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THE NOTION OF PROBLEM,

INTUITIONISM AND PARTIALITY

Abstract. Problems are defined as abstract procedures. An explication of
procedures as used in Transparent Intensional Logic (TIL) and called con-

structions is presented and the subclass of constructions called concepts is
defined. Concepts as closed constructions modulo α- and η-conversion can be
associated with meaningful expressions of a natural or professional language
in harmony with Church’s conception. Thus every meaningful expression
expresses a concept. Since every problem can be unambiguously determined
by a concept we can state that every problem is a concept and every concept
can be viewed as a problem.

Kolmogorov’s idea of a connection between problems and Heyting’s cal-
culus is examined and the non-classical features of the latter are shown to
be compatible with realistic logic using partial functions.

Keywords: abstract procedures, constructions, effective procedures, con-
cepts, partiality.

Introduction

In 1932 Kolmogorov has drawn our attention to the notion of problem. He
has shown that this notion can be logically handled and that an attempt
of doing it has been made by Heyting in his intuitionistic calculus. In the
present paper I try to show that a rather universal tool for logical analysis
of the notion of problem is offered by Tichý’s Transparent intensional logic,
where the key notion of constructions has been introduced. Further, an anti-
realistic (because intuitionistic) interpretation of Heyting’s calculus is not
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the only one possible: it can be compatible with realistic philosophy as soon
as the critical deviations from classical logic are explained as consequences
of partiality.

1. Examples

Compare following expressions

A.

23 < 32

λn λabc (an + bn = cn)

∀nabc (n > 2 ⊃ ¬(an + bn = cn)

¬∃K(Card ℵ0 < Card K < Card ℵ1)

λr(r ∈ R
2 ∧ ∀x ¬r(x, x) ∧ ∀xy(r(x, y) ⊃ r(y, x)) ∧ ∀xyz(r(x, y) ⊃

(r(y, z) ⊃ r(x.z)))), x, y, z → N

There are organisms in Mars.

Mountains over 8000m.

B.

Is it the case that 23 < 32?

For any integer n find such integers a, b, c that (an + bn = cn)

Is it the case that for all integers n, a, b, c it holds that
(n > 2 ⊃ ¬(an + bn = cn)? (Fermat’s Last Theorem)

Is Continuum Hypothesis true?

Which symmetric and transitive relations of naturals are irreflexive?

Are there organisms in Mars?

Which mountains are higher than 8000m?

Our claim is: The expressions in the group B possess the same semantics
as the respective expressions in the group A. The distinction consists in a
pragmatic factor : If the members of A are connected with an attitude at
all (and this is not at all necessary) then something like ‘stating’ could be
a characteristic of such an attitude. On the other hand, the members of B

could be characterized as ‘seeing a problem’. (Cf. [Kolmogorov 1932] for his
examples of problems and [Tichý 1978] for a similar conception of questions.)
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2. Abstract procedures

What I intend to claim in the present paper is that

I. Every problem can be treated as an abstract procedure.

II. Accepting some assumptions concerning logical analysis of natural lan-
guage we can state that every problem is a concept and every concept
can be viewed as a problem.

In this section I have to say some relevant points clarifying the point I.

(An important source is here [Tichý 1995], where the principal (and for
many philosophers surprising) distinction between such simple entities as
cars or sets and complexes like melodies or constructions is argued for. I will
not repeat here the fundamental arguments; instead I will try to characterize
abstract procedures in a most general way, accompanying the characteristics
by some examples.)

A procedure consists of at least one step. It determines an object which
can be called result. A real procedure is a time consuming event. An abstract
procedure is a procedure that is not real; in other words, it cannot be localized
in time or space. All the same, it is well definable and intelligible.

Example. Let us come to a terminological agreement: Let a computer pro-
gram (type, not token) be an expression, whose meaning is the respective
algorithm and whose denotation is the result of the algorithm (if any). (See
[Moschovakis 1994].) The algorithm is an example of abstract procedures: it
is a sequence of steps (‘instructions’), being itself an executable instruction.
It cannot be reduced to a set of instructions. Indeed, let A be the algorithm
and {i1, . . . , ik} be the set of its instructions. Obviously A 6= {i1, . . . , ik}.

