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NEGATION IN WEAK POSITIONAL CALCULI

Abstract. Four weak positional calculi are constructed and examined.

They refer to the use of the connective of negation within the scope of the

positional connective “R” of realization. The connective of negation may be

fully classical, partially analogical or independent from the classical, truth-

functional negation. It has been also proved that the strongest system,

containing fully classical connective of negation, is deductively equivalent

to the system MR from Jarmużek and Pietruszczak.
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1. Introduction

Jerzy Łoś delivered the first positional calculus in his master’s thesis,
supervised by Jerzy Słupecki, completed and accepted as early as 1947
and published in 1948 [4]. Łoś’ main concern was to refer sentences of
physical discourse to positions in time. To achieve this Łoś introduced
a connective of realization, referring a formula ϕ to a term α, to the
effect that the formula ϕ is realized in the point denoted by α, e.g. the
formula “the moon is waxing” may be referred to particular dates: the
moon is waxing on t, where t is a date. Nicolas Rescher and Alasdair
Urquhart reviewed other domains of reference, like positions in space [7].
Generally, realization or occurence at a point is considered in positional
logic, instead of mere occurence. In 2004 Tomasz Jarmużek and Andrzej
Pietruszczak examined a very weak and very general positional calculus
MR [2]. The system is designed to be the minimal one which allows to
prove that the connective of realization is distributive over all classical
connectives. The objective of this paper is to generalize Jarmużek and
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Pietruszczak’s result on some cases even weaker than MR with respect
to the connective of negation.

2. The System MR

As it has been just mentioned, the system MR comes from Tomasz Jar-
mużek and Andrzej Pietruszczak [2]. The letter “M” in “MR” stands for
“minimal”. The system is in fact minimal in the sense that it guaran-
tees the connective of realization “R” to be distributive over all classical
connectives [2, p. 148].

The set of well formed formulas of the system MR may be called
FM. The alphabet consists of (a) an infinite, but denumerable, set SL
of schematic sentence letters, (b) an infinite, but denumerable, set IN
of schematic positional letters, also known as schematic indicators, (c)
the connectives: “R” of realization, “¬” of negation, “∧” of conjunction,
“∨” of disjunction, “→” of conditional and “≡” of equivalence, as well
as (d) parentheses, serving for punctuation signs. All the connectives,
but “R” are propositional, whereas the connective “R” is positional. The
indicators are usually to be understood as proper names of positions,
however, on the purely formal level we only require the sets SL and
IN to be mutually exclusive, i.e. SL ∩ IN = ∅. The set QF of quasi-
formulas is characterized as the smallest collection, containing the set SL
of schematic sentence letters, and closed under the following operations:
p(¬ϕ)q ∈ QF, provided ϕ ∈ QF, and p(ϕ ∧ ψ)q, p(ϕ ∨ ψ)q, p(ϕ → ψ)q,
p(ϕ ≡ ψ)q ∈ QF, provided ϕ, ψ ∈ QF. An atomic formula of FM is any
sign cluster

pRαϕq, (1)

in which α ∈ IN and ϕ ∈ QF. An atomic formula (1) is to be read: at
the point α it is the case that ϕ — or similarly. The set FM of formulas
of the language we consider is characterized as the smallest collection
containing the set of all atomic formulas of FM and closed under the
following operations: p(¬ϕ)q ∈ FM, provided ϕ ∈ FM, and p(ϕ ∧ ψ)q,
p(ϕ ∨ ψ)q, p(ϕ → ψ)q, p(ϕ ≡ ψ)q ∈ FM, provided ϕ, ψ ∈ FM. Having
excluded any ambiguity, we traditionally allow to omit parentheses. In
such cases the following order of connectives: “R”, “¬”, “∧”, “∨”, “→”,
“≡” is to be preserved.

Notice that in the language FM all schematic letters appear always
within the scope of the connective “R” and that no nested occurences of
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the connecive “R” are allowed. Those features constitute weak positional
calculi.

Single-sentence-letter formulas are such members of FM that involve
exactly one occurence of an element of SL and no iteration of any con-
nective, i.e. any formulas:

pRαϕq, pRα¬ϕq, p¬Rαϕq and p¬Rα¬ϕq, (2)

in which α ∈ IN, ϕ ∈ SL. Such formulas make the set SSL. The set EF
of elementary formulas is the smallest collection containing all elements
of SSL and such that pϕ ∨ ψq ∈ EF, provided ϕ, ψ ∈ EF. The set
NF of conjunctive normal forms is the smallest collection containing all
elements of EF and such that pϕ ∧ ψq ∈ NF, provided ϕ, ψ ∈ NF.

