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A CLASS OF SIMPLER LOGICAL MATRICES

FOR THE VARIABLE-SHARING PROPERTY

Abstract. In our paper “A general characterization of the variable-sharing
property by means of logical matrices”, a general class of so-called “Relevant
logical matrices”, RMLs, is defined. The aim of this paper is to define a
class of simpler Relevant logical matrices RMLs′ serving the same purpose
that RMLs, to wit: any logic verified by an RML′ has the variable-sharing
property and related properties predicable of the logic of entailment E and
of the logic of relevance R.

Keywords: logical matrices, variable-sharing property, relevant logics

1. Introduction

As it is well-known, according to Anderson and Belnap, the variable-
sharing property (vsp) is a necessary property of any relevant logic S

(see [1]). The vsp reads as follows:

Definition 1 (Variable-sharing property –vsp). A logic S has the vsp
iff in any theorem of S of the form A → B, A and B share at least one
propositional variable.

In [4], a general class of so-called “Relevant logical matrices”, RLMs,
is defined. RLMs have the following property: if a logic S is verified (cf.
§2) by an RLM, then, in addition to the vsp, S has exactly the same
properties predicable of the logic of entailment E and of the logic of
relevance R (cf. [1], §22.1.3).

The aim of this paper is to define a class of simpler Relevant logical
matrices, which serve the same purposes that RLMs.

We shall begin with some preliminary definitions.
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2. Logical matrices. Preliminary definitions

We shall consider propositional languages with a set of denumerable
propositional variables and the following connectives: → (conditional),
∧ (conjunction), ∨ (disjunction), ¬ (negation), the biconditional (↔)
being defined in the customary way. The set of wff is also defined in the
usual way. Then, the notion of logical matrix is defined as follows:

Definition 2. A logical matrix M is a structure (K, T, F, f→, f∧, f∨, f¬)
where:

1. K is a set.
2. T and F are non-empty subsets of K such that T ∪ F = K and

T ∩ F = ϕ,
3. f→, f∧, f∨ are binary functions (distinct of each other) on K, and

f¬ is a unary function on K.

It is said that K is the set of elements of M ; T is the set of designated
elements, and F is the set of non-designated elements. The functions f→,
f∧, f∨ and f¬ interpret in M the conditional, conjunction, disjunction
and negation, respectively. In some cases one or more of these functions
may not be defined.

Now, let L be a propositional language, A1, ..., An, B be any wff of
L and S be a logic defined on L. On the other hand, let M be a logical
matrix and vm an assignment of elements of M to the propositional
variables of B. That B is assigned the element j of K is expressed as
follows: vm(B) = j.

Then, we set:

Definition 3. Let M be a logical matrix. M verifies B iff for any
assignment of elements of K to the propositional variables of B, vm,
vm(B) ∈ T .

Definition 4. Let M be a logical matrix. M falsifies B iff for some
assignment of elements of K to the propositional variables of B, vm,
vm(B) ∈ F .

Definition 5. Let A1, ..., An ⊢S B be a rule of derivation of S, and
M be a logical matrix. Then, M verifies A1, ..., An ⊢S B iff for any
assignment of elements of K to the variables of A1, . . . , An and B, vm,
if vm(A1) ∈ T, ..., vm(An) ∈ T , then, vm(B) ∈ T .
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Finally,

Definition 6. Let M be a logical matrix. M verifies S iff M verifies
all axioms and rules of derivation of S.