(As soon as we define meaning of an expression E as an abstract pro-
cedure we will see that identifying an abstract procedure with a tuple of
particular steps (meanings of the subexpressions of E) is a mistake as well:
it holds that A 6= 〈i1, . . . , ik〉. This is Cresswell’s mistake, see his [1975], in
particular p. 30; see also [Tichý 1994, 2004] and [Jespersen 2003].)

To make our characterization more precise we have to ask what kind of
object the result of a procedure is. In general we can state that the result
(if any) of an abstract procedure is an n-ary function for n > 0.

Examples. Consider the procedure that consists in applying the operation
adding to the pair of numbers 3, 4. The result is the 0-ary function 7.
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The procedure consisting in adding 1 to the given natural number, so

λx(x + 1), x → N,

results in the unary function Successor.

The procedure ∀nabc (n > 2 ⊃ ¬(an+bn = cn), n, a, b, c → N, results—as
we know today—in true, which is a 0-ary function.

A procedure, which for any possible world and time determines those
objects that are at that world-time higher than 800m, results in a property
of individuals, which is a unary function1, whose range is a unary function,
whose range is a unary function.

A procedure deciding whether the greatest prime number is odd or even
does not have any result. (Better: There is no effective procedure deciding
whether the greatest prime is odd.)

Any procedure defined over the wffs of a 1st order predicate calculus C
that consists in outputting true iff the given wff is a theorem of C results
in the set of all theorems of C. This set is again a unary (characteristic)
function.

A procedure defined over the wffs of a 1st order predicate calculus C
that consists in outputting true if the given wff is a theorem of C and false

otherwise does not have any result (or: is not effective (algorithmic)).

3. Structured meanings

Now we try to argue that the best explication of meaning is an abstract
procedure. A thoroughgoing argumentation can be found in various writings
by the followers of TIL, in particular [Tichý 1988] and [Materna 1998, 2004].

This explication shows that meaning is not an obscure object2 and solves
some problems that necessarily arise if meaning gets a set-theoretical expli-
cation. That set-theoretical explications of meaning are essentially unsat-
isfactory has been suspected by more philosophers. Remarkable hints can
be found in [Bolzano 1837]; Tichý’s [1968] and [1969] are probably the first
explicit declarations of a procedural character of meaning, David Lewis’
“General semantics” [1972], Cresswell’s attempts from [1975, 1985], Bealer’s
[1982], Chierchia’s [1989], Moschovakis’ [1994] are examples of exhibiting

1Using the typing of Transparent Intensional Logic (TIL)—see below—we get the type
(((oι)τ )ω), similar to Montague’s (s → (e → t)).

2See [Materna 2007], where Quine’s position is attacked.
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dissatisfaction with set-theoretical conceptions, which do not enable us to
explain how a structured expression can express3 an unstructured meaning.
The most commonly accepted (cf. [Kirkham 1997]) set-theoretical explica-
tion of meaning consists in the claim that meaning—as a heir to Fregean
Sinn—should be conceived of as an intension, obviously in the P(ossible)-
W(orld)-S(emantics). Which means that meaning would be a function from
possible worlds. But functions are sets, i.e., they are simples that do not pos-
sess components which could be confronted with particular subexpressions of
the given expression; so applying the desirable Principle of Compositionality
would be at least imperfect and in some cases impossible. (The Principle of
Substitutability, which is implied by the Principle of Compositionality, does
not work for attitudinal contexts if meaning is not structured.)

It is evident that the Principle of Compositionality could not be followed
in all the contexts if semantics were reduced to set-theoretical denotational
semantics. That the given sentence denotes a proposition is not extremely
interesting; besides imagine that your logical analysis would culminate by
presenting a table where the left most column would be the set of all possible
worlds (!), the next one will associate each member of the first column with
the infinite (NB not denumerable) list of time moments and the final column
would contain a distribution of truth-values. Not only impossible, also to-
tally useless. As soon as the set-theoretical standpoint is abandoned and the
procedural view is accepted our problem disappears. Now the meaning is
complex: it is a procedure containing, in general, subprocedures. Moreover,
the idea characteristic of TIL, viz. that expressions of a language encode pro-
cedures, gets now a particular specification that makes it possible to realize
logical analyses of natural language.

