
A_{\mathrm{S}}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =A_{\mathrm{S}}\left(A_{\mathrm{S}}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right), \alpha_{n}\right), \text { for } n \geqslant 2 .
\end{aligned}
$$

Let \mathbf{S}_{k}^{*} be the smallest set of formulae which contains all rejected axioms and is closed under the rejection version of detachment rule (modus ponens):

$$
\begin{equation*}
\text { if }\ulcorner\alpha \rightarrow \beta\urcorner \in \mathbf{S}_{k} \text { and } \beta \in \mathbf{S}_{k}^{*} \text {, then } \alpha \in \mathbf{S}_{k}^{*} \text {. } \tag{RMP}
\end{equation*}
$$

Theorem 2. For any formula α : $\alpha \notin \mathbf{S}_{k}$ iff $\alpha \in \mathbf{S}_{k}^{*}$.
The proof of this theorem is very analogous to the proof of Theorem 1, so it will be omitted.

Example 2. (i) Let $k \geqslant 3$. Consider $\alpha=$ ' $\left(p_{1} \rightarrow p_{2}\right) \rightarrow\left(p_{3} \rightarrow p_{1}\right)$ '. The following valuation e_{0} falsifies the formula α : $e_{0}\left(p_{1}\right)=0, e_{0}\left(p_{2}\right)=e_{0}\left(p_{3}\right)=$ 1. Under this valuation we have $h^{e_{0}}(\alpha)=0$. In order to reject the formula α we adopt the following rejected axiom:

$$
\chi_{0}:=A_{\mathrm{S}}\left(F_{0}\left(q, p_{1}\right), F_{1}\left(r, p_{2}\right), F_{1}\left(s, p_{3}\right)\right) .
$$

For any valuation $e:$ At $\longrightarrow\{0,1, \ldots, k-1\}$ we have $h^{e}\left(\alpha \rightarrow \chi_{0}\right)=k-1$. So $\left\ulcorner\alpha \rightarrow \chi_{0}\right\urcorner \in \mathbf{S}_{k}$. Using (RMP), we obtain that $\alpha \in \mathbf{S}_{k}^{*}$.
(ii) Let us notice that for $k \geqslant 5$ the following valuation e_{1} falsifies the formula α from (i): $e_{1}\left(p_{1}\right)=0, e_{1}\left(p_{2}\right)=3$, and $e_{1}\left(p_{3}\right)=4$. We have $h^{e_{1}}(\alpha)=0$. Thus, in order to reject the formula α we can adopt the following rejected axiom:

$$
\chi_{1}:=A_{\mathrm{S}}\left(F_{0}\left(q, p_{1}\right), F_{3}\left(r, p_{2}\right), F_{4}\left(s, p_{3}\right)\right) .
$$

References

[1] Piróg-Rzepecka, K., Nonsense-Logics Systems (in Polish), OTPN-PWN, War-szawa-Wroclaw 1977.
[2] Sobociński, B., "Axiomatization of some many-valued systems of deductive theory" (in Polish), Roczniki Prac Naukowych Zrzeszenia Asystentów Uniwersytetu Józefa Pitsudskiego w Warszawie I (1936).

Robert Sochacki
Institute of Mathematics and Informatics
Opole University
ul. Oleska 48
52-052 Opole, Poland
sochacki@math.uni.opole.pl