The system MR has been originally axiomatized as follows. Let CPC
be the set of all tautologies of the classical propositional calculus, let
α ∈ IN, ϕ, ψ ∈ QF and let e : QF −→ FM be any substitution of FM-
formulas for all schematic letters of QF. Then the following formulas are
axioms:

e(ϕ), provided ϕ ∈ CPC, (3)

pRαϕq, provided ϕ ∈ CPC, (4)

Rα¬ϕ ≡ ¬Rαϕ, (5)

Rαϕ ∧ Rαψ → Rα(ϕ ∧ ψ). (6)

The set of axioms is the smallest collection meeting the above formulated
conditions. The rule of Modus Ponens is the unique primitive rule of
inference:

ϕ,
ϕ → ψ,
ψ,

(MP)

for all ϕ, ψ ∈ FM. The set of theorems of MR is the smallest collection
containing all the axioms and closed under the rule (MP) [2, p. 149–150].

Calculi in the set FM of well formed formulas may be considered weak

positional calculi. It may be asked, what other than MR, interesting
weak positional calculi there exist. In this paper I provide a general
model template for such calculi and examine some interesting examples.

As it has been already mentioned, in the system MR the connec-
tive “R” is distributive over all sentential connectives, i.e., for all α ∈
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IN, ϕ, ψ ∈ QF, the following distributive laws are provable in MR:

Rα¬ϕ ≡ ¬Rαϕ, (5)

Rα(ϕ ∧ ψ) ≡ Rαϕ ∧ Rαψ, (7)

Rα(ϕ ∨ ψ) ≡ Rαϕ ∨ Rαψ, (8)

Rα(ϕ → ψ) ≡ Rαϕ → Rαψ, (9)

Rα(ϕ ≡ ψ) ≡ (Rαϕ ≡ Rαψ). (10)

The proofs have been delivered in the referred paper [2, p. 151–153].
Jarmużek and Pietruszczak have also proved the adequacy (i.e. sound-
ness and completeness) result for the system MR with respect to a very
simple structure [2, p. 154–159].

However, there are good reasons to consider positional calculi even
weaker than MR. Such calculi lack of some of the distributive laws (5),
(7)–(10). For example, in an earlier work of mine I claimed that temporal
realization in physical discourse, prominently that of Relativity Theory,
lacks of distribution with respect to negation. The formula

¬Rαϕ → Rα¬ϕ (11)

is not valid in such a discourse, for — according to the principles of
relativity — the antecedent means that it is not the case that α and ϕ
occur simultaneously, while the consequent means that α occurs simul-
taneously to p¬ϕq. Hence, the formula (11) is clearly false, provided α
does not occur at all.

Lack of some distributive laws makes the connective in question,
when it appears within the scope of “R”, actually non-classical, deviant.
Consequently in the sysem MR all the connectives within the scope of
“R” are perfectly classical.

3. A general model template

The objective of this paper is to provide a possibly general and uniform
template of formal semantics for weak positional calculi. What is to be
delivered is actually a generalization of Jarmużek and Pietruszczak’s re-
sult. Within such a template non-standard negation is to be considered.
So, a model in general is any structure M of the sort

M = 〈U,Ω,Ω⋆, d, s〉,
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where

U,Ω,Ω⋆ are non-empty sets, (12)

Ω⋆ ⊆ Ω, (13)

d : IN −→ U, (14)

s : U × QF −→ Ω. (15)

The set U may be understood as a set of positions of any kind, e.g.
positions in time, space, persons, worlds or whatever, the set Ω is the
set of truth-values, the set Ω⋆ is the set of designated truth-values, the
denotation function d attributes positions to indicators and the satis-
faction function s attributes truth-values to elements of QF, relative to
positions. Formulas of weak positional language, i.e. elements of the set
FM, are true or false in such models. To be false in a model means
exactly not to be true in it. So, for any model M and any ϕ ∈ FM,
either M � ϕ, or M 2 ϕ. Let α ∈ IN and ϕ ∈ QF:

M � pRαϕq if and only if s(d(α), ϕ) ∈ Ω⋆. (16)

So, an atomic formula pRαϕq is true in a model M if and only if ϕ takes
on a designated value at d(α). Truth conditions for compound formulas
are classical:

M � p¬ϕq if and only if M 2 ϕ, (17)

M � pϕ ∧ ψq if and only if M � ϕ and M � ψ, (18)

M � pϕ ∨ ψq if and only if M � ϕ or M � ψ, (19)

M � pϕ → ψq if and only if M 2 ϕ or M � ψ, (20)

M � pϕ ≡ ψq if and only if M � ϕ, ψ or M 2 ϕ, ψ, (21)

for any ϕ, ψ ∈ FM. Formulas may be considered as valid in a sense if
and only if they are true in a set of models related to the sense.