I will only briefly suggest the way abstract procedures are treated in
TIL. Exact definitions and more detailed description can be found in the
TIL literature mentioned above.

Abstract procedures are defined as constructions.4 They are defined in
a typed environment. The most frequently applied basis for types involves
‘non-functional’ (‘atomic’, if you like) types (= types of 0-ary functions)
o (truth-values T, F), ι (individuals, members of the universe), τ (time
moments, also real numbers) and ω (possible worlds), and functional types,
i.e., sets of partial functions with tuples of arguments of types β1, . . . , βm,

3 Using a Fregean terminology.
4Another notion of constructions, sharing some essential points with ours, can be found

in the excellent monograph Truth, Proof and Infinity by Peter Fletcher [1998].
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respectively, and value of the type α, denoted by (αβ1 . . . βm). Thus the
types of order 1 are defined.

Examples. Propositions are of the type ((oτ)ω), abbreviated as oτω
5: given

a world W and time T the proposition returns either T, or F, or nothing
(partiality!).

Every class/relation is represented by the respective characteristic func-
tion. So the type of properties of individuals is (oι)τω ; in general, properties
of objects of type α are of the type (oα)τω .

Constructions: The most important ones are

variables, i.e., special constructions that construct objects of the given type
dependently on valuation; we write “v-construct”, where v is the parameter
of valuation; any construction containing free variables v-constructs. (We
will omit v in the following text.)

trivialization, which constructs an object by mentioning it. So we have 0X,
which constructs the object / construction denoted by X,

composition: where X constructs a function and X1, . . . , Xm construct
objects that are arguments of the function, composition constructs the ob-
ject (if any) that is the value of the function on X1, . . . , Xm. We write
[XX1 . . . Xn]. Composition may be (v-)improper, i.e. (v-)construct nothing
(if a constructed function is not defined on its arguments).

closure: where x1, . . . , xm are distinct variables ranging over the (not neces-
sarily distinct) types β1, . . . , βm and X is a construction constructing objects
of the type α, the closure constructs a function of the type (αβ1 . . . βm) in
the way well-known from λ-calculi. We write [λx1 . . . xmX]. (Observe that
closure is never improper: always a function is constructed, even, in the
worst case, an ‘ugly’ (= nowhere defined) one.)

The expressivity of TIL grows up essentially as soon as the procedures/
constructions can be not only used but also mentioned, i.e., as soon as con-
structions become objects sui generis. This is made possible via defining
ramified hierarchy of types. The principle is simple: Types of order 1 have
been already defined. Then constructions of order n are defined (they con-
struct objects of lower order) and the set of all constructions of order n is
denoted ∗n. This set (and also the types of order n) is the type of order
n + 1.

Finally having a type (αβ1 . . . βm), where some of α, βi is of the type of
order n + 1 we ascribe this order to (αβ1 . . . βm) as well.

5Every intension is an object of a type ((ατ )ω). We abbreviate it as ατω.
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After ramified hierarchy of types has been defined we have got the pos-
sibility to distinguish between the type of a construction C and the type of
the object (if any) constructed by C. The former case: C/α, the latter case:
C → β.

It is not by chance that Church’s λ-calculus has been used also by Mon-
tague [1974]. Advantages connected with functional (rather than relational)
approach are obvious. In TIL, besides, we must be aware of the fact that
what looks like a formula / λ-term is, actually, a record of an abstract pro-
cedure. To illustrate, considering

λx(x + 1), x → N,

as a formal λ-term it is interpreted as the function Successor, while as
a record of a construction6 it denotes an abstract procedure that constructs
the function Successor.

Logical analysis of an expression E consists—roughly—in assigning typed
objects to particular subexpressions of E and creating a construction, where
the subconstructions assigned to the former will be interconnected in the
way suggested by the grammar of the respective language.

Now we will show some (imperfect) analyses.

Examples. (a) Mathematical expressions. Here the analyses are relatively
easy, since the expressions of mathematical languages reflect very directly
the interplay of procedures and functions.

i) a, b, c, n → N : {〈a, b, c, n〉 : an + bn = cn}

For the sake of simplicity let us interpret τ as the set of natural numbers.
Types:

a, b, c, n → τ, expya/(τττ) (expyx = xy), = /(oττ), +/(τττ).

