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TEMPORAL NON-COMMUTATIVE LOGIC:

Expressing time, resource, order and hierarchy

Abstract. A first-order temporal non-commutative logic TN[l], which has
no structural rules and has some l-bounded linear-time temporal operators,
is introduced as a Gentzen-type sequent calculus. The logic TN[l] allows
us to provide not only time-dependent, resource-sensitive, ordered, but also
hierarchical reasoning. Decidability, cut-elimination and completeness (w.r.t.
phase semantics) theorems are shown for TN[l]. An advantage of TN[l] is
its decidability, because the standard first-order linear-time temporal logic
is undecidable. A correspondence theorem between TN[l] and a resource-
indexed non-commutative logic RN[l] is also shown. This theorem is intended
to state that “time” is regarded as a “resource”.

Keywords: Temporal non-commutative logic, cut-elimination, sequent calcu-
lus, completeness, decidability.

1. Introduction

1.1. Time

Temporal logics are modal logics for describing the temporal ordering of
events. Two possible views regarding the nature of time induce two types of
temporal logics: linear-time temporal logic (LTL) and branching-time tem-
poral logic. It is known that LTL is very useful for verifying and specifying
concurrent systems. Gentzen-type sequent calculi for LTL and its neighbors
have been introduced by many researchers. For example, a sequent calculus
LTω for Kröger’s first-order infinitary LTL [14] was introduced by Kawai
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[12]. He proved the cut-elimination and completeness theorems for LTω.
An alternative proof of the cut-elimination theorem for LTω was given by
Kamide [11] introducing an embedding of LTω into a sequent calculus for
infinitary logic.

In the present paper, a first-order, intuitionistic, non-commutative and
bounded version of LTω, which has an embedding into an intuitionistic non-
commutative logic FL (full Lambek logic) rather than infinitary logic, is
studied. This logic is called a temporal non-commutative logic TN[l]. The
cut-elimination, embedding (into FL), decidability and completeness (w.r.t.
phase semantics) theorems for TN[l] are proved as the main results of this
paper. In particular, the decidability is an advantage of TN[l], because
the standard first-order LTL is undecidable. TN[l] is intended to obtain a
useful theoretical basis for adequately representing not only time-dependent,
resource-sensitive, ordered, but also hierarchical reasoning. In this paper,
a resource-indexed non-commutative logic RN[l] is also introduced, and a
correspondence theorem between TN[l] and RN[l] is shown. This theorem is
intended to state that “time” is regarded as a “resource”.

Although the standard LTL has an infinite (unbounded) time domain,
i.e., the set ω of all natural numbers, the logic TN[l] has a bounded time
domain which is restricted by a fixed positive integer l, i.e., the set ωl := {x ∈
ω | x ≤ l}. For the virtue of the bounded time domain, the embedding (into
FL), cut-elimination and decidability theorems for TN[l] can be shown. Such
theoretical merits may not be obtained for the unbounded version TN[ω] of
TN[l], because the unbounded time domain requires some infinite inference
rules. Whereas LTω informally characterizes the Hilbert-style axiom scheme
for the temporal operators G (globally) and X (next):

Gα ↔ (α ∧Xα ∧X2α ∧ · · ·∞),

where Xiα means

i
︷ ︸︸ ︷

XX · · ·X α, the logic TN[l] characterizes the Hilbert-style
axiom scheme:

Gα ↔ (α ∧Xα ∧X2α ∧ · · · ∧Xlα),

which is regarded as a finite approximation of the original one.
To restrict the time domain in LTL is not a new idea. Such an idea was

discussed, for example, in [3, 4, 6]. It is known that to restrict the time
domain is a technique that may be applied to obtain a decidable or efficient
fragment of LTL [6]. Restricting the time domain implies not only some
purely theoretical merits as mentioned above, but also some practical merits
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for describing temporal databases [4] and for implementing an efficient model
checking algorithm, called bounded model checking [3]. Such practical merits
are important due to the fact that there are problems in computer science
and artificial intelligence where only a finite fragment of the time sequence
is of interest [4].

1.2. Resource

The notion of “resource”, encompassing concepts such as processor time,
memory, cost of components and energy requirements, is fundamental to
computational systems [17]. This notion is also very important in han-
dling real scheduling problems to construct complex plans of actions, since
many actions consume resources, such as money, gas and raw materials [18].
“Time” is also regarded as a “resource”. This may be justified in that the
concept of “time” in computer systems, such as CPU-time in process schedul-
ing, is considered to be a “resource”. Similarly, in the real world, “time is
money, i.e., resources”. This “time-as-resources” interpretation will also be
justified by the corresponding theorem between TN[l] and RN[l].

An approach towards a logical theory of resources has been developed
by Pym, O’Hearn and Yang [17], using the logic BI of bunched implications,
which is an extension of a linear logic. It is known that Girard’s linear logics
[5], i.e., logics that have no contraction rule:

Γ, α, α, ∆⇒ γ

Γ, α, ∆⇒ γ

can elegantly represent the concept of “resource consumption”. An appro-
priate resource consumption example is medicine consumption in medical
reasoning. Consider a medicine m as a resource. An expression m(x) ⇒
recover(x) means “if a person x uses a medicine m x makes a recovery
from the disease with the medicine”. In this case, m(x), m(x)⇒ recover(x)
and m(x)⇒ recover(x) have the completely different meaning, because two
medicines and one medicine have the different effect in general. If assum-
ing the classical or intuitionistic logic, then these two sequents are logically
equivalent because of the presence of the contraction rule.

Due to the usefulness of combining linear logic with temporal logic, a
number of temporal linear logics have been introduced and studied by many
researchers (see e.g., [7] and the references therein). On the other hand, a
temporal non-commutative logic, which is based on Lambek calculus [15],
has not been proposed yet. Such a temporal non-commutative logic is useful
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for expressing not only time-dependent, resource-sensitive, ordered, but also
hierarchical reasoning, i.e., more fine-grained resource-sensitive reasoning
can be expressed using such a logic. This is the reason why we introduce
TN[l].

1.3. Order

Non-commutative logics are substructural logics without the exchange rule:

Γ, β, α, ∆⇒ γ

Γ, α, β, ∆⇒ γ
.

Although a number of non-commutative logics have been proposed and stud-
ied by many researchers, the original and basic non-commutative logic is
Lambek calculus [15]. An enrichment FL of the Lambek calculus by full set
of connectives has also been studied by many logicians. The proposed logic
TN[l] is an extension of FL.

In the case of medicine consumption discussed before, it may not be suf-
ficient to consider the effects of medicines. For example, if we consider
two distinct medicines m1 and m2, then the meanings of the following
two expressions are regarded as different: m1(x), m2(x)⇒ recover (x) and
m2(x), m1(x)⇒ recover(x), because the order of using medicines change
the effect of the medicines. In other words, the order or priority of us-
ing medicines is more important in general. A more detailed example is
expressed below. An expression meal(x) means “a person x has a meal”.
Then, m(x), meal(x)⇒ recover(x) and meal(x), m(x)⇒ recover (x) have the
different meaning, i.e., the effect of the medicine m is different whether the
medicine is used after or before the meal.

To express such fine-grained resource-sensitive reasoning, we have to use
a non-commutative logic such as FL, because, for example, logics with the
exchange rule cannot express the order of descending priorities of the use of
medicines. It can be understood that in a sequent expression γ1, γ2, ..., γn ⇒
β in FL, the antecedent (γ1, γ2, ..., γn) can express the order or priority of
consuming the resources γ1, γ2, ..., γn, indeed, (γ1, γ2, ..., γn) is a sequence
of formulas in FL, since it has no exchange rule. Remark that two sequents
γ1, γ2, ..., γn ⇒ β and γ1 ∗ γ2 ∗ · · · ∗ γn ⇒ β where ∗ is the fusion connective
are logically equivalent in FL, and hence an expression γ1 ∗ γ2 means “first
γ1 is consumed, next so is γ2”. Also remark that in two expressions α→β

and α←β, the implications → and ← represent resource consumption with
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priority, e.g., → means the consumption of (subscription) descending order
priority, and ← means the consumption of ascending order priority.

The following realistic time-dependent expression, which represents a
liveness property, can be obtained in TN[l] by using the l-bounded temporal
globally and eventually operators G and F, respectively:

G(meal(x) ∗m(x)→F recover(x))

which means “if a person x eats a meal and takes a medicine m in this order,
then x will eventually make a recovery from the disease”.