4. Four-Cornered Models

Let X be a set of models determined by the sets ΩX, Ω⋆
X and the function

sX. In the models to be considered in this paper the function sX is
described by means of matrix valuations. Depending on the class of
models, in ΩX there appear at most four truth-values:

1 — truth and nothing but the truth,
0 — falsehood and nothing but the falsehood,
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X — both truth and falsehood,
Y — neither truth nor falsehood.

The values 1 and 0 are obviously identical with the classical truth and
falsehood respectively, whereas X is known as truth-value glut and Y is
known as truth-value gap. The values admitted refer to the so called four

corners of truth, described by a pre-sixth century Indian philosopher
Sanjaya [6]. In the description of sX the following operations on the
truth-values play an auxiliary rôle:

f¬X : ΩX −→ ΩX, (22)

f
♯
X : ΩX × ΩX −→ ΩX, (23)

for f
♯
X being f∧X, f

∨

X, f
→

X or f≡X. If ϕ ∈ SL, the only requirement imposed
on sX is

sX(x, ϕ) ∈ ΩX, (24)

In other elements of QF, i.e. compound quasi-formulas, the function s

takes on the following values:

sX(x,¬ϕ) = f¬X(sX(x, ϕ)), (25)

sX(x, ϕ ∧ ψ) = f∧X(sX(x, ϕ), sX(x, ψ)), (26)

sX(x, ϕ ∨ ψ) = f∨X(sX(x, ϕ), sX(x, ψ)), (27)

sX(x, ϕ → ψ) = f→X (sX(x, ϕ), sX(x, ψ)), (28)

sX(x, ϕ ≡ ψ) = f≡X(sX(x, ϕ), sX(x, ψ)). (29)

An element of the set FM of formulas is X-valid if and only if it is true
in all models of the set X. A calculus is X-sound if and only if all the
calculus’ theorems are X-valid. A calculus is X-complete if and only in
all the X-valid elements of the set FM are provable in the calculus. A
calculus is X-adequate if and only if it is both X-sound and X-complete.

5. The System RB

The system RB is algebraically analogical to Nuel D. Belnap’s four-
valued logic, originally concerned with the way a computer should work
on possibly incomplete or inconsistent data [1]. The set B of models is
determined by the sets

ΩB = {1, 0, X, Y}, Ω⋆
B = {1, X}, (30)
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as well as by the collection of operations f¬B, f
∧

B, f
∨

B, f
→

B , f
≡

B on ΩB, pre-
sented on the table 1. A formula ϕ ∈ FM is B-valid if and only if ϕ is

¬

1 0

X X

Y Y

0 1

∧ 1 X Y 0

1 1 X Y 0

X X X 0 0

Y Y 0 Y 0

0 0 0 0 0

∨ 1 X Y 0

1 1 1 1 1

X 1 X 1 X

Y 1 1 Y Y

0 1 X Y 0

→ 1 X Y 0

1 1 X Y 0

X 1 X 1 X

Y 1 1 Y Y

0 1 1 1 1

≡ 1 X Y 0

1 1 X Y 0

X X X 1 X

Y Y 1 Y Y

0 0 X Y 1

Table 1. The operations f¬B, f
∧

B, f
∨

B, f
→

B , f
≡

B

true in every B-model. An axiomatics of the system RB consists of the
axioms (3), the rule (MP) and the axioms:

Rα(ϕ ∧ ψ) ≡ Rαϕ ∧ Rαψ, (31)

Rα¬(ϕ ∧ ψ) ≡ Rα¬ϕ ∨ Rα¬ψ, (32)

for any α ∈ IN, ϕ, ψ ∈ QF, as well as the following rules of mutual
interchange:

p¬¬ϕq ‖ ϕ, (33)

pϕ ∨ ψq ‖ p¬(¬ϕ ∧ ¬ψ)q, (34)

pϕ → ψq ‖ p¬(ϕ ∧ ¬ψ)q, (35)

pϕ ≡ ψq ‖ p(ϕ → ψ) ∧ (ψ → ϕ)q, (36)

for any ϕ, ψ ∈ QF. Quasi-formulas appearing on oposite sides of the
sign “‖” are mutually interchangebile salva dogmate. The system RB is
adequate (i.e. both sound and complete) with respect to the set B of
models, i.e. any formula ϕ ∈ FM is a theorem of RB if and only if ϕ is
B-valid. The system RB is also decidable.