3. Simplified Relevant logical matrices

Definition 7 (Simplified Relevant logical matrix). Let M be a logical
matrix in which aT , aF , ai, ar are elements of K distinct of each other.
And let us designate by Ki and Kr the subsets of K {ai} and { ar},
respectively. In addition, the following conditions are fulfilled:

1. aT ∈ T ,
2. aF ∈ F .
3. (a) f∧(aT , aT ) = f∨(aT , aT ) = f→(aF , aT ) = f¬(aF ) = aT ,

(b) f∧(aF , aF ) = f∨(aF , aF ) = f→(aT , aF ) = f¬(aT ) = aF .
4. ∀x ∈ Ki ∪ Kr

(a) f∧(aF , x) = f∧(x, aF ) = f→(aT , x) = f→(x, aF ) = aF ,
(b) f∨(aT , x) = f∨(x, aT ) = f→(aF , x) = f→(x, aT ) = aT ,
(c) f∧(aT , x) = f∧(x, aT ) = f∨(aF , x) = f∨(x, aF ) = x.

5. (a) f∧(ai, ai) = f∨(ai, ai) = f→(ai, ai) = f¬ai = ai,
(b) f∧(ar, ar) = f∨(ar, ar) = f→(ar, ar) = f¬(ar) = ar.

6. f→(ai, ar) = aF .

Then, it is said that M is a (simplified) relevant (logical) matrix,
relevant matrix, for short.

Remark 1. 1. Notice that it is not necessary to stipulate the following:
(a) To which subset, T or F , belong the elements of Ki ∪ Kr.
(b) The elements of K assigned to f→(aT , aT ), f→(aF , aF ), f∧(aF ,

aT ), f∧(aT , aF ), f∨(aF , aT ) and f∨(aT , aF ).
(c) The elements of K assigned to f∧(ai, ar), f∧(ar, ai), f∨(ai, ar),

f∨(ar, ai) and f→(ar, ai).
2. Remark that condition 5 establishes that Ki and Kr are closed under

f→, f∧, f∨ and f¬. This fact, i.e., the fact that Ki and Kr are
singletons closed under the logical operations, together with the stan-
dardization of some open values in the functions, is the simplification
here presented in respect of the Relevant matrices defined in [4].
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4. Relevant matrices and the variable-sharing property

We prove that if a logic S is verified by a relevant matrix M , then S

has the properties that Anderson and Belnap prove in [1], §22.1.3 as
predicable of the logic of entailment E and of the logic of relevance R.

In order to prove that this is the case, we define antecedent part
(“ap”) and consequent part (“cp”) of wff inductively as follows (see [1],
p. 240).

Definition 8 (Antecedent parts and consequent parts). Let A be a wff.
Then,

1. A is a cp of A.
2. If B ∧ C is a cp (ap) of A, then both B and C are cps (aps) of A.
3. If B ∨ C is a cp (ap) of A, then both B and C are cps (aps) of A.
4. If B → C is a cp (ap) of A, then B is an ap (cp) of A and C is a cp

(ap) of A.
5. If ¬B is a cp (ap) of A, then B is an ap (cp) of A.

The properties referred to above are expressed in the following the-
orems (cf. [1], §22.1.3):

Theorem 1. If A → B is provable in S, then some variable occurs as

an ap of both A and B, or else as a cp of both A and B.

Theorem 2. If A is provable in S and A contains no conjunctions as

aps and no disjunctions as cps, then every variable in A occurs at least

once as ap and at least once as cp.

Let us proceed to prove Theorem 1. Suppose that A → B is a wff in
which no variable occurs as an ap of both A and B or as a cp of both A

and B. Then, each variable p occurring in A → B has to appear in A

and/or in B in one of the six situations tabulated below:

A B

p : cp -
ap -
- ap
- cp
cp ap
ap cp
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The first row is read “p occurs as a cp in A, but does not occur in
B”, and the rest of the rows are read similarly.

Now, let M be a relevant matrix that verifies S. According to these
possibilities, the following assignment vm of elements of M is defined for
each variable p in A → B:

A B vm(p)

p : cp - ai

ap - ai

- ap ar

- cp ar

cp ap aT

ap cp aF

Then, Theorem 1 follows immediately from the following lemmas:

Lemma 1. For every ap C of A, vm(C) ∈ {ai, aF }; and for every cp C

of A, vm(C) ∈ {ai, aT }.