1.4. Hierarchy

In FL, a preference statement: “I prefer α to β” can be expressed formally
as α, β ⇒ γ where γ indicates a common sort of α and β. A preference
expression: α1, α2, α3, ..., αn ⇒ γ means a descending order of preferences.
Examples of this expression, which were presented in [9], are:

fruit(x), vegetable(x)⇒ food(x)

apple(x), orange(x), banana(x)⇒ fruit(x)

tomato(x), carrot(x), cucumber(x)⇒ vegetable(x)

Taiwan-banana(x), Philippine-banana(x)⇒ banana(x)

which represent the preference of a person x for foods, and also address the
following tree that represents a taxonomic hierarchy for foods:

__ food __

/ \

fruit vegetable

/ | \ / | \

apple orange banana tomato carrot cucumber

/ \

Taiwan banana Philippine banana

A sequent calculus-based proof representation of this taxonomic tree is:

Tban, Pban ⇒ ban

app, ora, ban ⇒ fru

tom, car , cuc ⇒ veg fru, veg ⇒ food

fru, tom, car , cuc ⇒ food

app, ora, ban, tom, car , cuc ⇒ food

app, ora, Tban, Pban, tom, car , cuc ⇒ food

where the names of the foods are abbreviated.
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Tree expressions for hierarchies are known as very important for de-
scribing some programming languages such as XML (extensible markup
language). Indeed, XML documents are sometimes expressed by a kind of
labeled trees. By using TN[l], more expressive and informative hierarchies
can be presented. For example, some timed or labeled hierarchies may be
expressed in TN[l] by using the l-bounded temporal next-time operator X.

1.5. Summary of this paper

The contents of this paper are then summarized as follows.

In Section 2, the logic TN[l] is introduced as an extension of FL with the
addition of some l-bounded temporal operators, and the embedding theorem
of TN[l] into FL is shown. The cut-elimination and decidability theorems
for TN[l] are obtained as a consequence of the embedding theorem.

In Section 3, a phase semantics for the propositional fragment of TN[l]
is introduced, and the completeness theorem with respect to this seman-
tics is proved. As a consequence of this theorem, an alternative (semantic)
proof of the cut-elimination theorem for TN[l] is also obtained. Although
the completeness theorem for the first-order version can be shown, such a
discussion is omitted here, since the essential temporal part of this semantics
is completely included in the propositional part.

In Section 4, the logic RN[l] is introduced as an extension of FL with the
addition of some l-bounded exponential operators, and the correspondence
theorem between RN[l] and TN[l] is shown. As a consequence of this theo-
rem, an alternative (embedding-based) proof of the cut-elimination theorems
for TN[l] and RN[l] is also obtained.

In Section 5, this paper is concluded, and some substructural extensions
of the present paper’s results are discussed.

2. Temporal non-commutative logic

The following list of symbols is used for the language of the underlying
logics: free variables a0, a1, ..., bound variables x0, x1, ..., functions f0, f1, ...,
predicates p0, p1, ..., 1 (multiplicative truth constant), ⊤ (additive truth con-
stant), ⊥ (additive falsity constant), → (right implication), ← (left impli-
cation), ∧ (conjunction), ∨ (disjunction), ∗ (fusion), ∀ (any), ∃ (exists), X
(next), G (globally) and F (eventually). The numbers of free and bound
variables are assumed to be countable, and the numbers of functions and
predicates are also assumed to be countable. It is also assumed that there
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is at least one predicate. A 0-ary function is an individual constant, and a
0-ary predicate is a propositional variable.

Greek lower-case letters α, β, ... are used for formulas, and Greek capital
letters Γ, ∆, ... are used for finite (possibly empty) sequences of formulas.
For any ♯ ∈ {X, G, F}, an expression ♯Γ is used to denote the sequence
〈♯γ | γ ∈ Γ〉. The symbol ≡ is used to denote the equality of sequences of
symbols. The symbol ω is used to represent the set of natural numbers. Let
l be a fixed positive integer. Then, the symbol ωl is used to represent the
set {i ∈ ω | i ≤ l}. An expression Xiα for any i ∈ ω is defined inductively
by (X0α ≡ α) and (Xn+1α ≡ XXnα). Lower-case letters i and j are used to
denote any natural numbers.

An expression of the form Γ⇒ γ where γ is a single formula is called a
sequent. It is assumed that the terminological conventions regarding sequent
calculus (e.g., antecedent, succedent etc.) are the usual ones. If a sequent
S is provable in a sequent calculus L, then such a fact is denoted as L ⊢ S

or ⊢ S. The parentheses for ∗ are omitted since ∗ is associative, i.e., ⊢
α ∗ (β ∗ γ)⇒ (α ∗ β) ∗ γ and ⊢ (α ∗ β) ∗ γ ⇒ α ∗ (β ∗ γ) for any formulas α,
β and γ.

A temporal non-commutative logic TN[l] is introduced below.

Definition 2.1 (TN[l]). Let l be a fixed positive integer (called a time
bound). The initial sequents of TN[l] are of the form: for any atomic for-
mula p,

Xip⇒ Xip ⇒ Xi
1 Γ, Xi⊥, ∆⇒ γ Γ⇒ Xi⊤.

The cut rule of TN[l] is of the form:

Γ⇒ α Σ, α, ∆⇒ γ

Σ, Γ, ∆⇒ γ
(cut).

The logical inference rules of TN[l] are of the form: for any k ∈ ωl and any
positive integer m,

Γ, ∆⇒ γ

Γ, Xi
1, ∆⇒ γ

(1we)

Γ⇒ Xiα Σ, Xiβ, ∆⇒ γ

Σ, Xi(α→β), Γ, ∆⇒ γ
(→left)

Γ, Xiα⇒ Xiβ

Γ⇒ Xi(α→β)
(→right)

Γ⇒ Xiα Σ, Xiβ, ∆⇒ γ

Σ, Γ, Xi(α←β), ∆⇒ γ
(←left)

Xiα, Γ⇒ Xiβ

Γ⇒ Xi(α←β)
(←right)
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Γ, Xiα, ∆⇒ γ

Γ, Xi(α ∧ β), ∆⇒ γ
(∧left1)

Γ, Xiβ, ∆⇒ γ

Γ, Xi(α ∧ β), ∆⇒ γ
(∧left2)

Γ⇒ Xiα Γ⇒ Xiβ

Γ⇒ Xi(α ∧ β)
(∧right)

Γ, Xiα, ∆⇒ γ Γ, Xiβ, ∆⇒ γ

Γ, Xi(α ∨ β), ∆⇒ γ
(∨left)

Γ⇒ Xiα

Γ⇒ Xi(α ∨ β)
(∨right1)

Γ⇒ Xiβ

Γ⇒ Xi(α ∨ β)
(∨right2)

Γ, Xiα, Xiβ, ∆⇒ γ

Γ, Xi(α ∗ β), ∆⇒ γ
(∗left)

Γ⇒ Xiα ∆⇒ Xiβ

Γ, ∆⇒ Xi(α ∗ β)
(∗right)

Γ, Xiα(t), ∆⇒ γ

Γ, Xi∀xα(x), ∆⇒ γ
(∀left)

Γ⇒ Xiα(a)

Γ⇒ Xi∀xα(x)
(∀right)

Γ, Xiα(a), ∆⇒ γ

Γ, Xi∃xα(x), ∆⇒ γ
(∃left)

Γ⇒ Xiα(t)

Γ⇒ Xi∃xα(x)
(∃right)

Γ, Xlα, ∆⇒ γ

Γ, Xl+mα, ∆⇒ γ
(Xleft) Γ⇒ Xlα

Γ⇒ Xl+mα
(Xright)

Γ, Xi+kα, ∆⇒ γ

Γ, XiGα, ∆⇒ γ
(Gleft)

{ Γ⇒ Xi+jα }j∈ωl

Γ⇒ XiGα
(Gright)

{ Γ, Xi+jα, ∆⇒ γ }j∈ωl

Γ, XiFα, ∆⇒ γ
(Fleft) Γ⇒ Xi+kα

Γ⇒ XiFα
(Fright)

where a in (∀right) and (∃left) is a free variable which must not occur in
the lower sequents of the rules, and t in (∀left) and (∃right) is an arbitrary
term.

Definition 2.2 (TN[ω]). The logic TN[ω] is obtained from TN[l] by deleting
{(Xleft), (Xright)} and replacing ωl by ω. The modified rules obtained from
(Gleft), (Gright), (Fleft) and (Fright) are denoted as (Gleftω), (Grightω),
(Fleftω) and (Frightω), respectively.