Theorem 1. All theorems of the system RB are B-valid.

Proof. The axioms (3) are B-valid and the rule (MP) preserves B-
validity due to the truth-condtitions (17)–(21). To become convinced
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that all the axioms (31) are B-valid, notice that f∧B(x, y) ∈ Ω⋆
B if and only

if x, y ∈ Ω⋆
B. In relation to the axioms (32) notice that f¬B(f∧B(x, y)) ∈ Ω⋆

B

if and only if f∧B(x, y) equals X or 0, which is the case if and only if either
x or y equals X or 0, which is the case if and only if either f¬B(x) or f¬B(y)
belongs to Ω⋆

B. The rules (33)–(36) preserve B-validity due to classical
mutual definability of the operations f¬B, f

∧

B, f
∨

B, f
→

B and f≡B. It follows
that all the theorems of RB are B-valid.

Theorem 2. For every ϕ ∈ FM there exists such a ϕ′ ∈ NF that the

equivalence pϕ ≡ ϕ′
q is a theorem of the system RB.

Proof. Consider any formula ϕ ∈ FM. All sentential connectives but
conjunction and negation are eliminable out of the scopes of the posi-
tional connective “R” by means of the rules (34)–(36). So are interated
occurences of the connective of negation — by means of the rule (33).
All conjunctions and and negated conjunctions are eliminable out of the
scopes of the positional connective “R” by means of the axioms (31)
and (32). Hence, a formula ϕ̄ is achievable, such that single sentence
letters or negations of such letters appear within scopes of the positional
connective “R” in ϕ̄, and the equivalence pϕ ≡ ϕ̄q is a theorem of the
system RB. Consider now all atomic formulas in ϕ̄ as indivisible units.
By means of the axioms (3), analogically to the classical propositional
calculus, a conjunctive normal form of ϕ̄ may be found and the conjunc-
tive normal form is the formula ϕ′ ∈ NF to be found.

Theorem 3. A formula ψ ∈ EF is B-valid if and only if there are such

letters α ∈ IN and ϕ ∈ SL that either of the following pairs of formulas

(a) pRαϕq, p¬Rαϕq,

(b) pRα¬ϕq, p¬Rα¬ϕq

appears among the disjuncts of ψ.

Proof. Pick any B-model M. If s(d(α), ϕ) = 1, then M � pRαϕq,
p¬Rα¬ϕq. If s(d(α), ϕ) = 0, then M � p¬Rαϕq, pRα¬ϕq. If s(d(α), ϕ)
= X, then M � pRαϕq, pRα¬ϕq. If s(d(α), ϕ) = Y, then M � p¬Rαϕq,
p¬Rα¬ϕq. Hence, if either the case (a) or the case (b) occurs, at least
one disjunct of ψ is true in M. Under the condition (19) so is the whole
formula ψ. Suppose neither (a) nor (b) occurs. For every letters α ∈
IN, ϕ ∈ SL appearing in ψ, put s(d(α), ϕ) = Y, if both pRαϕq, pRα¬ϕq
are disjuncts of ψ, s(d(α), ϕ) = X, if both p¬Rαϕq, p¬Rα¬ϕq are dis-
juncts of ψ, otherwise put s(d(α), ϕ) = 1, if either pRα¬ϕq or p¬Rαϕq
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is a disjunct of ψ, s(d(α), ϕ) = 0, if either pRαϕq or p¬Rα¬ϕq are
disjuncts of ψ. In such case no disjunct of ψ is true in the model M, and
hence, under the rule (19), neither is ψ itself.

Theorem 4. Every B-valid elementary formula ϕ ∈ EF is a theorem of

the system RB.

Proof. Suppose ϕ ∈ EF is B-valid. Due to the theorem 3 either the
case (a) or the case (b) occurs. In the case (a) use the axiom (3):

Rαϕ ∨ ¬Rαϕ.