λabcn[0 =[0+[0exp a n][0exp b n]][0exp c n]]

ii) a, b, c, n → N : ∀abcn(n > 2 ⊃ an + bn 6= cn)

∀/(o(oττττ)), > /(oττ)

[0∀ λabcn[0 ⊃[0 >n 02][0¬[0 =[0+[0exp a n][0exp b n]][0exp c n]]]]]

6As a standard TIL record: λx[0+ x 01]
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The examples i) and ii) illustrate the well-known classification of proce-
dures7. The procedure i) is effective: the constructed function is primitive
recursive. The procedure ii) is not effective because of the universal quanti-
fier. (But the Fermat’s riddle has been solved all the same. How come? See
below.)

(b) Empirical expressions.

There are organisms in Mars.

Types:

∃/(o(oι)), ∧/(ooo), Organ/(oι)τω , Be_in/(oιι)τω, Mars/ι,

w → ω, t → τ, x → ι.

Instead of [[Xw]t] we write Xwt.

λwλt[0∃ λx[0∧[0Organwtx][0Be_inwtx
0Mars]]

This procedure would decide for every world W and time T whether the
class of individuals that are in W at T organisms and are in Mars is empty.
Observe that this procedure—and this holds for all meanings of empirical
expressions—cannot determine the truth-value in the actual world-time: In
general, no meaning of an empirical expression can determine the value
of the intension denoted by the expression in the actual world-time. The
meaning of the Pope cannot determine who the Pope is in the real world-
time. It determines only the conditions under which an object can satisfy
the conditions given by the constructed intension.

Since we know that to determine the actual values of intensions we need
experience we can immediately understand that no procedure which is the
meaning of an empirical expression can be effective.

4. Solutions

Every (meaningful) expression that does not involve indexicals can be viewed
as a formulation of a problem. Let P be a problem. Every expression whose

7mostly of functions. We can however say that if a function is ‘computable’ (i.e., partial
or general recursive or Turing computable etc.) then so is the respective procedure. We
will however not speak about ‘computable procedures’ : instead we will use the customary
term ‘effective procedures’.
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meaning can be viewed as P will be called a formulation of the problem P ,
briefly FP .

A reformulation of FP is an expression F ′

P ′ distinct from and equivalent
with FP .8

Let P be a non-empirical (typically, a mathematical) problem and let it
be a non-effective procedure. In some cases there is a reformulation F ′

P ′ of
FP such that the meaning of F ′

P ′ is an effective procedure P ′ equivalent with
P (in that it constructs the same values as P for each argument).

Let P be a problem. If FP is a formulation of a not effective procedure
then any reformulation of FP such that the meaning of F ′

P ′ is an effective
procedure will be called a solving reformulation (of FP ) (see [Kleene 1952,
p. 317]).

Let P be a non-empirical (typically a mathematical) problem. The
Solution1 of P is the object (if any) constructed by P . The Solution2 (if
feasible) of P is a solving reformulation of P .

Example. Let FP be

For any diophantine equation decide whether it is solvable
in rational numbers.

The procedure that is the meaning of this formulation is surely not effective.
Hilbert’s 10th problem from 1900 is properly speaking the task to find a
solving procedure, so a Solution2: “To devise a process according to which
it can be determined by a finite number of operations whether the equation
is solvable in rational integers.” (Here it has been proved in 1970 that no
Solution2 existed.)

Another example:
The meaning of any original formulation of Fermat’s Last Theorem, for

example

[0∀ λabcn[0⊃[0> n 02][0¬[0=[0+[0exp a n][0exp b n]][0exp c n]]]]],

is a not an effective procedure. The reformulation—in this case a very
complicated one—enabled us to know that Solution1 is T.

From our viewpoint problems are abstract procedures and their formula-
tions are any meaningful expression of a (natural or professional) language.