Definition 2.3 (FL). The logic FL (full Lambek logic) is obtained from
TN[l] by deleting (Xleft), (Xright), (Gleft), (Gright), (Fleft), (Fright) and
replacing Xi by X0 (i.e., all the occurrences of X in the inference rules are
deleted). The modified inference rules for FL by replacing i by 0 are denoted
by labeling “FL” in superscript position, e.g., (→leftF L).
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Note that (Gright) and (Fleft) have l+1 (i.e., finite number of) premises,
e.g., in the case l = 3, (Gright) has four premises:

Γ⇒ Xiα Γ⇒ Xi+1α Γ⇒ Xi+2α Γ⇒ Xi+3α

Γ⇒ XiGα
(Gright).

In (Gleft) and (Fright), the number k is bounded by l. Then, TN[l] has the
Hilbert-style axiom schemes:

Gα ↔ (α ∧Xα ∧X2α ∧ · · · ∧Xlα),

Fα ↔ (α ∨Xα ∨X2α ∨ · · · ∨Xlα).

By (Xleft) and (Xright), the nest of the outermost occurrence of X in a
formula can be bounded by l. Indeed, (Xleft) and (Xright) correspond to
the Hilbert-style axiom scheme

Xl+mα↔ Xlα .

Remark that for any formula α, the sequent of the form Xiα⇒ Xiα is
provable in TN[l]. This can be shown by induction on α. Thus, the sequents
of the form Xiα⇒ Xiα can also be regarded as initial sequents.

Remark that TN[l] is just a logic parameterized by a fixed concrete pos-
itive integer l. Thus, before the detailed discussion, we have to fix TN[l] as
a concrete logic such as TN[5]. Indeed, for example, TN[2] is different from
TN[1]: p ∧Xp⇒ Gp is provable in TN[1], but it is not provable in TN[2].
The unprovability of sequents is guaranteed by the cut-elimination theorem
(Theorem 2.8).

Proposition 2.4. Let m and n be distinct fixed positive integers. The

logics TN[m] and TN[n] are not theorem-equivalent.

Remark that the infinite-time version TN[ω] of TN[l] is regarded as a
non-commutative and intuitionistic version of Kawai’s sequent calculus LTω

for (classical) linear-time temporal logic [12]. Since the treatment of the
infinite rules (Grightω) and (Fleftω) is somewhat difficult, we do not know
whether TN[ω] is decidable or not. Such a problem is remained as an open
question. In this paper, we do not discuss more about TN[ω], since an aim
of this paper is to obtain a decidable first-order logic.

In the following proposition, an expression α ⇔ β is used to denote an
abbreviation of two sequents α⇒ β and β ⇒ α.
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Proposition 2.5. The following sequents are provable in TN[l]: for any

formulas α, β, any i ∈ ω and any positive integer m,

1. Xi♯⇔ ♯ where ♯ ∈ {1,⊤,⊥},

2. Xi(α ◦ β)⇔ Xiα ◦ Xiβ where ◦ ∈ {→,←,∧,∨, ∗},

3. XiQα(x)⇔ QXiα(x) where Q ∈ {∀x,∃x},

4. Xi♯α⇔ ♯Xiα where ♯ ∈ {G, F},

5. Gα⇒ Fα,

6. Gα⇒ Xα,

7. Gα⇒ XGα,

8. Gα⇒ GGα,

9. Xl+mα⇔ Xlα,

10. Gα ⇔ (α ∧Xα ∧X2α ∧ · · · ∧Xlα),

11. Fα ⇔ (α ∨Xα ∨X2α ∨ · · · ∨Xlα).

An expression like
∧
{αi | i ∈ ωl} (or

∨
{αi | i ∈ ωl}) where {αi | i ∈ ωl}

is a multiset means α0 ∧ α1 ∧ · · · ∧ αl (or α0 ∨ α1 ∨ · · · ∨ αl, respectively).
For example,

∧
{α, α, β} means α ∧ α ∧ β.

Definition 2.6. We fix a countable non-empty set Φ of atomic formulas,
and define the sets Φi := {pi | p ∈ Φ} (1 ≤ i ∈ ω) and Φ0 := Φ of atomic
formulas. The language LTN[l] (or the set of formulas) of TN[l] is defined by
using Φ, 1, ⊤, ⊥, →,←,∧,∨, ∗, ∀,∃, X, G and F. The language LFL of FL
is defined by using

⋃

i∈ω Φi, 1, ⊤, ⊥, →,←, ∧,∨, ∗, ∀ and ∃.
A mapping f from LTN[l] to LFL is defined by: for any i ∈ ω and any

positive integer m,

1. f(Xip) := pi ∈ Φi for any p ∈ Φ (especially, f(p) := p ∈ Φ0),

2. f(Xi♯) := ♯ where ♯ ∈ {1,⊤,⊥},

3. f(Xi(α ◦ β)) := f(Xiα) ◦ f(Xiβ) where ◦ ∈ {→,←,∧,∨, ∗},

4. f(XiQα(x)) := Qf(Xiα(x)) where Q ∈ {∀x,∃x},

5. f(Xl+mα) := f(Xlα),

6. f(XiGα) :=
∧
{f(Xi+jα) | j ∈ ωl},

7. f(XiFα) :=
∨
{f(Xi+jα) | j ∈ ωl}.
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An expression f(Γ) denotes the result of replacing every occurrence of a
formula α in Γ by an occurrence of f(α).

Strictly speaking, the embedding function f is strongly dependent on the
time bound l, i.e., f should be denoted as fl. Indeed, f3(Gp) and f5(Gp)
are different. But, for the sake of brevity, a simple expression f will be used
in the following.

Theorem 2.7 (Embedding). Let Γ be a sequence of formulas in LTN[l], γ be

a formula in LTN[l], and f be the mapping defined in Definition 2.6. Then:

1. TN[l] ⊢ Γ⇒ γ iff FL ⊢ f(Γ)⇒ f(γ).

2. TN[l] – (cut) ⊢ Γ⇒ γ iff FL – (cut) ⊢ f(Γ)⇒ f(γ).

Proof. Since the case (2) can be obtained as a subproof of the case (1), we
consider only (1).

“(⇒)” By induction on a proof P of Γ⇒ γ in TN[l]. We distinguish the
cases according to the last inference of P , and show some cases.

Case (Xip⇒ Xip): The last inference of P is of the form: Xip⇒ Xip.
In this case, we obtain FL ⊢ f(Xip)⇒ f(Xip), i.e., FL ⊢ pi ⇒ pi (pi ∈ Φi).

Case (→left). The last inference of P is of the form:

Γ⇒ Xiα Σ, Xiβ, ∆⇒ γ

Σ, Xi(α→β), Γ, ∆⇒ γ
(→left).

By induction hypothesis, we have FL ⊢ f(Γ)⇒ f(Xiα) and FL ⊢ f(Σ),
f(Xiβ), f(∆) ⇒ f(γ). Then we obtain the required fact:

....
f(Γ)⇒ f(Xiα)

....
f(Σ), f(Xiβ), f(∆)⇒ f(γ)

f(Σ), f(Xiα)→f(Xiβ), f(Γ), f(∆)⇒ f(γ)
(→leftFL)

where f(Xiα)→f(Xiβ) coincides with f(Xi(α→β)) by the definition of f .

Case (Xleft). The last inference of P is of the form:

Γ, Xlα, ∆⇒ γ

Γ, Xl+mα, ∆⇒ γ
(Xleft).

By induction hypothesis, we obtain the required fact: FL ⊢ f(Γ), f(Xlα),
f(∆)⇒ f(γ) where f(Xlα) coincides with f(Xl+mα) by the definition of f .
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Case (Gleft). The last inference of P is of the form:

Γ, Xi+kα, ∆⇒ γ

Γ, XiGα, ∆⇒ γ
(Gleft).

By induction hypothesis, we have FL ⊢ f(Γ), f(Xi+kα), f(∆)⇒ f(γ), and
hence obtain:

....
f(Γ), f(Xi+kα), f(∆)⇒ f(γ)

.... (∧left1FL) and (∧left2FL)

f(Γ),
∧
{f(Xi+jα) | j ∈ ωl}, f(∆)⇒ f(γ)

where
∧
{f(Xi+jα) | j ∈ ωl} coincides with f(XiGα) by the definition of f ,

and f(Xi+kα) ∈ {f(Xi+jα) | j ∈ ωl}. Remark that the case i > l is also
included in this proof. In such a case, f(Xi+kα) and

∧
{f(Xi+jα) | j ∈ ωl}

mean f(Xlα) and

l
︷ ︸︸ ︷

f(Xl
α) ∧ f(Xl

α) ∧ · · · ∧ f(Xl
α), respectively.

Case (Gright). The last inference of P is of the form:

{ Γ⇒ Xi+jα }j∈ωl

Γ⇒ XiGα
(Gright).