Add other disjuncts of ϕ, using axioms (3) and the rule (MP). In the case
(b) use the axiom (3):

Rα¬ϕ ∨ ¬Rα¬ϕ.

Add other disjuncts of ϕ, using axioms (3) and the rule (MP).

Theorem 5. Every B-valid formula ϕ ∈ FM is a theorem of the sys-

tem RB.

Proof. Let ϕ ∈ FM be B-valid. Due to the theorem 2 such an equiva-
lence

ϕ ≡ ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn (37)

is a theorem of RB, that n ≥ 1 is a natural number and ϕ1, ϕ2, . . . , ϕn ∈
EF. Due to the theorem 1 the equivalence (37) is also valid, and hence,
because of the rules (18) and (21) all the formulas: ϕ1, ϕ2, . . . , ϕn are
B-valid. Consequently, because of the theorem 4, all the formulas:
ϕ1, ϕ2, . . . , ϕn are provable in RB, and, by the axiom (3), so is their
conjunction. From that and from the provability of the equivalence (37)
it follows that the formula ϕ is itself provable in the system RB.

Theorem 6. The system RB is decidable.

The theorem follows from the theorems: 1, 2, 3 and 5. Search for
normal forms constitutes a decision procedure.

6. The System RK

The system RK is algebraically analogical to Stephen Cole Kleene’s
strong three-valued logic. Kleene was originally concerned with mathe-
matical sentences that are neither true nor false, but indeterminate in
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the sense of being unprovable as well as undisprovable [3] The set K of
models is determined by the sets

ΩK = {1, 0, Y}, Ω⋆
K = {1}, (38)

as well as by the collection of operations f¬K, f
∧

K, f
∨

K, f
→

K , f
≡

K on ΩK, pre-
sented on the table 2. A formula ϕ ∈ FM is K-valid if and only if ϕ is

¬

1 0

Y Y

0 1

∧ 1 Y 0

1 1 Y 0

Y Y Y 0

0 0 0 0

∨ 1 Y 0

1 1 1 1

Y 1 Y Y

0 1 Y 0

→ 1 Y 0

1 1 Y 0

Y 1 Y Y

0 1 1 1

≡ 1 Y 0

1 1 Y 0

Y Y Y Y

0 0 Y 1

Table 2. The operations f¬K, f
∧

K, f
∨

K, f
→

K , f
≡

K

true in every K-model. The axiomatics of the system RK consists of all
the axioms and rules of the system RB as well as the additional axioms:

Rα¬ϕ → ¬Rαϕ, (39)

for any α ∈ IN, ϕ, ψ ∈ QF. The system RB is adequate (i.e. both sound
and complete) with respect to the set B of models, i.e. any formula
ϕ ∈ FM is a theorem of RB if and only if ϕ is B-valid. The system RK

is also decidable.

Theorem 7. All theorems of the system RK are K-valid.

Proof. The axioms (3) are K-valid and the rule (MP) preserves K-
validity due to the truth-condtitions (17)–(21). To become convinced
that all the axioms (31) are K-valid, notice that f∧K(x, y) ∈ Ω⋆

K if and only
if x, y ∈ Ω⋆

K. In relation to the axioms (32) notice that f¬K(f∧K(x, y)) ∈ Ω⋆
K

if and only if f∧K(x, y) equals 0, which is the case if and only if either
x or y equals 0, which is the case if and only if either f¬K(x) or f¬K(y)
belongs to Ω⋆

K. In relation to the axioms (39) suppose that f¬K(x) ∈ Ω⋆
K.

It follows that x = 0, so x /∈ Ω⋆
K. The rules (33)–(36) preserve K-validity

due to classical mutual definability of the operations f¬K, f
∧

K, f
∨

K, f
→

K and
f≡K . It follows that all the theorems of RK are K-valid.

Theorem 8. For every ϕ ∈ FM there exists such a ϕ′ ∈ NF that the

equivalence pϕ ≡ ϕ′
q is a theorem of the system RK.

The proof is quite analogical to the proof of the theorem 2.
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Theorem 9. A formula ψ ∈ EF is provable in the system RK if and only

if there are such letters α ∈ IN and ϕ ∈ SL that either of the following

pairs of formulas

(a) pRαϕq, p¬Rαϕq,

(b) pRα¬ϕq, p¬Rα¬ϕq,

(c) p¬Rαϕq, p¬Rα¬ϕq

appears among the disjuncts of ψ.