Lemma 2. For every ap C of B, vm(C) ∈ {ar, aT }; and for every cp C

of A, vm(C) ∈ {ar, aF }.

The proofs of lemmas 1 and 2 are by induction on the length of C,
and they are easy given that M is a relevant matrix. Let us prove as way
of an example a couple of cases. By 3a, 4b etc. we refer to the clauses
in Definition 7. First, the conditional case in Lemma 1:

Proof. Suppose that C is of the form D → E. 1. C is an ap. Then,
D is a cp and E is an ap by Definition 8. By hypothesis of induction
(H.I), vm(D) ∈ {ai, aT } and vm(E) ∈ {ai, aF }, whence by 3b, 4a and
5a, vm(D → E) ∈ {ai, aF } as it was to be proved.

2. C is a cp. Then, D is an ap and E is a cp by Definition 8. By
H.I, vm(D) ∈ {ai, aF } and vm(E) ∈ {ai, aT }, whence by 3a, 4b and 5a,
vm(D → E) ∈ {ai, aT }, as it was to be proved. ⊣

Next, the negation case in Lemma 2:

Proof. Suppose that C is of the form ¬D:
1. C is an ap. Then, D is a cp by Definition 8. By H.I, vm(D) ∈ {ar,

aF }. Then, vm(¬D) ∈ {ar, aT } by 3a and 5b.
2. C is a cp. The proof is similar to the previous one by 3b and

5b. ⊣
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Then, the proof of Theorem 1 is immediate. As each formula is a cp
of itself, by lemmas 1 and 2, vm(A) ∈ {ai, aT } and vm(B) ∈ {ar, aF }
whence vm(A → B) = aF by 3b, 4a and 6 in Definition 7; that is, A → B

is not a theorem of S. Therefore, if A → B is a theorem of S, then some
variable occurs either as an ap or else as a cp of both A and B.

An immediate consequence of Theorem 1 is the following:

Corollary 1. S has the vsp.

Next, we proceed to the proof of Theorem 2.
Suppose that A is a wff in which some variable, say p, occurs only

as cp. Then, we set the following assignment under M: vm(p) = aF , and
each variable (distinct of p) in A is assigned the element ai of K1 by vm.
Then, it is proved:

Lemma 3. If B is any part of A in which p does not occur, then vm(B) ∈
{ai}.

Proof. Induction on the length of B. As it was the case with Lemma
1 and Lemma 2, it is easy. Notice, in this sense, that Ki and Kr are
closed under →, ∧, ∨ and ¬. ⊣

Lemma 4. If B is any part of A in which p does occur, then:

1. If B is an ap of A, then vm(B) = aT .

2. If B is a cp of A, then vm(B) = aF .

Proof. Induction on the length of B. If B is a propositional variable,
then B is p and vm(B) = aF . (Recall that p occurs only as a cp).
Regarding complex formulas, we prove the conditional case, and leave
the rest of the cases to the reader.

B is of the form C → D:

1. B is an ap. Then, C is a cp and D is an ap.
(a) p occurs in C and D: by H.I, vm(C) = aF and vm(D) = aT . So,

vm(C → D) = aT by 3a.
(b) p occurs in C but not in D: by H.I, vm(C) = aF . By Lemma 3,

vm(D) ∈ {ai}. So, vm(C → D) = aT by 4b.
(c) p occurs in D but not in C: by Lemma 3, vm(C) ∈ {ai}; by H.I,

vm(D) = aT . Then, vm(C → D) = aT by 4b.
2. B is a cp. Then, C is an ap and D is a cp.

(a) p occurs in C and D: by H.I, vm(C) = aT and vm(D) = aF .
Then, vm(C → D) = aF by 3b.



A class of simpler logical matrices for . . . 247

(b) p occurs in C but not in D: by H.I, vm(C) = aT . By Lemma 3,
vm(D) ∈ {ai}. Then, vm(C → D) = aF by 4a.