By induction hypothesis, we have FL ⊢ f(Γ)⇒ f(Xi+jα) for all j ∈ ωl. Let
Φ be the multiset {f(Xi+jα) | j ∈ ωl}. We obtain

....
{ f(Γ)⇒ f(Xi+jα) }f(Xi+jα) ∈ Φ

.... (∧rightFL)

f(Γ)⇒
∧

Φ

where
∧

Φ coincides with f(XiGα) by the definition of f .

“(⇐)” By induction on a proof Q of f(Γ)⇒ f(γ) in FL. We distinguish
the cases according to the last inference of Q, and show only the following
case.

Case (∧rightF L). The last inference of Q is of the form:

f(Γ)⇒ f(Xiα) f(Γ)⇒ f(Xiβ)

f(Γ)⇒ f(Xiα) ∧ f(Xiβ)
(∧rightFL)
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where f(Xi(α ∧ β)) coincides with f(Xiα) ∧ f(Xiβ) by the definition of f .
By induction hypothesis, we have TN[l] ⊢ Γ⇒ Xiα and TN[l] ⊢ Γ⇒ Xiβ.
Then, we obtain the required fact:

....
Γ⇒ Xiα

....
Γ⇒ Xiβ

Γ⇒ Xi(α ∧ β)
(∧right).

⊣

Theorem 2.8 (Cut-elimination). The rule (cut) is admissible in cut-free

TN[l].

Proof. Suppose TN[l] ⊢ Γ⇒ γ. Then, we have FL ⊢ f(Γ)⇒ f(γ) by
Theorem 2.7 (1), and hence FL – (cut) ⊢ f(Γ)⇒ f(γ) by the well-known
cut-elimination theorem for FL. By Theorem 2.7 (2), we obtain TN[l] – (cut)
⊢ Γ⇒ γ. ⊣

It is known that some first-order logics without contraction rule are de-
cidable. For example, it was shown by Komori [13] that some first-order in-
tuitionistic substructural logics without the contraction rule, including FL,
are decidable. For a review of the decision problems for substructural logics,
see e.g., [10].

Theorem 2.9 (Decidability). TN[l] is decidable.

Proof. By Theorem 2.7, the provability of TN[l] can finitely be transformed
into that of FL. Since FL is decidable, TN[l] is also decidable. ⊣

3. Phase semantics

The phase semantics for linear logics was originally introduced by Girard [5],
and the phase semantics for intuitionistic non-commutative linear logics (in-
cluding FL) was proposed by Abrusci [1]. A phase-semantic cut-elimination
and completeness proof was proposed by Okada [16]. In this paper, we
obtain a phase semantics for the propositional fragment of TN[l] based on
an extension of Abrusci’s non-commutative phase semantics, and prove the
completeness theorem with respect to this semantics by using an extension
of Okada’s method.

Although the completeness theorem for the first-order predicate TN[l]
can similarly be obtained based on an extension of Okada’s method, such
a theorem and its proof are omitted here, since the essential part of the
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semantics, i.e., the part of the temporal connectives, is completely included
in the propositional part. In this section, we thus use the same name TN[l]
for its propositional fragment.

The difference between the semantics for TN[l] and the semantics for
FL is the definition of the valuations: Whereas the semantics for FL has a
valuation v, the semantics for TN[l] has an infinite number of valuations vi

(i ∈ ω), where v0 is the same as v.

Definition 3.10. An intuitionistic phase space1 is a structure 〈M, cl〉 sat-
isfying the following conditions:

1. M := 〈M, ·, 1〉 is a monoid with the identity 1,

2. cl is an operation on the powerset P (M) of M such that, for any X, Y ∈
P (M),

C1: X ⊆ cl(X),

C2: clcl(X) ⊆ cl(X),

C3: X ⊆ Y implies cl(X) ⊆ cl(Y ),

C4: cl(X) ◦ cl(Y ) ⊆ cl(X ◦ Y )

where the operation ◦ on P (M) is defined as X ◦Y := {x · y | x ∈ X and
y ∈ Y }. The operation cl is called here closure operation.

In order to obtain an interpretation of the logical constants and con-
nectives, the corresponding constants and operations on P (M) are defined
below.

Definition 3.11. Constants and operations on P (M) are defined as follows:
for any X, Y ∈ P (M),

1. 1̇ := cl{1},

2. ⊤̇ := M ,

3. ⊥̇ := cl(∅),

4. X →̇ Y := {y | ∀x ∈ X (x · y ∈ Y )},

5. X ←̇ Y := {y | ∀x ∈ X (y · x ∈ Y )},

6. X ∗̇ Y := cl(X ◦ Y ),

1For the sake of brevity, the term “non-commutative” in the intuitionistic non-
commutative phase space or structure is omitted in this paper.
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7. X ∧̇ Y := X ∩ Y ,

8. X ∨̇ Y := cl(X ∪ Y ).

We define D := {X ∈ P (M) | X = cl(X)}. Then,

D := 〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, ⊤̇, ⊥̇〉

is called an intuitionistic phase structure.

Remark that the following facts hold: for any X, X ′, Y, Y ′, Z ∈ P (M),

1. X ⊆ Y →̇ Z iff X ◦ Y ⊆ Z,

2. X ⊆ Y ←̇ Z iff Y ◦X ⊆ Z,

3. X ⊆ X ′ and Y ⊆ Y ′ imply X ◦ Y ⊆ X ′ ◦ Y ′, X ′ →̇ Y ⊆ X →̇ Y ′ and
X ′ ←̇ Y ⊆ X ←̇ Y ′.

Remark that D is closed under the operations →̇, ←̇, ∗̇, ∧̇,∨̇ and
⋂

(infi-
nite meet), and that 1̇, ⊤̇, ⊥̇ ∈ D.

Definition 3.12. Timed valuations vi for all i ∈ ω on an intuitionistic phase
structure D := 〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, ⊤̇, ⊥̇〉 are mappings from the set of all
propositional variables to D. Then, vi for all i ∈ ω are extended to mappings
from the set Φ of all formulas to D by: for any positive integer m,

1. vi(1) := 1̇,

2. vi(⊤) := ⊤̇,

3. vi(⊥) := ⊥̇,

4. vi(α→β) := vi(α) →̇ vi(β),

5. vi(α←β) := vi(α) ←̇ vi(β),

6. vi(α ∗ β) := vi(α) ∗̇ vi(β),

7. vi(α ∧ β) := vi(α) ∧̇ vi(β),

8. vi(α ∨ β) := vi(α) ∨̇ vi(β),

9. vi(Xα) := vi+1(α),

10. vi(Xl+mα) := vi(Xlα),

11. vi(Gα) :=
⋂

j∈ωl

vi+j(α) if i < l, vi(Gα) := vl(α) otherwise,

12. vi(Fα) := cl(
⋃

j∈ωl

vi+j(α)) if i < l, vi(Fα) := vl(α) otherwise.
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Remark that the following conditions hold: for any positive integer m,

1. vl+m(α) = v0(Xl+mα) = v0(Xlα) = vl(α),

2. vl+m(Gα) = vl(α) = vl+m(Fα).

Definition 3.13. An intuitionistic timed phase model is a structure 〈D,

{vi}i∈ω〉 such that D is an intuitionistic phase structure, and {vi}i∈ω is a
set of timed valuations. A formula α is true in an intuitionistic timed phase
model 〈D, {vi}i∈ω〉 if 1̇ ⊆ v0(α) (or equivalently 1 ∈ v0(α)) holds, and valid
in an intuitionistic phase structure D if it is true for any timed valuations
{vi}i∈ω on the intuitionistic phase structure. A sequent α1, · · · , αn ⇒ β

(or ⇒ β) is true in an intuitionistic timed phase model 〈D, {vi}i∈ω〉 if the
formula α1 ∗ · · · ∗ αn→β (or β) is true in it, and valid in an intuitionistic
phase structure if so is α1 ∗ · · · ∗ αn→β (or β).

An expression ∆∗ means δ1 ∗ · · · ∗ δn (or ∅) if ∆ ≡ 〈δ1, ..., δn〉 (1 ≤ n) (or
∆ ≡ ∅, respectively).

Theorem 3.14 (Soundness). If a sequent S is provable in TN[l], then S is

valid for any intuitionistic phase structures.

Proof. By induction on a proof P of S. We distinguish the cases according
to the last inference of P . The cases for the logical inference rules (and
initial sequents) excepting the cases for (Xleft), (Xright), (Gleft), (Gright),
(Fleft) and (Fright) are similar to the cases in FL. The cases for (Xleft) and
(Xright) are obvious by the definition of valuations. The cases for (Gright)
and (Gleft), except the cases depending on the definition of valuations, are
similar to the cases (Fleft) and (Fright), respectively. We thus show only
the following cases.