Proof. Pick any K-model M. If s(d(α), ϕ) = 1, then M � pRαϕq,
p¬Rα¬ϕq. If s(d(α), ϕ) = 0, then M � p¬Rαϕq, pRα¬ϕq. If s(d(α), ϕ)
= Y, then M � p¬Rαϕq, p¬Rα¬ϕq. Hence, if either the case (a), (b) or
(c) occurs, at least one disjunct of ψ is true in M. Under the condition
(19) so is the formula ψ itself. Suppose neither of the cases (a), (b), (c)
occurs. For every letters α ∈ IN, ϕ ∈ SL appearing in ψ, put s(d(α), ϕ) =
Y, if both pRαϕq, pRα¬ϕq are disjuncts of ψ, otherwise put s(d(α), ϕ) =
1, if either pRα¬ϕq or p¬Rαϕq is a disjunct of ψ, s(d(α), ϕ) = 0, if
either pRαϕq or p¬Rα¬ϕq are disjuncts of ψ. In such case no disjunct
of ψ is true in the model M, and hence, under the rule (19), neither is
ψ itself.

Theorem 10. Every K-valid elementary formula ϕ ∈ EF is a theorem

of the system RK.

Proof. Suppose ϕ ∈ EF is K-valid. Due to the theorem 9 one of the
cases (a)–(c), described in the theorem, occurs. In the cases (a) and (b)
act analogically to the theorem 4. In the case (c) use the axioms (39)
and (3) to derive the theorem:

¬Rα¬ϕ ∨ ¬Rαϕ.

Add other disjuncts of ϕ, using axioms (3) and the rule (MP).

Theorem 11. Every K-valid formula ϕ ∈ FM is a theorem of the sys-

tem RK.

The proof is based on the theorems: 7, 8 and 10, and is analogical to
the proof of the theorem 5.

Theorem 12. The system RK is decidable.

The theorem follows from the theorems: 7, 8, 9 and 11. Search for
normal forms constitutes a decision procedure.
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7. The System RP

The system RP is algebraically analogical to Graham Priest’s dialetheic
logic of paradox, advanced to deal with antinomies [5]. The set P of
models is determined by the sets

ΩP = {1, 0, X}, Ω⋆
P = {1, X}, (40)

as well as by the collection of operations f¬P, f
∧

P, f
∨

P, f
→

P , f
≡

P on ΩP, pre-
sented on the table 3. A formula ϕ ∈ FM is P-valid if and only if ϕ is

¬

1 0

X X

0 1

∧ 1 X 0

1 1 X 0

X X X 0

0 0 0 0

∨ 1 X 0

1 1 1 1

X 1 X X

0 1 X 0

→ 1 X 0

1 1 X 0

X 1 X X

0 1 1 1

≡ 1 X 0

1 1 X 0

X X X X

0 0 X 1

Table 3. The operations f¬P, f
∧

P, f
∨

P, f
→

P , f
≡

P

true in every P-model. The axiomatics of the system RP consists of all
the axioms and rules of the system RB as well as the additional axioms:

¬Rαϕ → Rα¬ϕ, (41)

for any α ∈ IN, ϕ, ψ ∈ QF. The system RB is adequate (i.e. both sound
and complete) with respect to the set P of models, i.e. any formula
ϕ ∈ FM is a theorem of RB if and only if ϕ is P-valid. The system RP

is also decidable.

Theorem 13. All theorems of the system RP are P-valid.

Proof. The axioms (3) are P-valid and the rule (MP) preserves P-
validity due to the truth-condtitions (17)–(21). To become convinced
that all the axioms (31) are P-valid, notice that f∧P(x, y) ∈ Ω⋆

P if and only
if x, y ∈ Ω⋆

P. In relation to the axioms (32) notice that f¬P(f∧P(x, y)) ∈ Ω⋆
P

if and only if f∧P(x, y) equals X or 0, which is the case if and only if ei-
ther x or y equals X or 0, which is the case if and only if either f¬P(x)
or f¬P(y) belongs to Ω⋆

P. In relation to the axioms (41) suppose that
x /∈ Ω⋆

P, so x = 0. It follows that f¬P(x) ∈ Ω⋆
P. The rules (33)–(36)

preserve P-validity due to classical mutual definability of the operations
f¬P, f

∧

P, f
∨

P, f
→

P and f≡P. It follows that all the theorems of RP are P-
valid.
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Theorem 14. For every ϕ ∈ FM there exists such a ϕ′ ∈ NF that the

equivalence pϕ ≡ ϕ′
q is a theorem of the system RP.