8An interesting kind of reformulation is refinement: Let P1, P2 be problems. Let CP1
,

CP2
be the set of constituents of P1, P2, respectively. If cardinality of CP2

is greater than
cardinality of CP1

and CP2
is not a subset of CP2

, then if P1 is equivalent to P2 then P2

is a refinement of P1 and, derivatively, FP2
is a refinement of FP1

.
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If E is an empirical expression, then E is an FP of an empirical problem.
Logical analysis of E should fix the procedure. A specific feature of an em-
pirical problem is that what it constructs is not its solution. Since empirical
expressions denote intensions9 we get only a criterion of seeking the solu-
tion. The solution itself is no more achievable by means of logical procedures.
Experience is necessary. We could define:

Let P be an empirical problem. The Solution of P is the object (if any)
that is the value of P in the actual world-time.

Example. Consider the meaning of the sentence The Moon is smaller than
the Earth. Assuming that the Moon as well as the Earth is an individual
role (a function from worlds-times to individuals) and knowing that smaller
than is an empirical relation we get the construction (concept)10

λwλt[0Smallerwt
0Moonwt

0Earthwt]

and we can view it either as simply constructing the respective proposition
or as an empirical problem whether it is true.

From our definitions it follows that Solutions of empirical problems can-
not be acquired by logical analysis alone.

Remark. In our workaday communication, when chatting, shopping etc. we,
of course, do not view the used expressions as problems. This does not mean
that we should somehow narrow down our definitions.

5. Concepts and problems

Claim. Every problem P can be formulated in such a way that the meaning

of the FP does not contain free variables.

Example. The problem to find all natural numbers x, y, z, n such that
xn + yn = zn is the procedure λxyzn [0=[0+[0exp x n][0exp y n]][0exp z n]].
We can formulate a similar problem as follows: for any natural number n
find the natural numbers x, y, z such that xn + yn = zn. Here n is a
‘parameter’ and x, y, z are ‘unknowns’. We have

λnλxyz[0 =[0+[0exp x n][0exp y n]][0exp z n]].

9The TIL constructions that model the meaning of the given expression construct inten-
sions in the case of empirical expressions. Typical form of such a construction is λw λt X,
where w, t range over possible worlds and times, respectively, and X is a construction.

10Even the meaning of an empirical sentence is a concept (identifying the respective
proposition), which is in harmony with Church’s viewing concepts in his (1956).
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Proof. Let C be a construction containing n free variables. If n = 1 then
the respective problem is λxC. Otherwise more similar problems can be
determined by C (cf. [Church 1956]).

Example. Consider construction [0 > x y]. The problems determined by this
construction are λxy [0 > x y], λyx [0 > x y], λxλy [0 > x y], λyλx [0 > x y].

Concepts in TIL are defined as abstract procedures not containing free
variables: they are closed constructions modulo α- and η-conversion.11

Example. A concept of those concrete buildings in Prague that are older than
100 years can be—viz. if the following simple concepts are at our disposal:
0Concrete, 0Building, 0Be_in, 0Prague, 0Age_of, 0 >, 0100—the construction
(or its α- or η variant)

λwλtλx [0∧ [[0Concrete 0Building]wtx]
[[0∧[0Be_inwtx

0Prague][0 >[0Age_ofwtx]0100]]]
(Concrete/((oι)τω(oι)τω), Building/(oι)τω , Be_in / (oιι)τω ,

Prague/ι, Age_of/(τι)τω, 100/τ, > /(oττ))

The same concept can be viewed as the problem of finding those concrete
building in Prague that are older than 100 years. This can be generalized:
Every concept can be viewed as a problem, and every problem is a concept.

6. Problems, intuitionism and partiality

Kolmogorov (in [1932]) interprets Heyting’s calculus as a calculus of problems
(Aufgaben).

Kolmogorov’s idea in short: If the variables in the axioms and rules
range over statements (Aussagen) then it holds that every proved statement
has to be valid (richtig) while we do not possess a corresponding notion for
problems. Reading the formulas of Heyting’s calculus intuitionistically (“if
the solution of a is given to solve b” in the case of a ⊃ b etc.) the axioms
mean that the solutions of the problems should be recognized as necessary
Solutions.

As we know the intuitionists build up their logic starting from an an-
tirealistic philosophy while the classical logics are realistic. Our question is
now:
Q Can we have a procedural theory of problems such that it would not

be necessarily connected with intuitionism?

11So that, e.g., λxy [0> x y] represents the same concept as λyz [0> y z] or 0>.



298 Pavel Materna

To be able to answer this question let us consider three characteristic
examples of classical rules / theorems not valid in intuitionistic logic.