Case (Gright): The last inference of P is of the form:

{ Γ⇒ Xi+jα }j∈ωl

Γ⇒ XiGα
(Gright).

Subcase (i < l): We show only the case for Γ 6= ∅. It is sufficient to show
that if ∀j ∈ ωl [1 ∈ v0(Γ∗→Xi+jα)] then 1 ∈ v0(Γ∗→XiGα). Suppose ∀j ∈
ωl [1 ∈ v0(Γ∗→Xi+jα)], i.e., ∀x [x ∈ v0(Γ∗) implies ∀j ∈ ωl (x ∈ v0(Xi+jα))]
where x ∈ v0(Xi+jα) = vi+j(α). We show 1 ∈ v0(Γ∗→XiGα), i.e., ∀x [x ∈
v0(Γ∗) implies x ∈ v0(XiGα)] where x ∈ v0(XiGα) =

⋂

j∈ωl
vi+j(α) iff ∀j ∈

ωl [x ∈ vi+j(α)]. Suppose x ∈ v0(Γ∗). Then we have ∀j ∈ ωl [x ∈ vi+j(α)]
by the induction hypothesis.
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Subcase (i ≥ l): We show only the case for Γ 6= ∅. Let i = l + m

where m ≥ 0. In this case, we can proceed the proof by the same manner
as in the case i < l. Thus, it is sufficient to show the fact that ∀j ∈ ωl

[x ∈ v0(Xl+m+jα)] implies x ∈ v0(Xl+mGα). This fact can be shown by the
fact v0(Xl+m+jα) = vl(α) = v0(Xl+mGα).

Case (Gleft): The last inference of P is of the form: for any k ∈ ωl,

∆, Xi+kα, Γ⇒ γ

∆, XiGα, Γ⇒ γ
(Gleft).

Subcase (i < l): We only show the case for Γ 6= ∅. It is sufficient to show
that if 1 ∈ v0(∆∗∗Xi+kα→(Γ∗→γ)), then 1 ∈ v0(∆∗∗XiGα→(Γ∗→γ)), since
∆∗ ∗ Xi+kα→(Γ∗→γ) and ∆∗ ∗ XiGα→(Γ∗→γ) are logically equivalent to
∆∗∗Xi+kα∗Γ∗→γ and ∆∗∗XiGα∗Γ∗→γ, respectively. Suppose 1 ∈ v0(∆∗∗
Xi+kα→(Γ∗→γ)), i.e., 1 ∈ v0(∆∗∗Xi+k)→̇v0(Γ∗→γ) iff 1 ∈ {y | ∀x ∈ v0(∆∗∗
Xi+kα)(x ·y ∈ v0(Γ∗→γ)} iff ∀x [x ∈ v0(∆∗ ∗Xi+kα) implies x ∈ v0(Γ∗→γ)].
We show 1 ∈ v0(∆∗ ∗ XiGα→(Γ∗→γ)), i.e., ∀x [x ∈ v0(∆∗ ∗ XiGα) implies
x ∈ v0(Γ∗→γ)]. To show this, it is sufficient to show v0(∆∗ ∗ XiGα) ⊆
v0(∆∗ ∗ Xi+kα) by the hypothesis. Also, to show v0(∆∗ ∗ XiGα) ⊆ v0(∆∗ ∗
Xi+kα), it is sufficient to show v0(XiGα) ⊆ v0(Xi+kα). This can be shown
as v0(XiGα) = vi(Gα) =

⋂

j∈ωl
vi+j(α) ⊆ vi+k(α) = v0(Xi+kα).

Subcase (i ≥ l): We show only the case for Γ 6= ∅. Let i = l + m where
m ≥ 0. In this case, we can proceed the proof by the same manner as in the
case i < l. Thus, it is sufficient to show the fact v0(Xl+mGα)⊆ v0(Xl+m+kα).
This fact is obvious since v0(Xl+mGα) = vl(α) = v0(Xl+m+kα). ⊣

In order to prove the strong completeness theorem, we have to construct
a canonical model.

For the sake of clearlity for the completeness proof, an expression [Γ]
is used to explicitly represent a sequence of formulas, i.e., [Γ] and Γ are
identical, but only the expressions are different.

Definition 3.15. We define a monoid 〈M, ·, 1〉 as follows:

1. M := {[Γ] | [Γ] is a finite sequence of formulas},

2. [Γ] · [∆] := [Γ, ∆] (the concatenation),

3. 1 := [ ] (the empty sequence).

We define the following: for any i ∈ ω and any formula α,

‖α‖i := {[Γ] | ⊢cf Γ⇒ Xiα}

where ⊢cf means “provable in cut-free TN[l]”.
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Definition 3.16. We define

D := {X | X =
⋂

i∈I

‖αi‖
0}

for an arbitrary (non-empty) indexing set I and an arbitrary formula αi.
We then define

cl(X) :=
⋂
{Y ∈ D | X ⊆ Y }.

We define the following constants and operations on P (M): for any X, Y ∈
P (M),

1. l̇ := cl{1},

2. ⊤̇ := M ,

3. ⊥̇ := cl(∅),

4. X →̇ Y := {[∆] | ∀ [Γ] ∈ X ([∆, Γ] ∈ Y )},

5. X ←̇ Y := {[∆] | ∀ [Γ] ∈ X ([Γ, ∆] ∈ Y )},

6. X ∗̇ Y := cl(X ◦ Y ) where X ◦ Y := {[Γ, ∆] | [Γ] ∈ X and [∆] ∈ Y },

7. X ∧̇ Y := X ∩ Y ,

8. X ∨̇ Y := cl(X ∪ Y ).

Timed valuations vi for all i ∈ ω are mappings from the set of all proposi-
tional variables to D such that vi(p) := ‖p‖i.

We have the following facts: for any X, Y, Z ∈ P (M),

1. X ⊆ Y →̇ Z iff X ◦ Y ⊆ Z,

2. X ⊆ Y ←̇ Z iff Y ◦X ⊆ Z.

Remark that D is closed under arbitrary
⋂

.

Lemma 3.17. Let D be {X | X =
⋂

i∈I

‖αi‖
0}, and Dc be {X ∈ P (M) | X =

cl(X)}. Then, D = Dc.

Proof. First, we show Dc ⊆ D. Suppose X ∈ Dc. Then X = cl(X) =
⋂
{Y ∈ D | X ⊆ Y } ∈ D. Next, we show D ⊆ Dc. Suppose X ∈ D. We

show X ∈ Dc, i.e. X =
⋂
{Y ∈ D | X ⊆ Y }. To show this, it is sufficient to

prove that

(1) X ⊆ {[Γ] | ∀ W [W ∈ D and X ⊆W imply [Γ] ∈W ]},

(2) {[Γ] | ∀ W [W ∈ D and X ⊆W imply [Γ] ∈W ]} ⊆ X.
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First, we show (1). Suppose [∆] ∈ X and asuume W ∈ D and X ⊆ W

for any W . Then we have [∆] ∈ X ⊆ W . Next we show (2). Suppose
[∆] ∈ {[Γ] | ∀ W [W ∈ D and X ⊆W imply [Γ] ∈W ]}. By the assumption
X ∈ D and the fact that X ⊆ X, we have [∆] ∈ X. ⊣

Lemma 3.18. For any X, Y ⊆M , if Y ∈ D, then X →̇ Y, X ←̇ Y ∈ D.

Proof. We show only X →̇ Y ∈ D. The case X ←̇ Y ∈ D can similarly
be shown. Before the proof, it is remarked that the following rules

Γ⇒ Xi(α→β)

Γ, Xiα⇒ Xiβ
(→right−1)

Γ, Xi(α ∗ β), ∆⇒ γ

Γ, Xiα, Xiβ, ∆⇒ γ
(∗left−1)

are admissible in cut-free TN[l].

Suppose X ⊆M and Y ∈ D. We have:

X →̇ Y = X →̇
⋂

i∈I ‖αi‖
0

= {[∆] | ∀[Γ] ∈ X ([∆, Γ] ∈ {[Π] | ∀i ∈ I([Π] ∈ ‖αi‖
0)})}

= {[∆] | ∀[Γ] ∈ X (∀i ∈ I(⊢cf ∆, Γ⇒ αi))}

= {[∆] | ∀[Γ] ∈ X (∀i ∈ I(⊢cf ∆⇒ Γ∗→αi))}

(by using (∗left), (∗left−1), (→right) and (→right−1))

= {[∆] | ∀[Γ] ∈ X (∀i ∈ I([∆] ∈ ‖Γ∗→αi‖
0))}

=
⋂
{‖Γ∗→αi‖

0 | i ∈ I and [Γ] ∈ X} ∈ D . ⊣

Then, we can show the following.