The proof is quite analogical to the proof of the theorem 2.

Theorem 15. A formula ψ ∈ EF is P-valid if and only if there are such

letters α ∈ IN and ϕ ∈ SL that either of the following pairs of formulas

(a) pRαϕq, p¬Rαϕq,

(b) pRα¬ϕq, p¬Rα¬ϕq,

(c) pRαϕq, pRα¬ϕq

appears among the disjuncts of ψ.

Proof. Pick any P-model M. If s(d(α), ϕ) = 1, then M � pRαϕq,
p¬Rα¬ϕq. If s(d(α), ϕ) = 0, then M � p¬Rαϕq, pRα¬ϕq. If s(d(α), ϕ)
= X, then M � pRαϕq, pRα¬ϕq. Hence, if either the case (a), (b) or (c)
occurs, at least one disjunct of ψ is true in M. Under the condition (19)
so is the formula ψ itself. Suppose neither of the cases (a), (b), (c) occurs.
For every letters α ∈ IN, ϕ ∈ SL appearing in ψ, put s(d(α), ϕ) = X, if
both p¬Rαϕq, p¬Rα¬ϕq are disjuncts of ψ, otherwise put s(d(α), ϕ) = 1,
if either pRα¬ϕq or p¬Rαϕq is a disjunct of ψ, s(d(α), ϕ) = 0, if either
pRαϕq or p¬Rα¬ϕq are disjuncts of ψ. In such case no disjunct of ψ
is true in the model M, and hence, under the rule (19), neither is ψ
itself.

Theorem 16. Every P-valid elementary formula ϕ ∈ EF is a theorem

of the system RP.

Proof. Suppose ϕ ∈ EF is P-valid. Due to the theorem 15 one of the
cases (a)–(c), described in the theorem, occurs. In the cases (a) and (b)
act analogically to the theorem 4. In the case (c) use the axioms (41)
and (3) to derive the theorem:

Rαϕ ∨ Rα¬ϕ.

Add other disjuncts of ϕ, using axioms (3) and the rule (MP).

Theorem 17. Every P-valid formula ϕ ∈ FM is a theorem of the sys-

tem RP.

The proof is based on the theorems: 13, 14 and 16, and is analogical
to the proof of the theorem 5.

Theorem 18. The system RP is decidable.
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The theorem follows from the theorems: 13, 14, 15 and 17. Search
for normal forms constitutes a decision procedure.

8. The System RC

The system RC is algebraically analogical to the classical propositional
calculus and turnes out to be identical to the above described system
MR. Practically one has to do here with the classical matrix. The set C

of models is determined by the sets

ΩC = {1, 0}, Ω⋆
C = {1}, (42)

as well as by the collection of operations f¬C, f
∧

C, f
∨

C, f
→

C , f
≡

C on ΩC, presented
on the table 4. A formula ϕ ∈ FM is C-valid if and only if ϕ is true

¬

1 0

0 1

∧ 1 0

1 1 0

0 0 0

∨ 1 0

1 1 1

0 1 0

→ 1 0

1 1 0

0 1 1

≡ 1 0

1 1 0

0 0 1

Table 4. The operations f¬C, f
∧

C, f
∨

C, f
→

C , f
≡

C

in every C-model. The axiomatics of the system RC consists of all the
axioms and rules of the system RB, except for (32), which gets derivable,
as well as of the additional axioms (5). The system RC is adequate (i.e.
both sound and complete) with respect to the set C of models, i.e. any
formula ϕ ∈ FM is a theorem of RC if and only if ϕ is C-valid. The
system RC is also decidable.

Theorem 19. All theorems of the system RC are C-valid.

Proof. The axioms (3) are C-valid and the rule (MP) preserves C-validity
due to the truth-condtitions (17)–(21). To become convinced that all
the axioms (31) are C-valid, notice that f∧C(x, y) ∈ Ω⋆

C if and only if
x, y ∈ Ω⋆

C. In relation to the axioms (5) notice that f¬C(x) ∈ Ω⋆
C if and

only if x /∈ Ω⋆
C. The rules (33)–(36) preserve C-validity due to classical

mutual definability of the operations f¬C, f
∧

C, f
∨

C, f
→

C and f≡C . It follows that
all the theorems of RC are C-valid.