(c) p occurs in D but not in C: by Lemma 3, vm(C) ∈ {ai}; by H.I,
and vm(D) = aF . Then, vm(C → D) = aF by 4a. ⊣

The proof of the conditional case is now finished. The proof of the
conjunction, disjunction and negation cases is similar (recall that con-
junctions can only appear as cps and disjunctions as aps).

The proof of Theorem 2 is now immediate. As each formula is a cp
of itself, from Lemma 4 it follows that vm(A) = aF . That is, A is not a
theorem of S. Consequently, if A is a theorem of S without conjunctions
as aps and disjunctions as cps, then every variable in A occurs at least
once as ap and at least once as cp.

We end the paper with an example.

5. Example

We set the following example:

Definition 9. Consider the matrix MDF9 = (K, T , F , f→, f∧, f∨, f¬)
where:

• K = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• T = {1, 2, 3, 4, 5, 6, 7, 8, 9}
• F = {0}
• The functions f→, f∧, f∨, f¬ are defined as shown in the tables below.

→ 0 1 2 3 4 5 6 7 8 9 ¬
0 9 9 9 9 9 9 9 9 9 9 9
1 0 1 2 3 4 5 6 7 8 9 8
2 0 0 2 3 0 5 6 7 8 9 7
3 0 0 0 3 0 0 0 7 8 9 3
4 0 0 0 0 4 5 6 7 8 9 6
5 0 0 0 0 0 5 6 7 8 9 5
6 0 0 0 0 0 0 6 0 8 9 4
7 0 0 0 0 0 0 0 7 8 9 2
8 0 0 0 0 0 0 0 0 8 9 1
9 0 0 0 0 0 0 0 0 0 9 0
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∧ 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1
2 0 1 2 2 1 2 2 2 2 2
3 0 1 2 3 1 2 2 3 3 3
4 0 1 1 1 4 4 4 4 4 4
5 0 1 2 2 4 5 5 5 5 5
6 0 1 2 2 4 5 6 5 6 6
7 0 1 2 3 4 5 5 7 7 7
8 0 1 2 3 4 5 6 7 8 8
9 0 1 2 3 4 5 6 7 8 9

∨ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 1 2 3 4 5 6 7 8 9
2 2 2 2 3 5 5 6 7 8 9
3 3 3 3 3 7 7 8 7 8 9
4 4 4 5 7 4 5 6 7 8 9
5 5 5 5 7 5 5 6 7 8 9
6 6 6 6 8 6 6 6 8 8 9
7 7 7 7 7 7 7 8 7 8 9
8 8 8 8 8 8 8 8 8 8 9
9 9 9 9 9 9 9 9 9 9 9

Moreover,

• Ki = {5}
• Kr = {3}
• aT = 9
• aF = 0

It is proved:

Proposition 1. Matrix MDF9 is a relevant matrix.

Proof. It is a matter of checking that conditions 1-6 in Definition 7 are
fulfilled by MDF9. ⊣

Consequently, by Proposition 1, we have:

Proposition 2. Any logic S verified by MDF9 has the vsp. Moreover,

it has Theorem 1 and Theorem 2 as properties.
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Remark 2. 1. Matrix MDF9 could have been defined with Ki = {3} and
Kr = {5}.

2. The logic RMO defined in [2] (cf. also [3]) is verified by MDF9.
RMO is the result of adding to the positive fragment of relevance logic
R, R+ (cf. [1]) the axiom mingle A → (A → A), the axioms of double
negation A → ¬¬A and ¬¬A → A, the axiom of specialized reductio
(A → ¬A) → ¬A and the rule of contraposition, if A → B is a theorem,
then ¬B → ¬A is a theorem. By means of a (non-simplified) relevant
matrix, in [2], it is proved that the vsp and the properties stated in
Theorem 1 and Theorem 2 are predicable of RMO.
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