Proposition 3.19. The structure D := 〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, ⊤̇, ⊥̇〉 defined

in Definition 3.16 forms an intuitionistic phase structure.

Proof. We can verify that D is closed under →̇, ←̇, ∗̇, ∧̇ and ∨̇. In partic-
ular, for →̇ and ←̇, we use Lemma 3.18. The fact 1̇, ⊤̇, ⊥̇ ∈ D is obvious.
We can verify that the conditions C1–C4 for the closure operation hold
for this structure. The conditions C1–C3 are obvious. We only show C4:
cl(X) ◦ cl(Y ) ⊆ cl(X ◦ Y ) for any X, Y ∈ P (M). We assume the following
facts, which will be proved later: for any X, Y ∈ P (M),

(∗) cl(X) · Y ⊆ cl(X ◦ Y ),

(∗∗) X · cl(Y ) ⊆ cl(X ◦ Y ).
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By using the facts (∗) and (∗∗) and Lemma 3.17, we have:

cl(X) ◦ cl(Y ) ⊆ cl(cl(X) ◦ Y ) ⊆ cl(cl(X ◦ Y )) = cl(X ◦ Y ).

We show the remained facts (∗) and (∗∗). We have X ◦Y ⊆ cl(X ◦Y ) by
the condition C1, and hence X ⊆ Y →̇ cl(X ◦ Y ) and Y ⊆ X ←̇ cl(X ◦ Y )
hold. Moreover, by the condition C3, we have cl(X) ⊆ cl(Y →̇ cl(X ◦ Y ))
and cl(Y ) ⊆ cl(X ←̇ cl(X ◦ Y )). Here, by cl(X ◦ Y ) ∈ D and Lemma 3.18,
we have Y →̇ cl(X ◦ Y ) ∈ D and X ←̇ cl(X ◦ Y ) ∈ D. Thus, we obtain

cl(X) ⊆ cl(Y →̇ cl(X ◦ Y )) = Y →̇ cl(X ◦ Y ),

cl(Y ) ⊆ cl(X ←̇ cl(X ◦ Y )) = X ←̇ cl(X ◦ Y )

by Lemma 3.17. Therefore we obtain the required facts. ⊣

We then have a modified version of the key lemma by Okada [16].

Lemma 3.20. For any i ∈ ω and any formula α, [Xiα] ∈ vi(α) ⊆ ‖α‖i.

Proof. By induction on α. The cases for α ≡ 1,⊤, ⊥, β→γ, β←γ, β ∗ γ,
β∧γ and β∨γ are similar to the cases in FL. We thus show only the following
cases.

Case (α ≡ Xβ): By the hypothesis of induction, we have [Xi+1β] ∈
vi+1(β) ⊆ ‖β‖i+1. We also have ‖β‖i+1 = ‖Xβ‖i by the definition of ‖ · ‖i.
Thus, we obtain [Xi(Xβ)] ∈ vi(Xβ) ⊆ ‖Xβ‖i.

Case (α ≡ Gβ):
Subcase (i < l): We show [XiGβ] ∈ vi(Gβ) ⊆ ‖Gβ‖i for any i < l. First,

we show [XiGβ] ∈ vi(Gβ), i.e., [XiGβ] ∈
⋂

j∈ωl

vi+j(β), i.e., ∀j ∈ ωl ([XiGβ] ∈

vi+j(β)). Since vi+j(β) ∈ D, we have vi+j(β) =
⋂

k∈I

‖δk‖
0 = {[Γ] | ∀k ∈

I(⊢cf Γ⇒ δk)}. Thus, ∀j ∈ ωl ([XiGβ] ∈ vi+j(β)) means (∗): ∀k ∈ I (⊢cf

XiGβ ⇒ δk). On the other hand, by the hypothesis of induction, we have
∀j ∈ ωl ([Xi+jβ] ∈ vi+j(β)), i.e., (∗∗): ∀k ∈ I ∀j ∈ ωl (⊢cf Xi+jβ ⇒ δk).
By taking a positive integer m for j ∈ ωl in (∗∗) and by applying (Gleft) to
(∗∗), we obtain (∗).

Next we show vi(Gβ) ⊆ ‖Gβ‖i. Suppose [Γ] ∈ vi(Gβ), i.e., [Γ] ∈
⋂

j∈ωl

vi+j(β). We show [Γ] ∈ ‖Gβ‖i, i.e., ⊢cf Γ⇒ XiGβ. By the hypothesis of

induction, we have vi+j(β) ⊆ ‖β‖i+j . Thus, we obtain [Γ] ∈
⋂

j∈ωl

vi+j(β) ⊆

⋂

j∈ωl

‖β‖i+j , and hence [Γ] ∈
⋂

j∈ωl

‖β‖i+j , i.e., ∀j ∈ ωl ([Γ] ∈ ‖β‖i+j), i.e., ∀j ∈

ωl (⊢cf Γ⇒ Xi+jβ). By applying (Gright) to this, we obtain ⊢cf Γ⇒ XiGβ.



Temporal non-commutative logic 117

Subcase (i ≥ l): Let i = l + m where m ≥ 0. We show [Xl+mGβ] ∈
vl+m(Gβ) ⊆ ‖Gβ‖l+m. First, we show that [Xl+mGβ] ∈ vl+m(Gβ), i.e.,
[Xl+mGβ] ∈ vl+m(Gβ) = vl(β). Since vl(β) ∈ D, we have vl(β) =

⋂

k∈I ‖δk‖
0

= {[Γ] | ∀k ∈ I (⊢cf Γ⇒ δk)}. Thus, [Xl+mGβ] ∈ vl+m(Gβ) means (∗): ∀k ∈
I (⊢cf Xl+mGβ ⇒ δk). On the other hand, by the hypothesis of induction,
we have [Xlβ] ∈ vl(β), i.e., (∗∗): ∀k ∈ I (⊢cf Xlβ ⇒ δk). We thus obtain (∗)
from (∗∗) by using (Xleft) and (Gleft): for any k ∈ I,

....
Xlβ ⇒ δk

Xl+mβ ⇒ δk

(Xleft)

Xl+mGβ ⇒ δk

(Gleft).

Next, we show vl+m(Gβ) ⊆ ‖Gβ‖l+m. We have vl+m(Gβ) = vl(β) ⊆ ‖β‖l by
the hypothesis of induction. Thus, it is sufficient to show ‖β‖l ⊆ ‖Gβ‖l+m.
We show this. Suppose [Γ] ∈ ‖β‖l, i.e., ⊢cf Γ⇒ Xlβ. Then, we obtain
⊢cf Γ⇒ Xl+mGβ (i.e., [Γ] ∈ ‖Gβ‖l+m) by using (Gright) and (Xright):

....
Γ⇒ Xlβ

Γ⇒ Xl+mβ
(Xright)

....
Γ⇒ Xlβ

Γ⇒ Xl+m+1β
(Xright)

· · ·

....
Γ⇒ Xlβ

Γ⇒ Xl+m+lβ
(Xright)

Γ⇒ Xl+mGβ
(Gright).

Case (α ≡ Fβ):
Subcase (i < l): We show [XiFβ] ∈ vi(Fβ) ⊆ ‖Fβ‖i for any i < l. First,

we show [XiFβ] ∈ vi(Fβ), i.e., [XiFβ] ∈ vi(Fβ) = cl(
⋃

j∈ωl

vi+j(β)) =
⋂
{Y ∈

D |
⋃

j∈ωl

vi+j(β) ⊆ Y }. Thus, we show

∀W [W ∈ D and
⋃

j∈ωl

vi+j(β) ⊆W imply [XiFβ] ∈W ].

Suppose W ∈ D and
⋃

j∈ωl

vi+j(β) ⊆ W , and the induction hypotheses ∀j ∈

ωl ([Xi+jβ] ∈ vi+j(β)). Then, we have: for any j ∈ ωl,

[Xi+jβ] ∈
⋃

j∈ωl

vi+j(β) ⊆W =
⋂

k∈I

‖δk‖
0 = {[∆] | ∀k ∈ I([∆] ∈ ‖δk‖

0)},

and hence ∀k ∈ I ∀j ∈ ωl (⊢cf Xi+jβ ⇒ δk). This implies ∀k ∈ I (⊢cf

XiFβ ⇒ δk) by (Fleft), and this means [XiFβ] ∈
⋂

k∈I

‖δk‖
0 = W .
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Second, we show vi(Fβ) ⊆ ‖Fβ‖i. Suppose [Γ] ∈ vi(Fβ). Then, we have
[Γ] ∈ cl(

⋃

j∈ωl

vi+j(β)), i.e.,

∀W [W ∈ D and
⋃

j∈ωl

vi+j(β) ⊆W imply [Γ] ∈W ].