Theorem 20. For every ϕ ∈ FM there exists such a ϕ′ ∈ NF that the

equivalence pϕ ≡ ϕ′
q is a theorem of the system RC.

The proof is quite analogical to the proof of the theorem 2.
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Theorem 21. A formula ψ ∈ EF is provable in the system RC if and only

if there are such letters α ∈ IN and ϕ ∈ SL that either of the following

pairs of formulas

(a) pRαϕq, p¬Rαϕq,

(b) pRα¬ϕq, p¬Rα¬ϕq,

(c) pRαϕq, pRα¬ϕq,

(d) p¬Rαϕq, p¬Rα¬ϕq

appears among the disjuncts of ψ.

Proof. Pick any C-model M. If s(d(α), ϕ) = 1, then M � pRαϕq,
p¬Rα¬ϕq. If s(d(α), ϕ) = 0, then M � p¬Rαϕq, pRα¬ϕq. Hence, if
either the case (a), (b), (c) or (d) occurs, at least one disjunct of ψ is
true in M. Under the condition (19) so is the formula ψ itself. Suppose
neither of the cases (a)–(d) occurs. For every letters α ∈ IN, ϕ ∈ SL
appearing in ψ, put s(d(α), ϕ) = 1, if either pRα¬ϕq or p¬Rαϕq is a
disjunct of ψ, s(d(α), ϕ) = 0, if either pRαϕq or p¬Rα¬ϕq are disjuncts
of ψ. In such case no disjunct of ψ is true in the model M, and hence,
under the rule (19), neither is ψ itself.

Notice that, due to the perfect distributivity of negation in the system
RC, the cases (b)–(c) of the theorem 21 are practically reducible to the
case (a). It is the case in neither of the calculi RB, RK, RP.

Theorem 22. Every C-valid elementary formula ϕ ∈ EF is a theorem

of the system RC.

Proof. Suppose ϕ ∈ EF is C-valid. Due to the theorem 21 one of
the cases (a)–(d) there described occurs. In the cases (a) and (b) act
analogically to the theorem 4. In the case (c) use the left conditional,
derived from the axiom (5), and act analogically to the theorem 16. In
the case (d) use the right conditional, derived from the axiom (5), and
act analogically to the theorem 10.

Theorem 23. Every C-valid formula ϕ ∈ FM is a theorem of the sys-

tem RC.

The proof is based on the theorems: 19, 20 and 22, and is analogical
to the proof of the theorem 5.

Theorem 24. The system RC is decidable.

The theorem follows from the theorems: 19, 20, 21 and 23. Search
for normal forms constitutes a decision procedure.
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9. Four Corners of Positinal Calculi

The weak positional calculi we described form a four-cornered lattice
analogical to the four corners of truth-values. Let E(X) be the set of all
X-valid formulas, of course, identical to the set of theorems of the system
RX. It turns out that the following interrelations hold:

E(B) ⊂ E(P) ⊂ E(C), (43)

E(B) ⊂ E(K) ⊂ E(C), (44)

E(P) * E(K) and E(K) * E(P), (45)

E(B) = E(K) ∩ E(P) (46)

and finally

E(C) = E(K) ∪ E(P). (47)

Those theorems are easily justifiable due to decidability of all the calculi
in question. To justify the theorems (43)–(47) it is practically enough to
carefully observe the axioms concerning the connective of negation: (5),
(39) and (41). Furthermore, the system RC is deductively equivalent to
the system MR from Jarmużek and Pietruszczak.

Theorem 25. The system RC is deductively equivalent to the system

MR.

Proof. It is enough to show that the axiom collection (4) is derivable
in the system RC. We are then about to show that pRαϕq is provable in
RC, provided ϕ ∈ CPC. Define such a substitution e : QF −→ FM, that

e(ψ) = pRαψq,

for all ψ ∈ SL. Let ϕ ∈ FM be any classical tautology. Due to the axiom
collection (3) the formula e(ϕ) is a theorem of RC, provided ϕ ∈ CPC.
Now, by use of the distribution laws of RC, the formula pRαϕq is trivially
deducible from the formula e(ϕ).

Analogical interrelations apply to the distributive laws that hold in
particular calculi.

Finally, a question seems to be posed. What is the minimal formal
tool that would allow to construct algorithmically arbitrary sound and
complete weak positional calculi, containing some, all or none distribu-
tive laws? As far as I am aware the question remains unanswered.
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