(a) Excluded middle, i.e.,

A ∨ ¬A

(b) De Morgan:

⊢ ¬∀x : N.ϕ(x) ⊃ ∃x : N.¬ϕ(x)

(c) Double Negation:

⊢ ¬¬A ⊃ A

Ad (a) Let A be a problem (a procedure, a construction). Is it necessary
to either solve A or derive an absurdity from the solution of A?

The intuitionist answers in a well-known way. Here we quote G. Sund-
holm [2000, p 7]:

We consider, with Kronecker, a classical function f ∈ N → N

that is defined by a non-decidable separation of cases:

f(k) =def

{

1 if the Riemann Hypothesis is true

0 if the Riemann Hypothesis is false

According to Kronecker, and I agree, f is not well-defined, that is, the
rule does not give a function from N to N. [. . . ]

Thus (a), accepted classically, is not accepted intuitionistically.
Ad (b) The intuitionistic answer is also clear:

If the assumption of solving ϕ(x) for any x leads to contradiction then it
does not mean that an x has been constructed for which solving ϕ(x) would
lead to contradiction.

Ad (c) Again: If the assumption that solving A would lead to contradic-
tion led to contradiction then it does not mean that A is solved.

By contrast, if A and ϕ(x) are interpreted classically, i.e., as denoting
truth-values (so that they are statements, Aussagen, not problems, Auf-
gaben), we get a valid rule and tautologies.

With one exception, however: if truth-gaps are admitted, i.e., if our
analysis uses partial functions. Then neither a) nor b) or c) does hold.

Indeed:
A let be the statement the greatest prime is odd. Since this statement is

neither true nor false a) does not hold.
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Further, let ϕ(x) be x is the natural number smaller than 0. The ex-
pression the natural number smaller than 0 does not denote anything, so the
respective procedure does not construct anything on any valuation and the
class of the numbers satisfying ϕ(x) is not the class of all natural numbers,
thus the antecedent of b) is true. However the class of the numbers satisfying
¬ϕ(x) is not non-empty so that the consequent of b) is false.

Finally, let A be truthless (as in a) ). Then the antecedent as well as
consequent of c) is truthless and c) does not hold either.

Now it could seem that intuitionists use simply a logic of partial func-
tions. A following distinction can be stated.

For a realistic partial logic to be partial is independent of whether the
given problem has been solved. The partiality of a function is ‘absolute’, so
that, e.g., the function the only x such that (TIL type τ(oτ)) returns nothing
if applied to an empty class, which is independent of such contingent facts
as whether somebody did or did not solve a problem.

By contrast consider the problem G known as Goldbach conjecture. Let
T be the time interval within which the problem has not been solved (we are
still within T ). For a realist there is no reason to say that this problem con-
tains some partiality, and therefore (s)he believes that the law of excluded
middle is applicable to it. Given that once this problem will get its solution,
be it T or F, we must state that such an event is something extrinsic w.r.t.
the problem. For an intuitionist something changed: (s)he claimed inadmis-
sibility of using, e.g., existential quantifier in connection with G within T
and now, after the solution has been achieved, existential quantifier is per-
mitted. From the realistic viewpoint this is a strange situation; Kolmogorov
says:

So entsteht diese ganz besondere Art von Aussagen, welche zwar einen
mit der Zeit nicht veränderlichen Inhalt haben sollen und doch nur
unter speziellen Bedingungen ausgesprochen werden können.

[1932, p. 64]

Let us now return to our question Q.

Partiality is not very popular in the logical community, but especially
intuitionists are philosophically interested in refuting partial functions (see,
e.g., Sundholm 2000, 11–12). Building up a procedural theory of problems in
the spirit of the preceding text we are not bound to share this position with
intuitionists. If procedures / problems are meanings of non-empirical expres-
sions the partiality is given a priori. Once more: the contingent fact that
the problem has been / has not yet been solved cannot influence acceptance
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or refusal of a rule / tautology. As for empirical problems, what is a priori is
that the results of the respective procedures are non-trivial intensions, i.e.,
intensions whose values differ in at least two possible worlds. And we can
expect (rightly, as we know) that some non-trivial (= non-constant) inten-
sions will be in some possible worlds undefined. (For example all intensions
whose type is ατω for α 6= o or (oβ) or (oβ1 . . . βm).)