We take ‖Fβ‖i for W . If we can show
⋃

j∈ωl

vi+j(β) ⊆ ‖Fβ‖i, then [Γ] ∈ ‖Fβ‖i.

Thus, we prove this. Suppose [∆] ∈
⋃

j∈ωl

vi+j(β). Then, [∆] ∈
⋃

j∈ωl

vi+j(β) ⊆

⋃

j∈ωl

‖β‖i+j by the induction hypotheses, and hence we obtain [∆] ∈ ‖β‖i+k

for some k ∈ ωl, i.e., ⊢cf ∆⇒ Xi+kβ. Thus, we obtain ⊢cf ∆⇒ XiFβ by
(Fright). This means [∆] ∈ ‖Fβ‖i.

Subcase (i ≥ l): Let i = l + m where m ≥ 0. We show [Xl+mFβ] ∈
vl+m(Fβ) ⊆ ‖Fβ‖l+m. First, we show that [Xl+mFβ] ∈ vl+m(Fβ), i.e.,
[Xl+mFβ] ∈ vl+m(Fβ) = vl(β). Since vl(β) ∈ D, we have vl(β) =

⋂

k∈I ‖δk‖
0

= {[Γ] | ∀k ∈ I (⊢cf Γ⇒ δk)}. Thus, [Xl+mFβ] ∈ vl+m(Fβ) means (∗): ∀k ∈
I (⊢cf Xl+mFβ ⇒ δk). On the other hand, by the hypothesis of induction,
we have [Xlβ] ∈ vl(β), i.e., (∗∗): ∀k ∈ I (⊢cf Xlβ ⇒ δk). We thus obtain (∗)
from (∗∗) by using (Xleft) and (Fleft): for any k ∈ I,

....
Xlβ ⇒ δk

Xl+mβ ⇒ δk

(Xright)

....
Xlβ ⇒ δk

Xl+m+1β ⇒ δk

(Xleft)
· · ·

....
Xlβ ⇒ δk

Xl+m+lβ ⇒ δk

(Xleft)

Xl+mFβ ⇒ δk

(Fleft).

Next, we show vl+m(Fβ) ⊆ ‖Fβ‖l+m. We have vl+m(Fβ) = vl(β) ⊆ ‖β‖l by
the hypothesis of induction. Thus, it is sufficient to show ‖β‖l ⊆ ‖Fβ‖l+m.
We show this. Suppose [Γ] ∈ ‖β‖l, i.e., ⊢cf Γ⇒ Xlβ. Then, we obtain
⊢cf Γ⇒ Xl+mFβ (i.e., [Γ] ∈ ‖Fβ‖l+m) by using (Fright) and (Xright):

....
Γ⇒ Xlβ

Γ⇒ Xl+mβ
(Xright)

Γ⇒ Xl+mFβ
(Fright).

⊣

Theorem 3.21 (Strong completeness). If a sequent S is valid for any intu-

itionistic phase structures, then S is provable in cut-free TN[l].
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Proof. Using Lemma 3.20, we can obtain this theorem as follows. If a
formula α, which corresponds to S, is true, then [ ] ∈ v0(α). On the other
hand vi(α) ⊆ ‖α‖i for any i ∈ ω, and hence [ ] ∈ ‖α‖0, which means “⇒ α

is provable in cut-free TN[l]”. ⊣

An alternative proof of the cut-elimination theorem for TN[l] is also
obtained as follows. If a sequent S is provable in TN[l], then S is valid by
Theorem 3.14. By Theorem 3.21, S is provable in cut-free TN[l].

4. Time-as-resources correspondence

In this section, a resource-indexed non-commutative logic RN[l], which is
regarded as a non-commutative version of the resource-indexed linear logic
RL[l] proposed in [10], is introduced, and the correspondence between RN[l]
and TN[l] is shown.

The proposed logic RN[l] is obtained from FL by adding modified l-
bounded exponential operators !l and ?l and generalizing initial sequents
and inference rules by putting explicit resource indexes. The operator !l is
characterized by the following inference rules: for a fixed positive integer l,

Γ,

1 ≤ n ≤ l
︷ ︸︸ ︷
α ∗ · · · ∗ α, ∆⇒ γ

Γ, !lα, ∆⇒ γ
Γ⇒ α Γ⇒ α ∗ α · · · Γ⇒

l+1
︷ ︸︸ ︷
α ∗ · · · ∗ α

Γ⇒ !lα

which correspond to the Hilbert-style axiom scheme:

!lα↔ α ∧ (α ∗ α) ∧ (α ∗ α ∗ α) ∧ · · · ∧ (

l+1
︷ ︸︸ ︷
α ∗ · · · ∗ α).

Since the intended meaning of the formula of the form

i
︷ ︸︸ ︷
α ∗ · · · ∗ α is:

• “The resource α is usable just in the number i, but only once”,

the intended meaning of the formula of the form !lα is:

• “The resource α is usable in any finite positive number less than l, but
only once (i.e., it is consumed after use)”.

In this section, the same notations and conventions as in the previous
sections are also adopted. The language of the logics which are introduced in
this section is obtained from that of TN[l] by deleting X, G and F and adding
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!l (l-bounded exponential operator or l-bounded “of course” operator) and
?l (l-bounded “why not” operator). For any ♯ ∈ {!l, ?l}, an expression ♯Γ is
used to denote the sequence 〈♯γ | γ ∈ Γ〉. An expression αi for any i ∈ ω

is used to denote

i+1
︷ ︸︸ ︷
α ∗ α ∗ · · · ∗ α. In this expression, the superscript ·i of α

is called the resource index of α. The intended meaning of αi is thus “The
resource α is usable just in the number i + 1, but only once”.

The logic RN[l] is introduced below.

Definition 4.22 (RN[l]). An expression αi with i ∈ ω is inductively defined
by (α0 := α) and (αi+1 := αi ∗ α). Let l be a fixed positive integer (called a
resource bound).

The initial sequents of RN[l] are of the form: for any atomic formula p,

pi ⇒ pi ⇒ 1
i Γ,⊥i, ∆⇒ γ Γ⇒ ⊤i.

The cut rule of RN[l] is of the form:

Γ⇒ α Σ, α, ∆⇒ γ

Σ, Γ, ∆⇒ γ
(cut).

The logical inference rules of RN[l] are of the form: for any k ∈ ωl and any
positive integer m,

Γ, ∆⇒ γ

Γ, 1
i, ∆⇒ γ

(1wer)

Γ⇒ αi Σ, βi, ∆⇒ γ

Σ, (α→β)i, Γ, ∆⇒ γ
(→leftr)

Γ, αi ⇒ βi

Γ⇒ (α→β)i
(→rightr)

Γ⇒ αi Σ, βi, ∆⇒ γ

Σ, Γ, (α←β)i, ∆⇒ γ
(←leftr)

αi, Γ⇒ βi

Γ⇒ (α←β)i
(←rightr)

Γ, αi, ∆⇒ γ

Γ, (α ∧ β)i, ∆⇒ γ
(∧left1r)

Γ, βi, ∆⇒ γ

Γ, (α ∧ β)i, ∆⇒ γ
(∧left2r)

Γ⇒ αi Γ⇒ βi

Γ⇒ (α ∧ β)i
(∧rightr)

Γ, αi, ∆⇒ γ Γ, βi, ∆⇒ γ

Γ, (α ∨ β)i, ∆⇒ γ
(∨leftr)

Γ⇒ αi

Γ⇒ (α ∨ β)i
(∨right1r)

Γ⇒ βi

Γ⇒ (α ∨ β)i
(∨right2r)

Γ, αi, βi, ∆⇒ γ

Γ, (α ∗ β)i, ∆⇒ γ
(∗leftr)

Γ⇒ αi ∆⇒ βi

Γ, ∆⇒ (α ∗ β)i
(∗rightr)
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Γ, α(t)i, ∆⇒ γ

Γ, (∀xα(x))i, ∆⇒ γ
(∀leftr)

Γ⇒ α(a)i

Γ⇒ (∀xα(x))i
(∀rightr)

Γ, α(a)i, ∆⇒ γ

Γ, (∃xα(x))i, ∆⇒ γ
(∃leftr)

Γ⇒ α(t)i

Γ⇒ (∃xα(x))i
(∃rightr)

Γ, αl, ∆⇒ γ

Γ, αl+m, ∆⇒ γ
(INleft) Γ⇒ αl

Γ⇒ αl+m
(INright)

Γ, αi+k, ∆⇒ γ

Γ, (!lα)i, ∆⇒ γ
(!lleft)

{ Γ⇒ αi+j }j∈ωl

Γ⇒ (!lα)i
(!lright)

{ Γ, αi+j, ∆⇒ γ }j∈ωl

Γ, (?lα)i, ∆⇒ γ
(?lleft) Γ⇒ αi+k

Γ⇒ (?lα)i
(?lright)

where a in (∀rightr) and (∃leftr) is a free variable which must not occur in
the lower sequents of the rules, and t in (∀leftr) and (∃rightr) is an arbitrary
term.

Definition 4.23 (RN[ω]). The logic RN[ω] is obtained from RN[l] by delet-
ing {(INleft), (INright)} and replacing ωl by ω. The modified rules obtained
from (!lleft), (!lright), (?lleft) and (?lright) by replacing ωl by ω are denoted
as (!ωleft), (!ωright), (?ωleft) and (?ωright), respectively.

Remark that for any formula α, the sequent of the form αi ⇒ αi is prov-
able in RN[l]. This can be shown by induction on α.

A commutative (linear logic) version RL[l] was introduced in [10]. But,
the setting of RL[l] is somewhat different from RN[l]: RL[l] has no {(INleft),
(INright)}, and has the structural rule of exchange. The correspondence
between RL[l] and the commutative version of linear-time temporal logic
was not discussed in [10]. In this section, the correspondence between RN[l]
and TN[l] is shown.

The logic RN[ω] is, roughly speaking, regarded as an intuitionistic and
non-commutative version of Baratella and Masini’s 2-sequent calculus 2Sω

for (classical) linear-time temporal logic [2], where !l and ?l are replaced by G
and F, respectively. But, strictly speaking, RN[ω] is not just the 2-sequent
calculus because in 2Sω, the index ·i of αi is just used as a label, but in

RN[ω], the index ·i of αi is just the abbreviation of the formula

i+1
︷ ︸︸ ︷
α ∗ · · · ∗ α.

Since the treatment of the infinite rules (!ωright) and (?ωleft) in RN[ω] is
difficult, we do not know whether RN[ω] is decidable or not. This problem
is also remained open. We do not discuss more about RN[ω].



122 Norihiro Kamide

Proposition 4.24. Let m and n be distinct fixed positive integers. The

logics RN[m] and RN[n] are not theorem-equivalent.

Proposition 4.25. The {!l, ?l}-free fragment RN of RN[l] is strictly stronger

than FL.

Proof. For an atomic formula p, the sequent p2→p2 ⇒ (p→p)2 is not prov-
able in FL, but it is provable in RN. ⊣

Although RN[l] and TN[l] are quite resemble, these logics are different.

Proposition 4.26. There is a formula which is provable in the {!l, ?l}-free

fragment of RN[l] but not provable in TN[l].

Proof. Take the same example as in the proof of Proposition 4.25. ⊣

Definition 4.27. We fix a countable non-empty set Φ of atomic formulas,
and define the sets Φi := {pi | p ∈ Φ} (1 ≤ i ∈ ω) and Φ0 := Φ of atomic
formulas. The language LRN[l] (or the set of formulas) of RN[l] is defined by
using Φ, 1, ⊤, ⊥, →,←,∧,∨, ∗, ∀,∃, !l and ?l. The language LFL of FL is
defined by using

⋃

i∈ω Φi, 1, ⊤, ⊥, →,←, ∧,∨, ∗, ∀ and ∃.
A mapping g from LRN[l] to LFL is defined by: for any i ∈ ω and any

positive integer m,

1. g(pi) := pi ∈ Φi for any p ∈ Φ (especially, g(p) := p ∈ Φ0),

2. g(♯i) := ♯ where ♯ ∈ {1,⊤,⊥},

3. g((α ◦ β)i) := g(αi) ◦ g(βi) where ◦ ∈ {→,←,∧,∨, ∗},

4. g((Qα(x))i) := Qg(α(x)i) where Q ∈ {∀x,∃x},

5. g(αl+m) := g(αl),

6. g((!lα)i) :=
∧
{g(αi+j) | j ∈ ωl},

7. g((?lα)i) :=
∨
{g(αi+j) | j ∈ ωl}.

An expression g(Γ) denotes the result of replacing every occurrence of a
formula α in Γ by an occurrence of g(α).

The embedding function g is strongly dependent on the time bound l

(i.e., g should be denoted as gl). But, for the sake of brevity, a simple
expression g will be used in the following.
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Theorem 4.28 (Embedding). Let Γ be a sequence of formulas in LRN[l],

γ be a formula in LRN[l], and g be the mapping defined in Definition 4.27.

Then:

1. RN[l] ⊢ Γ⇒ γ iff FL ⊢ g(Γ)⇒ g(γ).

2. RN[l] – (cut) ⊢ Γ⇒ γ iff FL − (cut) ⊢ g(Γ)⇒ g(γ).

Proof. Similar to Theorem 2.7. ⊣

Using Theorem 4.28, we obtain the following theorems.

Theorem 4.29 (Cut-elimination). The rule (cut) is admissible in cut-free

RN[l].

Theorem 4.30 (Decidability). RN[l] is decidable.

Definition 4.31. Let LTN[l] and LRN[l] be the languages defined in defini-
tions 2.6 and 4.27. Then:

1. A mapping h1 from LTN[l] to LRN[l] is defined by h1(Xiα) := αi.

2. A mapping h2 from LRN[l] to LTN[l] is defined by h2(αi) := Xiα.

Note that h2h1(Xiα) = Xiα and h1h2(αi) = αi.

Although, as mentioned before (Proposition 4.26), TN[l] and RN[l] are
different logics, the following correspondence theorem, which means “time is
regarded as a resource”, can straightforwardly be obtained. This theorem is
regarded as an intuitionistic, non-commutative and bounded version of the
correspondence theorem of LTω and 2Sω, which was presented in [8].

Theorem 4.32 (Correspondence between TN[l] and RN[l]). Let h1 and h2

be the mappings defined in Definition 4.31. Let Γ be a sequence of formulas

in LRN[l] and γ be a formula in LRN[l]. Let Γ′ be a sequence of formulas in

LTN[l] and γ′ be a formula in LTN[l]. Then:

1. TN[l] ⊢ Γ⇒ γ iff RN[l] ⊢ h1(Γ)⇒ h1(γ).

2. TN[l] – (cut) ⊢ Γ⇒ γ iff RN[l] – (cut) ⊢ h1(Γ)⇒ h1(γ).

3. RN[l] ⊢ Γ⇒ γ iff TN[l] ⊢ h2(Γ)⇒ h2(γ).

4. RN[l] – (cut) ⊢ Γ⇒ γ iff TN[l] – (cut) ⊢ h2(Γ)⇒ h2(γ).
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Using Theorem 4.32, we can obtain alternative proofs of the cut-elim-
ination theorems for TN[l] and RN[l]. We now show only the alternative
proof of the cut-elimination theorem for TN[l]. Suppose TN[l] ⊢ Γ⇒ γ.
Then, we obtain RN[l] ⊢ h1(Γ)⇒ h1(γ) by Theorem 4.32 (1). We then
obtain RN[l] − (cut) ⊢ h1(Γ)⇒ h1(γ) by Theorem 4.29. Thus, we get TN[l]
– (cut) ⊢ h2h1(Γ)⇒ h2h1(γ) by Theorem 4.32(4). Since h2h1(Γ)-=Γ and
h2h1(γ) = γ, we have the required fact TN[l] – (cut) ⊢ Γ⇒ γ.

5. Concluding remarks

In this paper, a first-order temporal non-commutative logic TN[l], which
has no structural rules and has some l-bounded linear-time temporal opera-
tors, was introduced, and the decidability, cut-elimination and completeness
(w.r.t. phase semantics) theorems for TN[l] were shown using the embedding
theorem of TN[l] into the full Lambek logic FL. The logic TN[l] can represent
not only time-dependent, resource-sensitive, ordered, but also hierarchical
reasoning. An advantage of TN[l] is regarded as its decidability. The corre-
spondence theorem between TN[l] and a resource-indexed non-commutative
logic RN[l] was shown. This theorem was intended to represent the “time-
as-resources” interpretation.

In the following, some remarks on substructural extensions are given.
We can obtain some substructural extensions of TN[l] and RN[l] by adding
some structural rules. We can also obtain similar results on the embedding,
cut-elimination, completeness and correspondence results for these exten-
sions. Although we cannot obtain the decidability results for the extensions
with the contraction rule (these logics are indeed undecidable), we can ob-
tain the decidability results for some logics without the contraction rule. For
example, the linear logic version TL[l] of TN[l] is obtained from TN[l] by
adding the exchange rule. Then, the embedding, cut-elimination, decidabil-
ity, completeness and correspondence theorems for TL[l] can be obtained in
a similar way.
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