First, what does it mean to be necessarily connected with intuitionism?
If the question concerns a system of formulas/propositions then the nec-

essary connection with intuitionism means that two measures are taken:

a) The logical constants are intuitionistically reinterpreted (thus ‘¬’, ‘∧’, ‘∨’
are no more truth-functional etc.).

b) Some intuitionistic calculus is accepted.

To accept a) means however to reinterpret formulas: ‘A ∧ B’ is no more
interpreted as conjunction of two claims; we no more ask whether A and
B are both true: instead we ask whether they are proved. Here we have
to emphasize that most philosophical problems around intuitionism concern
the relation between truth and proof. As Fletcher [1998, pp. 73–74] sums up

[T]here seem to be four views on this:

(1) [. . . ] once a formula has been proved then it becomes true, [. . . ]

(2) [. . . ] when a formula is proved this shows that it was true all
along, [. . . ]

(3) [. . . ] an assertion ‘A is true’ [. . . ] is simply an abbreviation for a
certain assertion of the form ‘P is a proof of A’ [. . . ]

(4) [. . . ] to drop the concept of truth altogether [. . . ]

The option (2) is evidently one acceptable by a realist. But now it is not
important which alternative we take sides with: what is of interest w.r.t.
our question is what happens when we interpret (from the very beginning)
‘formulas’ as problems and accept our definition of problems (as concepts).
The non-empirical case:

We have seen that Kolmogorov interpreted rules and theorems of Heyt-
ing’s calculus in terms of solutions of the problems represented by the par-
ticular formulas: these solutions should be recognized as necessary. This
interpretation narrows, of course, the area of problems to the set of decision
problems, otherwise no rational interpretation of logical connectives could
take place. Also, only our Solution1 comes into question: for there is obvi-
ously no logical possibility of foreseeing whether there is a solving reformu-
lation of the given FP . On these assumptions, and setting meanwhile aside
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the problem of partiality, what would mean to follow intuitionism and not
accept, e.g., rule of Excluded Middle? Thereby we would admit that some
decision problems are neither solvable nor unsolvable, or, as the case may
be, neither provable nor disprovable. Since the intuitionistic notion of proof
is (not definite enough but in any case) not restricted to a particular formal
system this would imply that there are absolutely undecidable problems,
which is only one side of the famous Gödel’s dilemma. On the other hand,
accepting (and intuitionistically interpreting) the rule of Excluded Middle
would also be a premature answer to this dilemma.

Thus it looks like as if our theory of problems—if ever comparable with
Heyting et alii in the Kolmogorov style—were neutral w.r.t. the choice be-
tween classical and intuitionistic logic. There is however another moment
present, as already suggested: partiality. We have identified problems with
concepts (as a kind of constructions), so we have to take into account cases
like

[0Odd [0The_only_x_such_that[0∧[0Prime x][0∀λy[0⊃[0Prime y][06y x]]]]]].

Concepts like this one are improper constructions: Therefore we cannot
accept the Rule of Excluded Middle.

Thus if a calculus of problems (capturing, of course, only a part of what a
theory of problems has to say) should not accept some principles of classical
logic and be so similar to some version of intuitionistic logic it would not be
because of some anti-realistic version of intuitionistic philosophy: partiality
would be the culprit.

As for empirical problems, true, the solutions of those problems are de-
pendent on the instantaneous state of the world, but we can see that a logical
treatment of empirical problems is possible in virtue of necessary relations
between empirical problems. To illustrate this claim observe the following
example. Considering the empirical problems

1. λwλt[0∃λx[0∧[0Marriedwtx][0Brotherx[0Fatherwt
0Charles]]]]

2. λwλt[0∃λx[0Auntwtx
0Charles]]

we can immediately see that the problem 2 is somehow a necessary conse-
quence of the problem 1; it can be proved as soon as the particular empirical
objects are replaced by definitional reductions based on some conceptual
systems (for details see Materna 2004) and the resulting constructions are
viewed as constructing propositions rather than being empirical problems.
Thus there is no principal distinction between empirical and non-empirical
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problems in this respect: both can be logically handled and differ from clas-
sical case only due to taking into account partiality.
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